Научная статья на тему 'Антифунгальная активность различных базидиомицетовых макромицетов'

Антифунгальная активность различных базидиомицетовых макромицетов Текст научной статьи по специальности «Биологические науки»

CC BY
123
47
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АНТИБИОТИК / ВЗАИМОДЕЙСТВИЕ / ГРИБЫ-МАКРОМИЦЕТЫ И МИКРОМИЦЕТЫ / ДВОЙНАЯ КУЛЬТУРА / ДРОЖЖИ / НИТЧАТЫЕ ГРИБЫ / ПРОТИВОГРИБКОВАЯ АКТИВНОСТЬ / ANTIFUNGAL ACTIVITY / DUAL CULTURE / FILAMENTOUS FUNGI / INTERACTION / MUSHROOMS / YEAST

Аннотация научной статьи по биологическим наукам, автор научной работы — Бадалян С. М.

Скрининг антифунгальной активности 44 видов 94 штаммов базидиальных макромицетов из различных экологических групп был проведен в отношении 43 видов и 55 штаммов микромицетов в совместной культуре, а также в отношении 5 штаммов Candida albicans методом диффузии в агар. Испытанные тест-микромицеты являются потенциальными патогенами человека, животных и растений, а также продуцентами антибиотиков. Взаимоотношения между контактирующими мице-лиями макромицетов и микромицетов проявлялись основными двумя типами реакций: взаимоторможением (на дистанции или при контакте колоний) и нарастанием (полным и частичным), следующим после взаимоторможения (на дистанции или при контакте мицелия), или без него. Почти все макромицеты выраженно ингибировали и значительно подавляли рост тест-микромицетов. Среди них высокая антагонистическая активность была отмечена у Hypholoma fasciculare, Flammulina velutipes, Pleurotus ostreatus, Lentinus tigrinus, Coprinus cinereus, C. disseminatus, Volvariella volvaceae и Ganoderma lucidum. Между тем, среди микромицетов некоторую антагонистическую активность, в частности, в отношении макромицетов с относительно низкими показателями индекса антагонизма, проявили Aspergillus niger, A. flavus, A. canditus, A. versicolor, Trichoderma harzianum, T. viride, T. pseudokoningii, Fusarium culmorum, F. tricinctum и Alternaria alternata. Слабовыраженной антигрибковой активностью в отношении штаммов C. albicans обладала только метанол-растворимая фракция, полученная из экстракта плодовых тел трех ядовитых макромицетов H. fasciculare, Paxillus involutus и Tricholoma tigrinum. Водорастворимая фракция экстрактов не проявила подобной активности. Очевидно, исследованные макромицеты, обладающие способностью синтезировать метаболиты с антифун-гальной активностью, могут представить интерес для дальнейших мико-фармакологических исследований в целях получения новых антигрибковых средств. Возможно, мицелий Hypholoma fasciculare, Flammulina velutipes, Pleurotus ostreatus, Lentinus tigrinus, Coprinus cinereus, C. micaceus, C. disseminatus и Ganoderma lucidum представит интерес для разработки и создания новых подходов к биологическому контролю за фитопатогенными микро-мицетами.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SCREENING OF ANTIFUNGAL ACTIVITY OF SEVERAL BASIDIOMYCETOUS MACROMYCETES

In our screening program on the antifungal activity the 44 species and 94 strains of basidiomycetous macromycetes from different ecological groups were tested against 43 species and 55 strains of filamentous fungi in dual culture experiment and against 5 strains of Candida albicans using the agar dilution method. Test-microorganisms are producers of antibiotics and potentially pathogens for human, animals and plants. Interaction phenomena between macroand microfungi was described by two main type of reactions: deadlock mutual inhibition at a distance or at the mycelial contact and replacement initial deadlock followed by further mycelial overgrowing (complete or partial) reaction. Almost all tested mushrooms markedly inhibited and significantly suppressed the growth of most of test-micromycetes. Te highest antagonistic activity was observed among xylotro-phes, particularly Hypholoma fasciculare, Flammulina velu-tipes, Pleurotus ostreatus, Lentinula edodes, Lentinus tigrinus, Coprinus cinereus, C. disseminatus, Volvariella volvaceae and Ganoderma lucidum. Meanwhile, the filamentous fungi namely Aspergillus flavus, A. niger, A. versicolor, A. canditus, Tri-choderma harzianum, T. viride, T. pseudokoningii, Fusarium culmorum, F. tricinctum and Alternaria alternata were able to inhibite the different microfungi. Partial antimycotic activity against C. albicans was expressed only by methanol-soluble fraction obtained from fruiting body extracts of three poisonous fungi H. fasciculare, Paxillus involutus and Tricholoma tigrinum. Te water-soluble fractions didn't possess antifungal activity. Further myco-pharmacological studies will promote the obtaining of new mushroom-based antimycotic biopharma-ceuticals. Mycelia of selected species, as biological control agents may be also tested against phytopathogens.

Текст научной работы на тему «Антифунгальная активность различных базидиомицетовых макромицетов»

УДК 616.992

АНТИФУНГААЬНАЯ АКТИВНОСТЬ РАЗЛИЧНЫХ БАЗИДИОМИЦЕТОВЫХ МАКРОМИЦЕТОВ

СМ. Бадалян

Отдел ботаники Ереванского государственного университета, Армения

© С.М.Бадалян, 2004

Скрининг антифунгальной активности 44 видов 94 штаммов базидиалъных макромицетов из различных экологических групп был проведен в отношении 43 видов и 55 штаммов микромицетов в совместной культуре, а также в отношении 5 штаммов Candida albicans методом диффузии в агар. Испытанные тест-микромщеты являются потенциальными патогенами человека, животных и растений, а также продуцентами антибиотиков.

Взаимоотношения между контактирующими мице-лиями макромицетов и микромицетов проявлялись ос-новными двумя типами реакций: взаимоторможением (на дистанции или при контакте колоний) и нарастанием (полным и частичным), следующим посАе взаимоторможе-ния (на дистанции или при контакте мицелия), или без него.

