Научная статья на тему 'ANTIBACTERIAL AND ANTIFUNGAL PROPERTIES OF ZN COMPLEXES WITH N’-ACIL-SALICYLICHYDRAZIDES'

ANTIBACTERIAL AND ANTIFUNGAL PROPERTIES OF ZN COMPLEXES WITH N’-ACIL-SALICYLICHYDRAZIDES Текст научной статьи по специальности «Химические науки»

CC BY
53
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
ANTIBACTERIAL AND ANTIFUNGAL EFFICACY / ANTIOXIDANT EFFECT / ZN COMPLEXES

Аннотация научной статьи по химическим наукам, автор научной работы — Gondolova G.H.

The antibacterial ( Pseudomonas aeruginosa and Mycobacterium phlei ) and antifungal ( Aspergillus niger, Penicillium Chrysogenium, Penicillium chrosegenum, Cladosporium resinae ) properties of Zn complexes with the potentially tridentate (carbonyl and hydroxyl oxygen atoms of the salicylic fragment and nitrogen atom of the amide group) N'-phthalimido-salicylamide ligand and potentially heptadentate (carbonyl and hydroxyl oxygen atoms of the salicylic fragment, two nitrogen atoms of the hydrazide fragment and two oxygen atoms of the carbonyl and carboxyl groups of the maleic fragment) N'-maleoyl-salicylhydrazide ligand were studied. The antibacterial and antifungal efficacy of the samples was determined by the zonal diffusion method according to GOST 9.085-78. Meat-peptone agar (MPA) was used for growing bacterial cultures, and wort-agar (WA) was used for fungi. These studies have shown that both ligands do not show antibacterial action, but show antifungal action. Zinc complexes of these ligands exhibit both antibacterial and antifungal effects. The antimicrobial action of the complexes is much higher than that of the ligands themselves, and this action increases with an increase in the concentration of complex compounds in solution. The antioxidant effect of the compounds H2L, H4L, (H3L)2Zn, (HL)2Zn synthesized by us was studied in cumene oxidation reactions - cumene autoxidation and reactions with cumene peroxide. Establishing the mechanism of action as an inhibitor or antioxidant that prevents oxidation as a result of the presence of the above compounds was studied in the study of cumene autoxidation

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ANTIBACTERIAL AND ANTIFUNGAL PROPERTIES OF ZN COMPLEXES WITH N’-ACIL-SALICYLICHYDRAZIDES»

AZERBAIJAN CHEMICAL JOURNAL № 4 2022

71

UDC 541.64

ANTIBACTERIAL AND ANTIFUNGAL PROPERTIES OF Zn COMPLEXES WITH

N'-ACIL-SALICYLICHYDRAZIDES

G.H.Gondolova

Institute of Ecology and Natural Resources, Ganja Department, NAS of Azerbaijan

[email protected]

Received 06.07.2022 Accepted 03.08.2022

The antibacterial (Pseudomonas aeruginosa and Mycobacterium phlei) and antifungal (Aspergillus niger, Penicillium Chrysogenium, Penicillium chrosegenum, Cladosporium resinae) properties of Zn complexes with the potentially tridentate (carbonyl and hydroxyl oxygen atoms of the salicylic fragment and nitrogen atom of the amide group) N'-phthalimido-salicylamide ligand and potentially heptadentate (carbonyl and hydroxyl oxygen atoms of the salicylic fragment, two nitrogen atoms of the hydrazide fragment and two oxygen atoms of the carbonyl and carboxyl groups of the maleic fragment) N'-maleoyl-salicylhydrazide ligand were studied. The antibacterial and antifungal efficacy of the samples was determined by the zonal diffusion method according to GOST 9.085-78. Meat-peptone agar (MPA) was used for growing bacterial cultures, and wort-agar (WA) was used for fungi. These studies have shown that both ligands do not show antibacterial action, but show antifungal action. Zinc complexes of these ligands exhibit both antibacterial and antifungal effects. The antimicrobial action of the complexes is much higher than that of the ligands themselves, and this action increases with an increase in the concentration of complex compounds in solution. The antioxidant effect of the compounds H2L, H4L, (H3L)2Zn, (HL)2Zn synthesized by us was studied in cumene oxidation reactions - cumene autoxidation and reactions with cumene peroxide. Establishing the mechanism of action as an inhibitor or antioxidant that prevents oxidation as a result of the presence of the above compounds was studied in the study of cumene autoxidation.

