Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
О
R
VOLUME 2 | ISSUE 4 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7
ANALYSIS OF RESEARCH ON THE TREATMENT OF DETAILS ON THE INNER CYLINDRICAL SURFACE LAYER
Khojiakbar Ruzaliev Shermakhamad ugli
Assistant of Fergana Polytechnic Institute, Fergana, Uzbekistan
r.xoj iakbar@ferpi .uz
In this article, the most optimal conditions for the formation of the surface of a cylindrical part processed on automated technological equipment under the influence of aerodynamic motion are determined, the relationship between the physical and mechanical properties of the workpiece and the output characteristics is investigated.
Keywords: separately-hardening processes, internal surface layers of cylindrical parts, physical and mechanical properties, workpiece.
АНАЛИЗ ИССЛЕДОВАНИЙ ПО ОБРАБОТКЕ ДЕТАЛЕЙ НА ВНУТРЕННЕМ ЦИЛИНДРИЧЕСКОМ ПОВЕРХНОСТНОМ СЛОЕ
В данной статье определяются наиболее оптимальные условия процесса формирования поверхности цилиндрической детали, обрабатываемой на автоматизированном технологическом оборудовании под действием аэродинамического движения, исследуется связь между физико-механическими свойствами заготовки и выходными характеристиками.
Ключевые слова: отдельно-упрочняющие процессы, внутренные поверхностные слои цилиндрических деталей, физико-механические свойства, заготовка.
INTRODUCTION
Theoretical research in the process of plastic deformation of the surface is carried out on the basis of analysis of the mathematical model of the contact zone, geometric parameters of the contact zone and the state of tension, technical parameters. Compared with the difficulties identified in these studies, the formation of complex cross-linked processes in the processing of parts, zone deformation,
+998902302047
ABSTRACT
Хожиакбар Рузалиев Шермахамад ^ли
Ассистент Ферганского политехнического института r.xoj [email protected]
+998902302047
АННОТАЦИЯ
Oriental Renaissance: Innovative, p VOLUME 2 | ISSUE 4
educational, natural and social sciences A ISSN 2181-1784
Scientific Journal Impact Factor Q SJIF 2022: 5.947
Advanced Sciences Index Factor ASI Factor = 1.7
hardness and plasticity properties of deformed metal, friction and thermal processes, and so on. In general, the roughness of the processed surface depends on the size and sign of the residual stress in the technological mode of deformation, its strength stage, deformation force and transmission, roughness of the initial product, physical and mechanical properties of the finished material, type of equipment used and its design parameters. It has been found that the rate of deformation at sufficiently wide limits has little effect on the quality of the surface layer. This is considered to lead to increased processing productivity.
DISCUSSION AND RESULTS
The effect of the strength of the deformed elements on the machined surface affects the quality parameters of the detail. Determining the functional relationship between forces is one of the main research tasks in the field of processing the quality of the given equipment and detail parameters. A number of analytical dependencies are recommended by the authors in the calculation of the deformed force. This, in turn, leads to the formation of complex physicochemical processes in the contact area that cannot be accurately evaluated when dealing with deformation balls. As a result, information is now collected based on expanded facts, and rational modes of processing that provide quality and efficiency are selected.
p = Ph/Fk ; (1.1)
Ph ~ n • (Rv • sina)2 ; (1.2)
FK 3 4 , (1.3)
here:
a-introduced angle of the deformed element; FK-contact surface area; radius of the R-ball profile; Rq-detail radius; Rsharik radius, W-local reinforcement deformation; h-compression dimension; The size of the R-sphere.
Experiments show that the optimal signs of a are found in the range of 5o to 7o. The complexity of the contact function for the introduction of deformed elements at small angles is that it is possible to measure the plastic sizes and strength of deformations and to decide on the complex application of the rules of plasticity, strength. Therefore, the problem of plastic strength of the deformed metal must be solved.
Plastic deformation is defined by the Hertz equation of a body when a force is applied to the flat surface of a spherically deformed element R between the radii of the contact area by determining the introduction of the exact angle at the contact.
Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
o
R
VOLUME 2 | ISSUE 4 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7
here: 0 = 1-v12 - 1_v22 -
the Poisson's ratio of the deformed element and the elasticity of the module. Given that the magnitude of the average pressure is q = P / p • r2, the following setting can be made to introduce the phase of deformation into a steel sphere between these parameters. The relationship between the trace of the diameter d of the ball and the load R is introduced in the elastic and plastic fields is described in the Mayer equation:
P = a • dn (1.6)
here: a end n- elasticity constant
The above formulas are subject to the isotropic state according to Guck's law of the body in contact under deformation conditions without regard to friction. In this case, the contact area is small and the load is perpendicular to the machined surface.