Почти всё макромицеты выражение ингибировали и значительно подавляли рост тест-микромицетов. Среди них высокая антагонистическая активность была отмечена уHypholomafasciculare, Flammulina velutipes, Pleurotus ostreatus, Lentinus tigrinus, Coprimes cinereus, C. disseminatus, Volvariella volvaceae и Ganoderma lucidum. Между тем, среди микромицетов некоторую антагонистическую активность, в частности, в отношении макромицетов с относительно низкими показателями индекса антагонизма, проявили Aspergillus niger, A.flavus, A. canditus, A. versicolor, Trichoderma harzianum, T. viride, T. pseudokoningii, Fusarium culmorum, F. tricinctum и Alternaria alternata.

Слабо выражен ной антигрибковой активностью в отношении штаммов С. albicans обладала только метанол-растворимая фракция, полученная из экстракта плодовых тел трех ядовитых макромицетов — Н. fasciculare, Paxillus involutus и Tricholoma tigrinum. Водорастворимая ф)ракция экстрактов не проявила подобной активности.

Очевидно, исследованные макромицеты, обладающие способностью синтезировать метаболиты с антифунгальной активностью, могут представить интерес для дальнейших мико-фармакологических исследований в целях получения новых антигрибковых средств. Возможно, мицелий Hypholoma fasciculare, Flammulina velutipes, Pleurotus ostreatus, Lentinus tigrinus, Coprimes cinereus, C. mkaceus, C. disseminatus и Ganoderma lucidum представит интерес для разработки и создания новых подходов к биологическому контролю за фитопатогенными микро-мицетами.

Ключевые слова: антибиотик, взаимодействие, грибы-макромицеты и микромицеты, двойная культура, дрожжи, нитчатые грибы, противогрибковая активность

SCREENING OF ANTIFUNGAL ACTIVITY OF SEVERAL BASIDIOMYCETOUS MACROMYCETES

S. M. Badalyan

Department of Botany, Yerevan State University, Armenia

S. M. Badalyan, 2004

In our screening program on the antifungal activity the 44 species and 94 strains of basidiomycetous macromycetes from different ecological groups were tested against 43 species and 55 strains of filamentous fungi in dual culture experiment and against 5 strains of Candida albicans using the agar dilution method. Test-microorganisms are producers of antibiotics and potentially pathogens for human, animals and plants.

Interaction phenomena between macro- and microfungi was described by two main type of reactions: deadlock — mutual inhibition at a distance or at the mycelial contact and replacement — initial deadlock followed by further mycelial overgrowing (complete or partial) reaction.

Almost all tested mushrooms markedly inhibited and significantly suppressed the growth of most of test-micromycetes. The highest antagonistic activity was observed among xylotro-phes, particularly Hypholoma fasciculare, Flammulina velutipes, Pleurotus ostreatus, Lentinula edodes, Lentinus tigrinus, Coprinus cinereus, C. disseminatus, Volvariella volvaceae and Ganoderma lucidum. Meanwhile, the filamentous fungi namely — Aspergillus flavus, A. niger, A. versicolor, A. canditus, Trichoderma harzianum, T. viride, T. pseudokoningii, Fusarium culmorum, F. tricinctum and Alternaria alternata were able to inhibite the different microfungi.

Partial antimycotk activity against C. albicans was expressed only by methanol-soluble fraction obtained from fruiting body extracts of three poisonous fungi — H. fasciculare, Paxillus involutus and Tricholoma tigrinum. The water-soluble fractions didn't possess antifungal activity.

Further myco-pharmacological studies will promote the obtaining of new mushroom-based antimycotk biopharmaceuticals. Mycelia of selected species, as biological control agents may be also tested against phytopathogens.

Key words: antifungal activity, dual culture, filamentous fungi, interaction, mushrooms, yeast

INTRODUCTION

In view of recent advancements in biotechnology the interest to higher fungi, especially Basidiomycetous mushrooms, as a source of valuable biological active metabolites (BAM) and enzymes has been significantly increased. The fungal active metabolites possess large spectrum oftherapeutic activity (antibacterial, antifungal, antitumor, immunomodulating, hypoglycemic, antiviral, etc.) [1-6]. Based on ethno-mycological experiences and modern scientific studies, a special group of Medicinal Mushrooms have been recently separated from systematic group of Ascomycetes and Basidiomycetes and special

International Journal of Medicinal Mushrooms in USA was established.

In nowadays, the myco-pharmacological investigations of these organisms are successfully being carried out in worldwide laboratories (Japan, USA, UK, Germany, and France) [7-10].

Fungal active metabolites are mainly polysaccharides, terpenoids, peptides, steroids and indolic compounds [ 11 -12]. At certain do ses, they could be used as subsidiary agents for treatment of many diseases. Some of them show combined therapeutic action — antibacterial, antifungal, antiviral and antitumor [9,13-14].

Antifungal activity (AFA) of mushrooms has been reported in several publications [7, 12, 15-17, 20, 21]. However, the fungal compounds with antimycotic action and their practical application for obtaining new mushrooms based biopharmaceuticals is not sufficiently investigated. Meanwhile, discovering and formulation of new antimycotic biopreparations is a very important tool for preventing and curing widely spread resistant human and animal fungal opportunistic infections (mycoses) in the immunocompromised host.

New drug discovery processes involves the screening of different group of organisms (bacteria, plants and fungi). In this paper data of in vitro screening of antifungal (combative) activity of basidiomycete mushrooms against filamentous fungi and Candida albicans is reported.

MATERIALS AND METHODS

The fruiting bodies (FB) of mushrooms have been collected in Armenia, France, Germany and Russia. In our in vitro screening mycelial cultures of 37 species and 94 strains were included (Table la). Among them 32 species and 74 strains were obtained by author. Other strains were kindly provided by culture collections of the Universities of Toulouse (France), University of Regensburg (Germany), Moscow State University (Russia), Kholodny Institute of Botany (Kiev, Ukraine) and Prague Institute of Microbiology (Czech Republic).