Keywords: antibacterial and antifungal efficacy, antioxidant effect, Zn complexes

doi.org/10.32 73 7/0005-2531-2022-4- 71-77 Introduction

Hydazine derivatives are a group of chemical compounds with wide variability, the possibility of a variety of approaches to structural modeling and design of substances with a certain severity of pharmacological properties, which is why they are of interest for their study. In particular, the hydrazide (-CO-NH-NH2) group also belongs to the reaction centers exhibiting high biological and chemical activity. But the biological activity of compounds with a hydrazide group became known only in the 60s of the last century, which greatly increased interest in them. In addition, the peculiarity of the electronic structure and properties of hydrazides [1-9] make them interesting from a theoretical point of view.

Compounds based on hydrazides of car-boxylic acids and their complexes with metals exhibit biological activity, including antitubercular [13-15], antitumoral [16,17], antimicrobial

activity[18-20]. Previously, we have obtained and studied complexes of Fe(II), Mn(II), Co(II), Ni(II), and Cu(II) with N-(2-hydroxybenz-amido)-phthalimide [1, 2], as well as Fe(II), Mn(II), Co(II), Ni(II) and Cu(II) with N'-maleoyl hydrazide of salicylic acid [3,4,19] obtained on the basis of salicylhydrazide with phthalic and maleic anhydrides. In continuation of the work on the synthesis and study of salicylhydrazide derivatives and their complexes with metals, we synthesized Zn complex compounds with the ligands N-(2-hydroxybenzamido)-phthalimide (H2L) and N'-maleoyl-salicylhydrazide (H4L).

Synthesis of the H2L ligand was carried out by reacting salicylhydrazide with phthalic anhydride in a DMF solution in a molar ratio of 1:1. Yield is 92%, Tm. = 2510C; Found C, 63.83; H, 3.57; N, 9.93%. Calculated for C15H10N2O4: C, 63.77; H, 3.64; N, 9.96%. 1H NMR (400 MHz, MeOD, 300 K), 5 p.m.: 7,94 (d, 2H, J=32 Hz, CH-CO phtal.), 7,71 (t, 2H,

72 G.H.GO1

J=20 Hz, CH-CH phtal.) 7,63 (d, 1H, J=4 Hz, o-PhCH); 7,50 (t, 1H J=4 Hz; p-PhCH), 7,01 (t, 1H, J=4 Hz, m-PhCH), 6,97 (s, 1H, ArH); 13C NMR (MeOD), 5 p.m.: 167,93 and 167,93 (-CO phtal.), 165,30 (-CO-Ph), 159,22 (PhC-OH), 134,71 and 134,63 (CH-CH-CH-CH $tm.), 133,91 (p-PHC), 131,81 (o-PhC), 130,08 and 129,88 (-CO-CH phtal),128,86 and 128,51 (-CH-phtal.), 123,38 (-m PhC), 119,28 (PhC-CO-), 117,03 (m-PhC-C-OH); IR (KBr, sm-1): v OH phenol, 3400; vN-H, 3272 w.; vC=O asim.phtal., 1795; vC=O sim.phtal, 1734c; vC-OH phenol., 1212. [1]