In static compression of a deformed element, the force and the state of movement of the deformation binder along the surface of the part are determined by VM Braslavsky. The work shows that the width and curvature of the intersection generated by the movement of the equipment correspond in practice to the width and curvature of the restored track. Hardening the detail with a ball looks like this:
where: diameter and radius of the Dp-ball profile; Dd, diameter and radius of curvature formed by R-detail; the angle of the ball introduced in the ph-plane transmission;
b and a are the size of the contact spot. The amount of angle introduced for hardness steel on the Brinelli NV 140 scale is 2o301, while for superhard steel the gradual introduced angle magnification is NV daph = 3o.
Attempts have been made by some authors to improve the dependence of force detection on the basis of a contact task. A.M. Pronin uses the Meyer index in the quality characteristics of the elasticity of the metal, taking into account the specific nature of the deformation in the contact zone associated with the movement of the device. However, studies have shown that the Meyer index varies based on load dependence.
In-depth research has been carried out by V.M.Torbilo and A.S.Donsky in this direction. It uses a complex system of equality methods based on successive approximations.
a r R a Dp Dd
Oriental Renaissance: Innovative, p VOLUME 2 | ISSUE 4
educational, natural and social sciences A ISSN 2181-1784
Scientific Journal Impact Factor Q SJIF 2022: 5.947
Advanced Sciences Index Factor ASI Factor = 1.7
Therefore, in scientific works, the method of calculating the amount of metal in HV hardness is considered. In this case, when the surface is treated with PPD, the deformation force with quality parameters is realized in two ways. In the first case, the calculated amount of the depth formula is assumed, the relative magnitude determines the elasticity phase and the reduction of the roughness. The second way involves the connection between roughness and strength in surface treatment with PPD.
In some scientific studies, the mode of plastic deformation is considered on the basis of dimensionlessness of pressure
P
q =-(1.8)
F^HV
where: F-contact spot area, hardness according to HV-Vikers. In addition, the V parameters of the PPD mode are used in this research
B = q • Nm (1.9)
In determining the height of micro-roughness, a number of dependencies were obtained by the authors: transmission size, radius of the ball, height of the initial roughness, specific pressure to determine the elastic deformation. For example, the following relationship was proposed by D.D. Papshev to determine the height of micronotextures:
Rz = 8s02R • (1 - k_-k\) • kf • kp (1.20)
where: k is the coefficient characterizing the increase in the radius of the material; kx is the coefficient taking into account the plastic properties of the material; coefficient taking into account the pressure in the contact area.
The formula proposed by VI Menshikov takes into account the physicochemical properties of the processed material and the initial height of the irregularities:
P
Rz = Rzo(1 - Kc • Km • lg •_p.F) (1.21)
where: RZO- initial height of unevenness; KM - coefficient taking into account the physical and mechanical properties of the processed material; b-coefficient of dependence on the material to be processed; The contact area determined by the following formula:
F
= 2.7
nd+n
(Ah + s + 7 (M + £)*£) (1.22)
Oriental Renaissance: Innovative, p VOLUME 2 | ISSUE 4
educational, natural and social sciences A ISSN 2181-1784
Scientific Journal Impact Factor Q SJIF 2022: 5.947
Advanced Sciences Index Factor ASI Factor = 1.7
where: Rd is the radius of the workpiece; Rpr-ball profile profile radius; measurement of e-elastic deformation; Complete deformation in the Dh-contact zone.
In the calculation formula proposed by VM Braslavsky, the magnitude of Rz is related to the magnitude of the transmission and the curvature of the deformed element:
L ,d2 _<;2
I * Aup
Rz=R„P 2 (1.23)
where: Rz is the height of the irregularities at 10 points; The radius of curvature of rprprofil; So-signal.
A complex connection has been established by Ya.I.Barats:
Rz = Rz0 • (1 - Kc • (104 - at)) • lg px (1.24)
where: the initial height of the Rzo- inequalities; Ks-coefficient depending on the processing method, l-coefficient depending on the nature of the stress distribution in the deformation furnace, sT-yield limit, R-load.
There are several calculations to calculate the boundary depth of plastic deformation. The connection between S.G.