The FB’ extracts and obtained water- and methanol soluble fractions (WSF and MSF) of 13 mushrooms were tested by agar dilution method against 5 strains of C. albicans [17] (Table la, lb). In our screening the FB extracts of only 7 species (G. spectabilis, Ph. squarrosa, A. citrina, H. fasciculare, C. armillatus, P. involutus, T. tigrinum and X. badius) have been tested. Both FB extracts and mycelial extracts from 6 species (A mellea, F. velutipes, H. fasciculare, P. ostreatus, Ph. destruens and A. praecox) were used in experimental testing.

The list of test-micromycetes includes human, animal and plant pathogenic fungi and their antagonists, as well as several producers of antibiotics (Table 1 b). The 35 species and 45 strains of filamentouse fungi were mainly separated from Armenian and Russian soil samples. The 8 species and 10 strains of phytopathogenic fungi (Glio-cladium roseum, Gaeumannomyces graminis var. tritici, Trichoderma pseudokoningii, T. viride, Trichoderma harzianum (two strains), Bipolaris sorokiniana, Fusar-ium culmorum, and Rhizoctonia cerealis (two strains)

were kindly provided by Dr. G. Innochenti (University of Bologna, Italy). The strains of C. albicans separated from contaminated material we received from culture collection of the Department of Microbiology, University of Montpellier-1 (France).

Ail cultures are deposed in the culture collection of the Fungal Biotechnology group at the Yerevan State University (Armenia). The mushroom and micromycete cultures are store at 5 °C in the dark on 2% malt-extract agar (MEA) and potato-dextrose agar (PDA, Difco) media, respectively.

In total the 44 species and 94 mushroom strains against 43 species and 55 strains of filamentous fungi, as well as 5 strains of C. albicans have been investigated.

Estimation of antifungal/antagonistic activity (AFA/ AA) of mushrooms was carried out in dual culture experiment using 2% MEA and PDA media.

More than 500 cases of interaction phenomena were examined and recorded daily on MEA and PDA media. After inoculation, the plates were sealed with plastic film and incubated in darkness at 24°C for 30 days.

Development of dense, sparse and pigmented, pseudosclerotial lines, especially at the mycelial interaction zone, as well as the presence of exudate droplets and primordia or FBs formation was also described. There were three replicates of each pairing.

During the first experimental screening 22 macrofungi from different ecological groups (A. mellea, A. pantherina, A. bisporus, C. cinereus, C. comatus, C. atramentarius, F. velutipes, K. mutabilis, L. edodes, L. nuda, L. tigrinus, H. fasciculare, H. capnoides, P. ostreatus, P. cornucopiae, P. eryngii, Polyporus varius, Ph. adiposa, Ph. destruens, Ph. alnicola, Ph. aurivella, S. lu-teus) were tested against 10 species of filamentous fungi (Aspergillus niger, A. versicolor, A. flavus, Cladosporium atroseptum, Fusarium sambucinum, Hormiscium sp„ Penicillium simplicissimum, P. jensenii, P. chrysogenum, Stemphylium botryosum) for their combative activity (Table 2).

In the second experiment 16 xylotrophes (F. velutipes, G. lucidum, K. mutabilis, L. edodes, L. tigrinus, H. fasciculare, H. sublateritium, Ph. destruens, Ph. alnicola, Ph. aurivella, P. ostreatus, P. cornucopiae, P. squamosus, P. varius, P. subarcularius and Sch. commune), previously screened by their biotic/antagonistic activity in inter-specific pairings [17, 18], were grew towards phytopathogenic fungi (Fusarium culmorum, Rhizoctonia cerealis, Gaeumannomyces graminis var. tritici, Bipolaris sorokiniana, Gliocladium roseum) and their antagonists (Trichoderma viride, T. harzianum and T. pseudokoningii) on PDA medium (Table 3).

Potentially human and animals pathogenic (HAP) microfungi (Aspergillus candidus, A. flavus, A. wentii, Fusarium tricinctum, Stachybotris chartarum, Acremo-nium alternatum, Chrysosporium keratinophillum, Penicillium aurantiogriseum, P. griseofulvum, Alternaria al-ternata, Cladosporium cladosporoides and Verticillium lecanii) were tested separately against 10 mushrooms belonging to different ecological groups (Calvatia

utriformis, Coprinus disseminatus, C. micaceus, Col-lybia acei'vata, Lepista personata, Marasmius oread.es, Polyporus squamosus, Stropharia coronila, Suillus luteus and Volvariella bombicina) (Table 4).

Estimation of relative combative ability of growing organisms was performed by a rating scale, containing 3 main types and 7 subtypes of reactions: A and B

- deadlock at the contact or at the distance, in which neither fungus was able to grow past the other (1 and 2 points, respectively); C - easily overgrowing reaction without successive fronts (3 pts); CA1, CB1 (partial) and CA2, CB2 (complete) replacement reactions after initial deadlock at the contact (CA1, CA2) or at the distance (GB1, CB2) followed by further overgrowing reaction. Different degrees of described activities were estimated as follows: CA1=3.5pts, CB1=4pts, CA2=4.5pts and CB2=5pts, respectively.

The index of antagonism (IA) for each species, which had a relative meaning for every investigated paring/ experiment was calculated by the following formula:

IA = A (nxl) + B (nx2) + G (nx3)+D (nx4) + E (nx5); where A, B, C... are the types or subtypes of observed reactions, n - is the frequency and 1, 2, 3.... - are the points (or marks) for each reaction.