Synthesis of the H4L ligand was carried out by mixing methanolic solutions of sa-licylhydrazide and maleic anhydride in a molar ratio of 1:1. Yield is 95%, Tm= 188 °C; Found: C, 52,8; H, 4; N, 11,2%. Calculated for C11H10O5N2: C, 53,4; H, 4,2; N, 10,8%. 1H NMR (400 MHz, MeOD, 300 K), 5 p.m.: 7,91 (d, 1H, J=12 Hz, o-PhCH); 7,44 (t, 1H J=12 Hz,; p-PhCH), 6,96 (t, 1H, J=16 Hz, m-PhCH), 6,81(s, ^H, ArH), 6,55 (d, 1H, J=8 Hz, -CH=,) 6,40 (d, 1H, J=8 Hz, =CH-); 13C NMR (MeOD), 5 p.m.:166,92 (-COOH-), 166,03 (-CO-Ph), 163,54 (Ph-CO-), 158,53 (PhC-OH), 134,01(-NHCO-CH=), 131,76 (p-PHC), 129,94 (=CH-COOH), 128,82 (o-PhC), 119,25 (m-Ph), 116,77 (PhC-CO-), 114,74 (m-PhC-C-OH); IR (KBr, sm-1): vN-H, 3029 w.; vC=O, 1704c; vC=C, 1659s; vC=N, 1610s; vNC=O, 1525.; 5N-H, 1490 w; vC-OH (phenolic.), 1228, 1160. [3, 4].

The synthesis of complex compounds was carried out in a similar way [1-4]. The reaction mixture: 0.05 mol H2L dissolved in 25 ml methanol and 0.025 mol (CHsCOO^Zn dissolved in 5 ml water were vigorously stirred at 50-600C for 30 min. After standing for a day, a fine white crystalline precipitate precipitated from the reaction mixture. The reaction product was filtered off, washed with diethyl ether, and dried at room temperature. Yield 78%. Tm > 25 00C.

Synthesis (H3L)2Zn was carried out in a similar way to 1, but with H4L. (H3L)2Zn are yellow crystalline precipitate. Yield 86%. Tm> 2500C.

The structures of the synthesized Zn coordination compounds with H2L and H4L were studied by IR and electron absorption spectrometry, elemental analysis, and thermo-

gravimetry [10]. These analyzes helped to establish that the metal ion in complex compounds is hydrogen bonded to two water molecules and forms a distorted octahedral geometry (Figure 1).

Fig. 1. The structure of (H3L)2Zn.

The ligand N-(2-hydroxybenzamido)-phthalimide is potentially tridentate, behaves like a bidentate, is in the enol form and coordinates with the zinc ion through the oxygen atom of the phenol and nitrogen atom of the amide groups. And the ligand N'-maleoyl-salicylhydrazide, potentially heptadentate, also behaves as bidentate and is in the enol form, coordinates with the zinc ion through the oxygen atoms of the carbonil group of the salicylic residue and the nitrogen atom of the amide group of the maleic residue.

Practical part

In this work, we studied the antimicrobial properties of zinc complexes with N-(2-hydroxybenzamido)-phthalimide (HL)2Zn and N'-maleoyl hydrazide of salicylic acid (H3L)2Zn, the structures of which are shown in Figure 2.

The antibacterial and antifungal efficacy of the samples was determined by the zonal diffusion method according to GOST 9.085-78 using the following microorganisms:

Bacteria: Pseudomonas aeruginosa, Mycobacterium phlei;

Fungi: Aspergillus niger, Penicillium Chrysogenium, Penicillium chrosegenum, Cladosporium resinae.

b

Fig. 2. The structure of the complexes: a - (HL)2Zn, b - (HsL)2Zn.

Material and methods

Antimicrobial efficacy

For a preliminary assessment of the effectiveness of antimicrobial properties, the studied compounds were tested in a solvent (DMF for complex compounds) and ethanol (for the ligand). DMF solvents and ethyl alcohol were used as controls.

Meat-peptone agar (MPA) was used for growing bacterial cultures, and wort-agar (WA) was used for fungi.

The studied compounds were added to DMF and ethanol in mass percent 1.0, 0.5, 0.25 for complexes and 0.5 for ligands.

The tests were carried out as follows; 2025 ml of nutrient medium was poured into Petri dishes and allowed to solidify. Sowing of microorganisms was carried out on the surface of the nutrient medium. Then, holes 4-5 mm deep were made on the surface of the medium using a sterile drill 10 mm in diameter, into which 0.3-0.5 ml of the test samples with the indicated compounds were added. Next, Petri dishes were placed in a thermostat and kept for 2 days when using bacteria and 3-4 days for fungi at a temperature of 29±2°C.

The effectiveness of the antimicrobial action of the compounds was determined by the size of the diameter of the zone of inhibition of the growth of microorganisms around the well with and without the sample: the larger it is, the more effective the antimicrobial action.

Antioxidant effect

The antioxidant effect of the synthesized compounds H2L, H4L, (H3L)2Zn, (HL)2Zn was studied in the reactions of cumene oxidation -cumene autoxidation and reaction with cumene peroxide. Establishing the mechanism of action as an inhibitor or antioxidant that prevents oxidation as a result of the presence of the above compounds was studied in the study of cumene autoxidation. According to the research results, it was found that the studied compounds have a sufficiently high antioxidant activity, the results are presented by kinetic curves in Figure 3 a, b. In 3 a, the kinetic curves of the initiated oxidation of cumene in the presence of the studied ligands and complex compounds are given. As can be seen from the kinetic curves, the studied compounds react as inhibitors with cumyl peroxide radicals and prevent oxidation.

When comparing the kinetic curves in 3.a. and 3.b, it can be seen that the antioxidant activity of the cumene synthesized by us in the presence of the studied inhibitors H2L, H4L, (H3L)2Zn, (HL)2Zn is higher than the kinetic curve of autoxi-dation without the tested compounds. This process shows that even after an induction period, these compounds inhibit oxidation.

Results

Antimicrobial screening data are presented in Table 1.

Indicators of the induction period of cumene autoxidation in the presence of com-

pounds synthesized in both Figures 3 a and 3 b., and the kinetic parameters of the reaction of compounds with cumyl peroxide radicals are given in Table 2.

40 SO 120 160 200 240 2SO 320 t.min

Figure 3 a. Kinetic curve of initiated oxidation of cumene in the presence of compounds H2L, H4L, (H3L)2Zn, (HL)2Zn: T= 600C; [InH]=0 (cumene); [InH]= 5-10-4 mol/l; K7 = 10-4 l-1™l-^sec-1; V(O2) - volume of absorbed oxygen (ml); t - induction time (min).

40 SO 120 160 200 240 2S0 320 t7min

Figure 3 b. Kinetic curve of cumene autoxidation in the presence of compounds H2L, H4L, (H3L)2Zn, (HL)2Zn: Т= 1100С; [InH]=0 (cumene); [InH]= 5-10-5 mol/l; K7 = 10-4 l-^mol-^sec-1; V(O2) - volume of absorbed oxygen (ml); т - induction time (min).

Table 1. Antimicrobial Screening Data

DMF solvent

Zone of extermination of microorganisms

№ Compound Biocide Bacteria Fungi

concentration (Pseudomonas aeruginosa, Mycobacterium phlei) (Aspergillus niger, Penicillum Chrysogenium)

1 N-(2-hydroxybenzamido)-phthalimide 0.5 +++ 1.2-1.4

2 N'-maleoyl-salicylhydrazide 0.5 +++ 1.2-1.4

Test sample (ethanol) - +++ +++

1 2.8-3.0 2.8-3.0

3 (HL)2Zn 0.5 2.4-2.6 2.6-2.8

0.25 1.8-2.2 2.2-2.4

1 2.2-2.5 3.2-3.4

4 (H3L)2Zn 0.5 2.0-2.2 3.0-3.2

0.25 1.6-1.8 2.8-3.0

Test sample DMF - 2.4-2.4 2.2-2.2

"+++" - full development and reproduction of microorganisms

Table 2. Values of the induction cycle of cumene autoxidation in the presence of compounds H2L, H4L, (H3L)2Zn, (HL)2Zn and kinetic parameters of the reaction with cumyl peroxide radicals._

Compounds T = 600C T = 1100C

J K7 = 10-4 l-1-mol-1-sec-1 t, min

H2L 2.021 2.05 120

(HL)2Zn 3.36 2.9 190

H4L 3.56 3.19 200

(HsL)2Zn 3.96 3.50 220

Ionol (etalon antioksidant) oh

(h3c)3c^ ifl T ch3 r^-c(ch3)3 2.00 2.10 150

Conclusion

The results of antimicrobial activity show that the metal complexes exhibit antimicrobial properties and they exhibit enhanced inhibitory activity compared to the parent ligand. It has also been found that concentration plays an important role in increasing the degree of inhibition; as the concentration increases, the activity increases.