The antimycotic activity of 13 mushrooms (Flammu-lina velutipes, Hypholoma fasciculare, Armillaia mellea, Pleurotus ostreatus, Agrocybe praecox, Pholiota squar-rosa, Ph. destruens, Amanita citrina, Gymnopillus spec-tabilis, Paxillus involutus, Tricholoma tigrinum, Xero-comus badius, Cortinarius armillatus) against 5 strains of C. albicans was checked on Sabouraud medium by agar dilution method [16, 17]. The 25 tested samples of water- and methanol-soluble fractions (WSF, MSF) were separated from methanolic extracts of dry FB powders. The extraction and fractions’ separation methods were described in our previous publication [6]. Before testing, the WSF and MSF were diluted by distilled water and dimethylsulfoxide (1:3) respectively. Each fraction is used in a volume of 20 |aL.

RESULTS AND DISCUSSION

The results of experimental pairings performed in dual cultures on 2% MEA and PDA media are summarized in Tables 2, 3 and 4. The interaction phenomena between macro- and microfungi were combined into following three main types of reactions: deadlock — mutual

inhibition at a mycelial contact (A) or at the distance (B) in which neither fungus was able to grow past the other and replacement — usually with a short lag phase of no growth, followed by further mycelial overgrowing reaction with initial barrier at the contact or at the distance (CA and CB) or without any initial deadlock barrier (C). Among them the two subtypes of overgrowing reaction

- partial (CAJ and CB1) and complete (C „ and Cg2) were thoroughly described.

Several modifications of hyphal morphology, including appearance of dense or sparse hyphal zone, formation of primordia or FBs, as well as production of exudate droplets at the mycelial interaction zone were

discounted during day by day observation of plates. Described mycelial or agar pigmentation at the contact zones on both MEA and PDA media indicates the increased level of enzymatic, especially phenoloxidase activity of tested organisms during their antagonistic relationships [19].

According to obtained results, almost 64% overgrowing reaction on microfungi (C type) was mainly described between contacted organisms (Table 2). Meanwhile, 26.4% and 9.5% of mutual inhibition (A and B) were respectively recorded. No any overgrowing reaction on tested mushrooms was observed.

Thus, the mushrooms either significandy prevented (35.9%) or stopped (64%) the growth of tested microfungi. Based on indicators of IA, their combative ability could be presented by the following order: C. cinereus > H. fasciculare = F. velutipes > K. mutabilis > P. ostreatus = Ph. adiposa > P. cornucopiae = L. tigrinus = L. edodes = Ph. aurivella > A. pantherina > L. nuda = C. comatus > Ph. alnicola > P. eryngii > C atramentarius = S. luteus = P. varius > A. bisporus > Ph. destruens > A. mellea > H. capnoides. The mushroom strains were divided into three groups: 1) active, when IA>20; 2) moderate active (IA=20-10) and 3) inactive (IA<10). By AA/AFA the 17 species belong to the first group and 5 species - to the second. No other species was inactive against tested microfungi, i.e. the mushrooms always replaced test-microfungi whose combative ability was expressed by the following order: A niger > A. versicolor > A. flavus

> F. sambucinum = S. botryosum > P. simplicissimum = P. chrysogenum = Hormiscium sp. > P. jensenii > C. atro-septum. Among microfungi, only the three first species possesses moderate antagonism expressed by temporary mutual overgrowing reaction on macrofungi (HI fasciculare, Ph. adiposa, C. atramentarius and A. pantherina). At the contact zone abundant pigmentation and exdudate droplets were mainly observed during pairing P. ostreatus, L. edodes with F. sambucinum, P. chrysogenu and, P. jensenii.

The outcome of interaction between separately tested 20 strains of H. fasciculare against 20 species of microfungi (A. flavus, A. fumigatus, A. micro-virido-citrinum, A. niger, A. versicolor, Alternaria alternata (= tenuis), A.(=Stachybotris) chartarum, Aureobadisium pullulans, C. herbarum, Fusarium sp„ F. culmorum, P. chrysogenum, P. verrucosum, P. raciborskii, P. livi-dum, P. sp., set: frequentas, P. funiculosum, P. citrinum, Trichoderma viride, and Ulocladium alternavide), reported in detail [18], were expressed by two abovementioned reactions: deadlock at the distance (B) and complete overgrowing reaction after initial deadlock at the distance (CB2). Moreover, correlation between the type of reaction and bio-ecological properties of tested H. fasciculare’s strains (geographical origination, type of wood-substrate, mycelial growth rate, etc.) has been observed. The fast growing strains, separated from southern region and deciduous types of wood substrate (Armenia) usually formed the CB, type of reaction, whereas the slowly growing strains, separated mostly

from northern regions or coniferous type of substrate (Russia), formed the B type reaction.

Thus, the antagonistic activity of xylotrophic mushrooms may be modified by environmental conditions. It can be useful to Lake them into account during the stains’ screening for their biotechnological cultivation and biological control purposes.

The antagonistic inter-specific interactions between xylotrophes and phytopathogenic fungi and their antagonists as a test-micromycetes, were described on PDA medium (Table 3). Among mushroom species H. fasciculare, F. velutipes, P. ostreatus, L. tigrinus and G. lucidum possess the highest activity (IA>20). These 5 species, also P. varius, P. subarcularius, Ph. destruens and Sch. commune were never overgrown by mycelia of filamentous fungi. Meanwhile, among microfungi only T. viride, I pseudokoningii, F. culmorium and T. Imr-zianum, known to be active producers of antibiotics and plant pathogen antagonists, were more or less combative towards Ph. aurivella, Ph. alnicola, P. cornu-copiae, P. squamosus, H. sublateritium, L. edodes, K. mu-tabilis and F. velutipes. Other microfungi (G, graminis var. tritici, B. sorokiniana and R. cerealis) — mostly phytopathogens and their antagonists (T. harzianum, G. roseum) became remarkably inhibited and finally replaced by tested mushrooms, often by mycelial cords formed e.g. by H. fasciculare.

In replacement interactions the overgrowing species changed their growth rate. Probably the first trigger of change corresponded to the diffusible metabolites, followed by a yellow-brown pigmentation at the interaction area, which is a clear sign of mycelial phenoloxidase (laccases or peroxidases) activity. The replaced species exhibited several morphological responses, too (pigmentation, exudate, etc.).