As can be seen from Table 2, the performance of inhibitors H4L, (H3L)2Zn, (HL)2Zn is significantly higher than that of the reference antioxidant ionol, which is due to the properties of preventing cumene autoxidation. and repulsion of cumyl peroxide radicals. As a result of the comparison, it was found that the antioxidant activity of the ligands is weak compared to the Zn complexes, and the (H3L)2Zn complex showed the highest result among these compounds Tind = 220 min

References

1. Gondolova G.G., Mejidov A.A., Fatullaeva P.A. Complexes of Fe(II) and Mn(II) with N-(2-hydr-oxybenzamido)-phthalimide. J. General Chemistry. 2018. Issue 88. V. 3. P. 517-520. DOI 10.1134/S1070363218030362.

2. Gondolova G.G., Ismailova S.Z., Fatullaeva P.A., Medzhidov A.A. Co(II), Ni(II) and Cu(II) complexes with N-(2-hydroxybenzamido) phthalimide. J. General Chem. 2019. V. 89. No 3. S. 546-548.

3. Gondolova G.H., Medjidov A.A., Fatullayeva P.A., Israfilov A.I. Synthesis and spectroscopic characterization of Fe(III), Mn(II) and Cu(II)

complexes with N'-maleoil-salicylic-hydrazid. Chemical problems. 2018. V. 16. No 1. P. 44-50.

4. Gondolova G, Taslimi P, Medjidov A. Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni(II) and Co(II) complexes with N-Salicyloil-N'-Maleoil-Hydrazine as anticholinergic and antidiabetic agents. J. Biochem. mol. toxi-col. 2018. DOI.org/10.1002/jbt.22197.

5. Ming-Li L., Jian-Min D., Da-Cheng L., Jian-Zhong Cui, Da-Qi Wang A pseudo cubic tetranuclear copper cluster: Synthesis, structure and magnetic property J. Mol. Struct. 2012. V. 1011. P. 140. DOI 10.1016/j.molstruc.2011.12.024.

6. Chandrasekhar T., Vinay Kumar L., Babul Reddy A., Jagan Naik P., Narayana Swamy G. Synthesis and biological evaluation of some new Aryl acid N'-(1H-indazole-3 -carbonyl)-hydrazide derivatives. J. Chemical and Pharmaceutical Research. 2012. V. 4. No 5. P. 2795-2802.

7. Dongcheng Liu, Zilu Chen, Suni Qin, Wanyun Huang, Liping Jiang, and Fupei Liang Synthesis, Characterization, and Properties of Four Metal Complexes with Mulitdentate N-Acyl-Salicyl-hydrazide Ligands J. inorganic and general chemistry «ZAAC». 2011. V. 637. No 10. P. 14011408.

8. Su-Ni Qin, Zi-Lu Chen, Dong-Cheng Liu, Wan-Yun Huang, Fu-Pei Liang Synthesis, crystal structure, and luminescent properties of metal complexes bearing 2,6-pyridine-diacylhydrazide lig-ands: supramolecular assemblies via intermolecular interactions. Transition Met Chem. 2011. V. 36. P. 369-378. DOI 10.1007/s11243-011-9479-x

9. Mustafa R.Albayati, Sevgi Kansiz, Hassane Lgaz, Savaç Kaya, Necmi Dege, Ismat H.Ali, Rachid Salghi, Ill-MinChung. Synthesis, experimental and theoretical characterization of (E)-2-((2,3-dimethylphenyl)-amino)-N'-(furan-2-ylmethylene) benzohydrazide. J. Molecular Structure. 2020. V.

1219. 128518. doi.or/10.1016/j.molstruc. 2020. 128518.

10. Gondolova G.G. Sintez i issledovanie kompleksov Zn s N'-acil-salicilgidrazidami. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Khimiya i Khi-micheskaya Tekhnologiya. 2019. V. 62. Issue 9. P. 27-32. DOI: 10.6060/ivkkt.20196209.5902.

11. Shunsheng Z., Sijiao W., Xiangrong L., Li K. Synthesis, crystal structures, and selected properties of Cu(II) and Zn(II) complexes with in situ formed 2-hydroxy-N'-(propan-2-ylidene)-benzohydrazide. J. Coord. Chem. 2012. V. 65. No 24. P. 4277. DOI 10.1080/00958972.2012. 738813.

12. Shen Lin, Ming-Xing Yang, Shi-Xiong Liu Three novel trinuclear zinc(II)/nickel(II) complexes with pentadentate ligands N-nitrobenzoylsalicylhydr-azidate. Polyhedron 2007. V. 26. P. 4793-4798.

13. Jayendra Patole, Uday Sandbhor, Subhash Padhye, Dileep N. Deobagkar Structural chemistry and In vitro antitubercular activity of acetylpyridine ben-zoyl hydrazone and its copper complex against Mycobacterium smegmatis. Bioorg Med Chem Lett 2003. V. 13. No 1. P. 51-5. PMID: 12467615 DOI: 10.1016/s0960-894x(02)00855-7

14. Christopher E. Anson, Annie Powell Structural Chemistry and In Vitro Antitubercular Activity of Acetylpyridine Benzoyl Hydrazone and Its Copper Complex against Mycobacterium smegmatis. Bioorganic & Medicinal Chemistry 2003. Letters 13. P. 51-55.

15. Nilam H.Lalavani, Himani R.Gandhi, Krishna A.Bhensdadia, Rajesh K. Patel, Shipra H.Baluja. Synthesis, pharmacokinetic and molecular docking studies of new benzohydrazide derivatives possessing anti-tubercular activity against Mycobac-

terium tuberculosis H37Rv. J. Molecular Structure. 2022. V. 1250. Part 3. doi.org/10.1016/j.molstruc. 2021.131884

16. Maria T. Cocco, Cenzo Congiu, Valentina Lilliu and Valentina Onnis Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine-5-carbonitrile derivatives Bioorganic & Medicinal Chemistry 2006. V. 14. P. 366-372.

17. Johnny Easmon, Gerhard Puerstinger, Thomas Roth, Heinz-Herbert Fiebig, Marcel Jenny, Walter Jaeger, Gottfried Heinisch and Johann Hofmann 2-benzoxazolyl and 2-benzimidazolyl hydrazones derived from 2-acetylpyridine: a novel class of antitumor agent Int. J. Cancer. 2001. V. 94. P. 89-96.

18. Violina T. Angelova, Tania Pencheva, Nikolay Vassilev, Elena K-Yovkova, Rositsa Mihaylova, Boris Petrov and Violeta Valcheva Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Antibiotics. 2022. V. 11. No 5. P. 562; https://doi.org/10.3390/antibiotics11050562

19. Gondolova G.G., Mejidov A.A., Kagramanova K.R., Mamedova P.Sh. Antibacterial properties of Co(II) and Ni(II) complexes with N'-maleoyl-hydrazide of salicylic acid. Collection of Izvestia V. 73. No 3. P. 55-59.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20. Gurjaspreet Singh, Pooja Kalra, Akshpreet Singh, Geetika Sharma, Sanchita, Pawan Mohit Cristóbal Espinosa-Ruíz, María Angeles Esteban. A quick microwave preparation of isatin hydrazone schiff base conjugated organosilicon compounds: Exploration of their antibacterial, antifungal, and anti-oxidative potentials. J. Organomet. Chem. 2021. V. 953. 122051. doi.org/10.1016/jjorganchem. 2021.122051