In all cases of experimental pairings on PDA medium, the mutual inhibition (deadlock reaction) at the contact (A) or at the distance (B) amounted around 30.5% and 14.5 %, respectively. The filamentous fungi were overgrown by mushrooms 42.7%. Among these, about 22.9% of partial and 19.8% of complete replacement were recorded. In all possible pairings only 10.6% of mushrooms were overgrown by microfungi. Mostly, Trichoderma spp. were more or less active against the macrofungi, having IA between 13.5 and 16.5 (Ki milled) ills, L. edodes, P. squamosus, P. cornucopiae, Ph. alnicola, Ph. aurivella) (Table 3).

Based on IA results, the combative/antifungal activity of tested mushrooms may be presented by the following order: H. fasciculare > F. velutipes > P. ostreatus > L. tigrinus > G. lucidum > Sch. commune > P. squamosus

> L. edodes > K. mutabilis > P. cornucopiae > Ph. aurivella > P. varius > Ph. alnicola > P. subarcularius > Ph. destruens > H. sublateritium. Among them, 5 and 11 species belong to the active (IA>20) and moderate active (IA= 10-20) groups, respectively.

The combative ability of tested microfungi on PDA medium was expressed as follow: T. harzianum > T. viride > F. culmorum > T. pseudokoningii > B. sorokiniana >

G. roseum > R. cerealis > G. graminis var. tritici. Their IA was relatively low (18-22.5) (Table 3).

Thus, overall 87.7% of the observed inter-species pairings expressed prevention and limitation of microfungal growth, whereas only 12.3 % of them — inhibition by microfungi.

Screening of AA/AFA of 11 species of basidiomycetous mushrooms against 12 potentially HAP microfungi, isolated from Armenian soils was realized on MEA medium. Interaction phenomena mainly included two reactions: deadlock (mutual inhibition at the mycelial contact -A or at a distance- B), and replacement (initial deadlock followed by further partial or complete mycelial overgrowing reaction — C. , CB1, €L* and CB,, respectively). Almost all mushrooms prevent (34%) or markedly inhibited (49.3%) the mycelial growth of the tested microfungi (49.3%), whereas the level of their inhibition was significantly low (16.7%). Among tested mushrooms the highest activity (IA>30) possessed C. disseminatus, C. micaceus, P. subarcularius, V bom-bycina and S. coronila, whereas low activity within Ch. keratinophilum, A. alternata, S. chartarum, P. auran-tiogriseum, and C. cladosporoides was detected.

Based on IA data the level of activity of mushrooms against HAP microfungi may be devided into 3 groups: 1 — IA>30 (C. disseminatus>C. micaceus>P. subarcularius > V bombycinaf, II — IA= 10-30 (C. acervata>M. oreades > P. squamosus>S. luteus>S. coronilla) and 3) IA<10 (C. utriformis, L. personata).

In our experiment relatively strong antagonism against mushroom cultures was noted within A. flavus (IA=25.5).

The tested FB samples, particularly WSF didn’t show any antimycotic activity relative to C. albicans. The partial inhibitory effect against different strains of C. albicans (except str. 5) was only expressed byMSF of three poisonous mushrooms —H. fasciculare, P. involutus and T. tigrinum (Table 5).

CONCLUSION

The obtained results allow us to conclude that 44 species and 94 strains of tested basidiomycetous mushrooms significantly suppressed and markedly prevented the growth of many tested filamentous fungi

- human, animal and plant pathogens, producers of antibiotics and the yeast C. albicans. Indeed, they contain some active metabolites with targeting antifungal action.

Further myco-pharmacological investigations of screened species (H. fasciculare, F. velutipes, P. ostreatus, L. tigrinus, L. edodes, C. disseminatus, C. cinereus, G. lucidum, V. volvaceae), especially dose-effect and structure-activity correlation of their purified antifungal compounds were be able to promote obtaining of new mushroom-based biopharmaceuticals with antimycotic action.

Mycelia of xylotrophic species, as biological control agents may also be tested in experimental fields towards phytopathogens.

ACKNOWLEDGMENTS (University of P. Sabatier, Toulouse), Prof. L.V. Garibova

Financial support by the NATO Reintegration gtant (Lomonosov Moscow State University, Russia), Prof.

(FEL.RIG.980764) gratefully acknowledged by author. A.S. Buchalo (N.G. Kholodny Institute of Botany,

I thanks Dr. J. Mouchacca (Museum National Kiev, Ukraine), Dr. M. Semerdziewa (Prague Institute

d’Histoire Naturelle, Paris) and Prof. J.H. Abrahamyan of Microbiology) and Dr. G. Innocentii (University of

(Yerevan State University) for they help in micromycetes Bologna, Italy) for providing the fungal cultures for our

identification protocol, as well as Prof. L. Chavant research.

REFERENCES

1. Stenglich W. Biologically active compounds from higher fungi // PureAppl. Client.- 1981. — Vol. 53, №10. — P. 1233-40.

2. Chihara G. Immunopharmacology of Lentinan and glucans // EOS J. Immunol. Immunopharm.- 1984.- Vol. 4, № 1. — P. 85-96.

3. Obuchi T., Kondoli H., Watanabe N., et al. Armillaric acid, anew antibiotic produced by Armillaria mellea 11 Planta Med.-1990. — Vol. 56, № 2. — P. 198-201.

4. Mims. T-, Shiose Y., Nagai K. & Ukai $■ Polysaccharides in fungi. XXX. Antitumor and immunomodulating activities of two polysaccharides from the fruiting bodies of Armillaria tabescence 11 Chem. Pharm. Bull.- 1992. -Vol. 40, №. 8. — P. 2110-14.

5. Fujimoto H., Nakayama Y. & Yamazaki M. Identification of immunosuppressive components of a mushroom, Lactarius fla-vidulus II Chem. Pharm. Bull. — 1993. -Vol. 41, № 4. — P. 654-58.

6. Badalian S.M., Rapior S., Andary C, & Serrano /.-/. Biological active compounds of Higher fungi / In: Natural products from plants, Actes 4th Inti Coll. 25-29 May, 1998. Ottawa. -P. 93-8.

7. Chaumont J.P., Symeray J. &Marechal G. Les proprietes antifongiques des 225 Basidiomyeetes et Ascomycetes vis-a-vis de 7 champignons pathogenes cultives in vitro p Cryptogamie, Mycol.- 1982. — Vol. 3, № 4. — P. 249-59.

8. Anke H. & Sterner O. Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated sesquiterpene dialdehydes from plants and mushrooms // Planta Med.- 1991.- Vol. 57, № 4. — P. 344-46.

9. TakazawaH. &Kashino S. A new antibacterial sesquiterpene from Basidiomyeetes If Chem. Pharm. Bull.- 1991.- Vol. 39, №3. — P. 555-57.

10. Takashi A., Nunozawa T., Endo T. & Nozoe S. Isolation of 1-P-D-Arabinofuranosylcytosine from the mushroom Xerocomus nigromaculatus Hongo // Chem. Pharm. Bull. — 1992. -Vol. 40, №5.- P. 1313-14.

11. Hautzel R., Anke H. & Sheldrick W.S. Mycenon, a new metabolite from a Mycena species TA 87202 (Basidiomyeetes) as an inhibitor of isocitrate lyase // J. Antibiotics. - 1990.- Vol. 43, №10. — P. 1240-44.

12. Becker U., Anke T. & Sterner O. A novel bioactive illudalane sesquiterpene from the fungus Pholiota destruens II Nat. Prod.

Lett- 1994. — Vol. 5, № 3. — P. 171-74.

13. Hamada C. Inhibitory effects of Lentinan on the tumorogenesis of adeno-virus type 12 in mice / In: Aoki T., Tsubura E., Urushizaki I. (eds.) Manipulation of host defense mechanisms // Experta Medica: Amsterdam, 1981. — P. 235.

14. Kiho T., Sobue S. & Ukai S. Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of

Agrocybe cylindracea // Carbohydrate Res.- 1994. -Vol. 251, №1. -P. 81-87.

15. Toyota M. & Hostettmann K. Antifungal diterpenic esters from the mushroom Boletinus cavipes II Phytochemistry.- 1990. -Vol. 29, №5. — P. 1485-89.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

16. Steinmetz M.-D., Rascol J.-P., Regli P., et al. In vitro antifungal activity of Polyporaceae against yeasts and dermatophytes // Mycoses.- 1995.- Vol. 38, №7-8. — P. 305-9.

17. Badalyan S.M. Biological Properties of Certain Macroscopic Basidiomyeetes (Morphology, Ecology and Physiological Activity). Thesis Doctor of Biological Sciences. -1998. Yerevan. -480 p.

18. Badalyan S.M. Systematic®, Ecology and Physiological Activity of Nematoloma fasciculare (Huds.: Fr.) Karst. — Yerevan:YSU, 1993.- 193p.

19. Li C.Y. Phenoloxidase and peroxidase activities in zone line oiPhellinus weirii // Mycologia. — 1981. — Vol. 73, №5. — P. 81121.

20. GupteM., P. Kulkarni, B.N. Ganguli. Antifungal antibiotics. // Appl. Microbiol Biotechnol. — 2002. Vol. 58, № 1. — P. 46-57.

21. Badalian S. M., Gevorkian S. A. Antifungal activity of several species from genus Coprinus (Basidiomycotina) / In: Abstr. II Int. Symp. Plant Biotechnol. October 4-8, 1998, Kiev, Ukraine. -P. 17.

Table la.