N'-ASiL-SALiSiLHiDRAZiDLORiN Zn KOMPLEKSLORÏNÏN ANTÏMÏKROB УЭ ANTÎFUNGÎSÎD

XASSOLORi

G.H.Gondolova

Potensial tridentat (salisil fraqmentinin karbonil va hidroksil qruplarinin oksigen atomlari, amid qrupunun azot atomu) N'-ftalimid-salisilamid liqandi va potensial heptadentat (salisil fraqmentinin karbonil va hidroksil qruplarinin oksigen atomlari, hidrazid fraqmentinin iki azot atomu, malein fraqmentinin karbonil va karboksil qruplarinin ûç oksigen atomu) N'-maleoil-salisilhidrazid liqandi ila Zn kompleksarinin antibakterial (Pseudomonas aeruginosa и Mycobacterium phlei) va göbalak (Aspergillus niger, Penicillium Chrysogenium, Penicillium chrosegenum, Cladosporium resinae) aleyhina xassalarinin tadqiqatlari aparilmiçdir. Nümunalarin antibakterial va antifungal effektivliyi GOST 9.085-78-a uygun olaraq zonal diffuziya üsulu ila müayyan edilmiçdir. Bakteriya nümunalarinin becarilmasi ûçûn at-pepton aqar (OPA), göbalaklar ûçûn isa suslo-aqar (SA) istifada edilmiçdir. Bu tadqiqatlar har iki liqandin antibakterial tasirinin olmadigini, lakin antigöbalak tasirina malik oldugunu gôstarmiçdir. Bu liqandlarin Zn komplekslari isa ham antibakterial, ham da antigöbalak tasira malik olduqlarini göstarirlar. Komplekslarin antimikrob xassalari liqandlarinkindan daha yüksakdir va bu xassalar kompleks birlaçmalarin mahlulda qatiligi artdiqca artir. Sintez olunan H2L, H4L, (H3L)2Zn, (HL)2Zn birlaçmalarin antioksidant tasirini kumolun oksidlaçma reaksiyalari - kumolun avtooksidlaçmasi va kumilperoksidla reaksiyasi vasitasila tadqiq edilmiçdir. Birlaçmalarin içtiraki naticasinda oksidlaçmanin qarçisini alan inhibitor va ya antioksidant kimi tasir mexanizmininin müayyan olunmasi kumolun avtooksidlaçmasinin araçdirilmasi ila tadqiq edilmiçdir.

Açar sözlzr: antimikrob va antifungisid effektivlik, antioksidant tasiri, Zn komplekslar.

АНТИМИКРОБНЫЕ И ПРОТИВОГРИБКОВЫЕ СВОЙСТВА КОМПЛЕКСОВ Zn С N'-АЦИЛ-САЛИЦИЛИГИДРАЗИДАМИ

Г.Г.Гондолова

Проведены исследования антибактериальных (Pseudomonas aeruginosa и Mycobacterium phlei) и антигрибковых (Aspergillus niger, Penicillium Chrysogenium, Penicillium chrosegenum, Cladosporium resinae) свойств комплексов Zn с потенциально тридентатным (карбонильный и гидроксильный атомы кислорода салицилового фрагмента и атом азота амидной группы) лигандом N'-фталимидо-салициламидом и потенциально гептадентатным (карбонильный и гидроксильный атомы кислорода салицилового фрагмента, два атома азота гидразидного фрагмента и три атома кислорода карбонильной и карбоксильной групп малеинового фрагмента) лигандом N'-малеоил-салицилгидразидом. Антибактериальную и антигрибковую эффективности образцов определяли методом зональной диффузии по ГОСТ 9.085-78. Для выращивания бактериальных культур был использован мясопептонный агар (МПА), а для грибов - сусло-агар (СА). Эти исследования показали, что оба лиганда не проявляют антибактериального действия, но проявляют антигрибковое действие. А цинковые комплексы этих лигандов проявляют как антибактериальное, так и антигрибковое действие. Антимикробное действие комплексов намного выше, чем самих лигандов и это действие увеличивается, с увеличением концентрации комплексных соединений в растворе. Антиоксидантное действие синтезированных нами соединений H2L, H4L, (H3L)2Zn, (HL)2Zn было изучено в реакциях окисления кумола - автоокисления кумола и реакции с перекисью кумола. Установление механизма действия в качестве ингибитора или антиоксиданта, препятствующего окислению в результате присутствия вышеперечисленных соединений, изучено при исследовании автоокисления кумола.

Ключевые слова: антибактериальная и противогрибковая эффективность, антиоксидантное действие, комплексы цинка.

i Надоели баннеры? Вы всегда можете отключить рекламу.