The list of investigated mushrooms

Species Numberand origination of strains Ecological group

1. Agaricus bisporus (Lange) Imbach 2A, 1 F SS

2. Agrocybe praecox (Pers.: Fr.) Fayod* 1A // //

3. Amanita citrina (Schaeff.) S. F. Gray * - // //

4. Amanita pantherina (D. C.: Fr.) Kumm, 1G // //

5. Armillaria mellea (Vahl: Fr.) Karst.# 2F XT

6. C. cinereus (Schff.: Fr.) Fr. 3A «-»

7. C. comatus (Mull.: Fr.) S. F. Gray 2A, 1 R «-»

8. C. disseminatus (Pers.: Fr.) S. F. Gray 1A «-»

9. C. micaceus (Bull.: Fr.) Fr. 1A XT/SS

10. Calvatia utriformis (Pers.) Jaap, 1A «-»

11. Collybia acervata (Fr.) Kumm. 1A LS

12. Coprinus atramentarius (Bull.: Fr.) Fr, -j **^*** 1 p CT/SS/XT

13. Coriolus versicolor (Fr.) Quel. 1A «-»

14. Cortinarius armillatus (Fr.: Fr.) Fr.* - // //

15. Flammulina velutipes (Curt.: Fr.) Sing.* 2A, 1R, 3G // u

16. Ganoderma lucidum (Curt.: Fr.) Karst. 1A U U

17. Cymnopilus spectabilis (Fr.) Sing.* - n n

18. H. capnoides (Fr.) Kumm, 2A, 1F, 3G n n

19. H. sublateritium (Fr.) Kumm. 1 A, 1F, 2R II u

20. Hypholoma fasciculate (Fr.) Kumm. * 2A, 10G, 8R u u

21. Kuhneromyces mutabilis (Schaeff.: Fr.) Sing. & Smith 1G ii ii

22. L. personata (Fr.: Fr.) Cook 1A «-»

23. Lentinus edodes (Berk.) Sing. 1 F II u

24. Lentinus tigrinus (Bull.: Fr.) Sing. 3A II II

25. Lepista nuda (Bull.: Fr.) Cooke 1 A, 1 U, 1G «-»

26. Marasmius oreades (Bolt.: Fr.) Fr. 1A «-»

27. P. cornucopiae Roll. 11,1U II u

28. P. eryngii (D. C.: Fr.) Quel. 1 A, 2Cz II II

29. P. squamosus (Huds.: Fr.) Fr. 3A II n

30. P. subarcularius (Donk) Bond. 1A II II

31. Paxillus involutus (Batsch: Fr.) Fr.* - II u

32. Ph. ainicola (Fr.) Sing. IF II II

33. Ph. aurivella (Fr.) Kumm. IF II II

34. Ph. destruens (Brond.) Gill.* 2A II II

35. Ph. squarrosa (Pers.: Fr.) Kumm.* - II u

36. Pholiota adiposa (Fr.) Kumm, IF II II

37. Pleurotus ostreatus (Jacq.: Fr.) Kumm.* 3A,3R II II

38. Polyporus varius (Pers.: Fr.) Fr. 3A II II

39. Schizophyllum commune Fr.: Fr. 1A II u

40. Stropharia coronilla (Bull.: Fr.) Quel. 1A «-»

41. Suillus luteus (L.: Fr.) S. F. Gray 2A II II

42. Tricholoma tigrinum (Schaeff.: Fr.) Kumm. - II II

43. Volvariella bombicina (Schaeff.: Fr.) Sing. 1A «-»

44. Xerocomus badius (Fr.) Kiihner* - II II

Notes: (*) — species tested against C. albicans-, (-) — cultures were not separated and only fruiting body extracts and their fractions (WSF and MSF) were tested against C. albicans', (**) — numbers of tested strains; (***) — origination of Strains: A

— Armenia, R — Russia, F — France, G — Germany, U — Ukraine, Cz - Czech Republic, I — Italy; CT — coprotrophe; XT

— xylotrophe, LS — litter saprotrophe, SS — soil saprotrophe.

Table lb.

The list of test-micromycetes

Species Number and origination of strains Pathogenicity

1 A. flavus Link. 1 A, 1R HAP

2 A. fumigatus Fr.. 1R HAP

3 A. micro-virido-citrinum Cost. A Llicet 1R HAP, PA

4 A.niger van Tieghem 2A, 1R HAP

5 A. versicolor (Vuill.) Tirab. 2A, 1R HAP

6 A. wenta Wehm. 1A HAP

7 A.(=Stachybotris) chartarum Fr. 1 AIR HAP

8 Acremonium alternation Link.: S. F, Gray 1 HAP

9 Alternaria alternata (=tenuis) (Fr.) Keiss. 1A1R HAP

10 Aspergillus candidus Link. 1A HAP

11 Aureobadisium pullulans (de Вагу) Arnaud 1R HAP

12 Bipolaris sorokiniana (Sacc. In Sorok.) Shoem. 11 PP

13 C. cladosporoides (Fres.) de Vries 1A HAP

14 c. herbarum (Pers.) Link ex S. F. Gray 1R HAP

15 C. sphaerospermum Penz. 1R HAP

16 Candida albicans (Robin) Berkhout 5F HAP

17 Chrysoprorium keratinophilum (Frey) Carmichel 1A HAP

18 Chrysosporium sp. 1R HAP

19 Cladosporium atroseptum Pidopl. & Deniak 1A HAP

20 F. culmorum (W. G. Smith) Sacc. 11 PP

21 F. tricinctum (Corda) Sacc. 1A PP, HAP

22 Fusarium sambucinum Fuckel 1A PP, PA

23 Fusarium sp. 1R -

24 Gaeumannomyc.es graminis (Sacc.) Von Arx and Olivier var, tritici Walker 11 PP

25 Gliocladium roseum Bain. 11 PPA

26 Hormiscium sp. 1A -

27 P. chrysogenum Thom. 1 A, 1R PA, HAP

28 P. citrinum Thom. 1 A, 1R HAP

29 P. funiculosum Thom. 1R PA

30 P. griseofulvum Dierck. 1A PA, HAP

31 P. jensenii Zal. 1A PA,HAP

32 P. lividum Westl. 1R HAP

33 P. raciborskii Zales. 1R PA

34 P. simplicissimum (Gudem.)Thom. 1A PA, HAP

35 P. sp., ser. frequentas Westl. 1R PA

36 P. verrucosum Dierck, 1R HAP?

37 Penicillium aurantiogriseum Dierck. 1A HAP

38 Rhizoctonia cerealis Van der Hoeven 21 PP

39 Stemphylium botryosum Waler. 1A PP

40 T harzianum Rifai. 21 PPA, PA

41 T. pseudokoningii Pers. 11 PPA, PA

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

42 Trichoderma viride Pers. 1R1I PPA, PA

43 Ulocladium alternavide PreilSS 1R HAP

44 Verticillium lecanii (Zimm.) Viegas 1A PP,HAP

Notes: (-) — pathogenicity doesn’t known; (HAP) — humans and animals pathogen; (PP) — plant pathogen; (PPA) — plant pathogen antagonist; (PA) -producer of antibiotics; (*) — number of tested strains; (**) — origination of strains: A — Armenia, R — Russia, F — France, G — Germany, U — Ukraine, Cz - Czech Republic, I — Italy;

Table 2.

Outcome of interactions between mushrooms and test-micromycetes on 2% MEA medium

Test-micromvcetes

Mushroom species I II III IV v VI VII VIII IX X

IA* 17 16 12 1 10 8 8 7 8 10

Almillaria mellea 15 A A B C A A A B A B

Aqaricus bisporus 18 A B A C A B C A A c

Amanita pantherina 26 C A C C C C C C C A

Coprinu cinereus 30 C C C C C C C C C C

C. comatus 25 C B A C C C C A C C

C. atramentarius 20 A A C C A C A C B B

Flamullina velutipes 29 B C C C C C C C C C

Kuhneromyces mutabilis 29 B C C C C C C C C C

Lentinus tiqrinus 27 B A C C C C C C C C

Lepista nuda 25 C A C C A C B C C C

Lentinus edodes 27 B A C C C C C C c c

Hypholoma capnoides 12 A A A A A B B A A A

H. fascicuiare 29 C C B C C C C C C C

Pleurotus erynqii 21 A A A C B C C C C A

P. cornucopiae 27 B C C C C C C A C C

P. ostreatus 28 C A C C C C C C C C

P. varius 20 A C A C A A C C C A

Pholiota adiposa 28 C A C C C C C C C C

Ph. alrticola 22 c A A C C C A C A C

Ph. aurivella 27 B B C C C C C C C C

Ph. destruens 17 c A C c A A A A B A

Suillus luteus 20 A C A c A A C C C A

Notes: IA - index of antagonism; A and B - deadlock - mutual inhibition at a contact or at the distance, respectively; C

— replacement with initial deadlock followed by overgrowing reaction on microfungi. I — Aspergillus niger, II — A. versicolor, III

- A. flavus, IV-Cladosporium atroseptum, V - Fusarium sambueinum, VI - Hormiscium sp., VII - Penicillium simplicissimum, VIII - P. jensenii, IX — P. chrysogenum, X — Stemphylium botryosum.

Table 3.

Outcome of interactions between xylotrophic mushrooms and phytopathogenic fungi and their antagonists on PDA medium

Test-micromycetes

Species 1 II III IV V VI VII VIII IX X

IA 10 8 16.5 22.5 - 28 13 18.5 - 9

Flammulina velutipes 31.5 cw Cm cm C, CA1 cA1 c* A

Ganoderma lucidum 23 cA, A - A CM CA1 - cA1

Kuhneromyces mutabilis 15 A CA1 A A - 9a CA, & - CB1

Lentinus tigrinus 28.5 c* cA, A - A CE, Cw - CA1

Lentinus edodes 16 A £* A A - C* & - CA2

Flypholoma fascicuiare 36.5 Cm cA1 Cm A A <v CA, CB2

Hypholoma sublateritium 12 B B A A - Cs, B B - CB1

Polyporus squamosus 16.5 B CA1 A - A CM A - B

Polyporus varius 14 c, B A A - A B A - B

Polyporus subarcularius 13 A B A A - A B A - -

Pleurotus ostreatus 29 cA2 CA, cA, A - c*? CA, A - cA2

Pleurotus cornucopiae 15 A cR1 c. & - cA1 B A - CA1

Pholiota alnicola 13.5 cB1 CB1 & - A A - C*

Pholiota destruens 12 B B - A - - B A B B

Pholiota aurivella 15 CA1 C* 9a & - c* B & - A

Schizophyllum commune 18.5 CA1 CB2 A A - A c A c c

Notes: IA - index of antagonism that has a relative meaning for every investigated pairing . A, B, C, CA1, CA2 CB1 and CB2 are types and subtypes of described reactions; (<—) indicates direction of mycelial overgrowth; (-) - not tested. I - Gliocladium roseum, II- Gaeumannomyces gram inis yar. tritici, III — Trkhoderma pseudokoningii, IV — T. viride, V— Trichoderma harzianum (strain 1), VI — T. harzianum (str. 2), VII - Bipolaris sorokiniana, VIII — Fusarium culmorum, IX - Rhizoctonia cerealis (str. 1), X — Ml cerealis (str. 2).

Table 4.

Outcome of interactions between mushroom mycelial cultures and human and animal pathogenic microfungi on MEA medium

Test-micromyceles

Mushroom species 1 II III IV V VI VII VIII IX X XI XII

ЁА 14 13.5 7 6 4 8.5 8 16 18 8 16 25.5

Calvatia utriformis 10 В А В А с А С с_ С С с С,

Coprinus disseminatus 41.5 В Є« С С с С« к с С« СА,

Coprinus micaceus 37 С с« С с С См С. А

Collybia acervata 22 В В В В в В в в в в В я

Lepista personata 9 В С, в с в А с с с с в с

Marasmius oreades 23.5 В А С. С*, А С, с А ь

Polyporus sguamosus 28.5 В А С, с в А А

Polyporus subarcularius 36 С А А с cfl і ** А В

Stropharia coronilla 30 В В С с с С С в в Сд, С», $И

Suillus luteus 24.5 С В С с сВ1 £ с с % А А

Volvariella bombicina 34.5 С« С.Л1 с с с А А СА1 |а

Notes: LA - index of antagonism that has a relative meaning for every investigated pairing. A, B, C, CA1, CA2 CBl and CB2 types and subtypes of described reactions; (<—) indicates direction of mycelial overgrowth; (-) - not tested. I —Aspergillus Candidas; II- Fusarium trkinctum; III — Stachybotris chartarum; IV — Acremonium alternatum; V — Chrysosporium keratinophilum; VI — Aspergillus wentii; VII — Penicillium aurantiogriseum; VIII — Penicillium griseofulvum; IX — Alternaria alternata; X — Cladosporium cladosporoides; Xl — Verticillium lecanii; XII — Aspergillus flavus.

Table 5.

Antimycotic activity of water- and methanol-soluble fractions from fruiting body extracts of tested mushrooms against C albicans

Strains of С. albicans 1 II Ill IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII

4 - - - - - - - - - - - - - - - - + - - - - -

5

6 - - - + - - - - - - - - - - - - + + - - - -

7 - - - + - - - - - - - - - - - - - + - - - -

8 - - - + - - - - - - - - - - - - + - - - - -

Notes: (-) — absent and (+) — present of antimycotic activity. WSFs: I — F. velutipes, III — N. fasciculare, Vl — A. mellea, VIII —A. praecox,X — Ph. squarrosa, XI — Ph destruens, XIV — A. citrina,XV— G. spec tab ills, XIX — T. tigrinum, XXI —X. badius. MSFs: II— F. velutipes, IV — N. fasekulare,Y—A. mellea, VII — P. ostreatus, IX—A. preacox,Xll — Ph. destruens, XIII — A. citrina, XVI — G. spectabilis, XVII — P. involutus, XVIII — T. tigrinum, XX — X. badius, XXII — C. armillatus.

Поступила в редакцию журнала 23.01.04 Рецензент: В.Я.Ильина

i Надоели баннеры? Вы всегда можете отключить рекламу.