= V — (1-25)
t
where: R-power; sS is the readability limit of the processed material. The elliptical contact surface in this case is approximated in the form of a circle. D.D.Papshev showed that the thickness of the reinforcement layer depends on the contact area of the deformed element with the workpiece.
to
where: k is the coefficient depending on the material and size of the detail; Fkkontakt area, thickness of D-reinforced layer.
To determine the thickness of the compacted layer, the following correlation was
proposed by IV Kudravtsev: ,
to = 1 + 0.07 • h = 1. JjL Rnp (1,27)
where: o-coefficient taking into account the impact on the details and dimensions of the equipment; R-power; sS-readability limit of the processed material; The curves of the radius given at the rpr-contact site. In the research of VM Yaroslavtsev the following formula is given:
hv ^-E. Rp= 0-3<VRl+R2
285
Oriental Renaissance: Innovative, p VOLUME 2 | ISSUE 4
educational, natural and social sciences ISSN 2181-1784
Scientific Journal Impact Factor Q SJIF 2022: 5.947
Advanced Sciences Index Factor ASI Factor = 1.7
where: R1, R2- radii of connected cylinders; st-readability limit of the processed material; E-elastic modulus; the thickness of the hypuxed layer.Thus, the analysis of sources showed that the quality indicators of the processed surface, deformation strength and transmission are sufficiently different dependencies, as well as roughness, profile radius, plastic properties of the material, geometric parameters depending on the contact area. The variety of formulas proposed by different authors allows for the understanding and in-depth analysis of PPD processing in the physical process. However, the above dependencies reflect the specific properties of the processes seen and include the experimental coefficients and are determined by the change in the deformation condition. In addition, the deformation force is used as the balloon deformation elements in the methods seen. Theoretical research is examined and the processes in the experimental study of stand equipment and instruments are clarified, key indicators are recorded using profilometers in laboratory and production conditions, as well as applied directly from the geometric dimensions of the contact zone using other modern methods and equipment microscopes. At the same time, experimental research is carried out using their optimal planning methods and the organization of modern statistical methods of processing the results of measurements.
Today, such an experimental method is the main task in optimizing the parameters of the plastic deformation process and the design of equipment.
CONCLUSION
In this work, the methods of finishing and strengthening of plastic deformation of the inner surface layer of cylindrical parts were studied and analyzed. As a result of the analysis, a spherical center escape rocket design was designed.
Based on the research, the following conclusions were drawn:
1. Several processing schemes of the centrifugal raskatnik have been designed.
2. A schematic diagram of the centrifugal raskatnik has been developed.
3. During the processing, the forces acting on the ball were identified.
4. The geometric parameters of the contact zone for the deformed elements were determined.
5. In aerodynamically moving devices, the dependence of the state of voltage on the contact formed at the junction of the sphere with the cylindrical surface is determined.
6. A fundamentally new design of a ball head operating in aerodynamic motion has been developed
Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
О
R
VOLUME 2 | ISSUE 4 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7
7. Theoretical research on the state of stress in the contact zone and the
effect of deformation force on geometric parameters.
8. The design method of the tool for finishing and strengthening of details
on an inner cylindrical surface layer is developed.
9. The rules of finishing and strengthening of details on the inner
cylindrical surface layer are determined REFERENCES
1. Абрамов Г.В. Математические модели управления процессами в тонких аэродинамических слоях при производстве изделий микроэлектроники: Дис ... д-ра техн. наук. — Воронеж: 2001.-356
2. Азаревич Г. М„ Бернштейн Г. Ш. Исследование процесса чистовой обработки многошариковыми дифференциальными инструментами. - В кн.: Размерно-чистовая обработка деталей пластическим деформированием взамен обработки резанием. М.: НИИмаш, 1966, с.
3. Азаревич Г. М., Бернштейн Г. Ш. Чистовая обработка наружных цилиндрических поверхностей пластическим деформированием. М.:
4. Абдуллаева, Д. Т., Каримов, Р. Х., & Умарова, М. О. (2021). МАКТАБ ТАЪЛИМ ТИЗИМИДА ЧИЗМАЧИЛИК ФАНИНИ РИВОЖЛАНТИРИШ ВА БИЛИМ БЕРИШ ЖАРАЁНИНИ ТАКОМИЛЛАШТИРИШ. Scientific progress, 2(1), 323-327.
5. Усманов Джасур Аминович, Умарова Мунаввар Омонбековна, Абдуллаева Доно Тошматовна, & Ботиров Алишер Ахмаджон Угли (2019). Исследование эффективности очистки хлопка-сырца от мелких сорных примесей. Проблемы современной науки и образования, (11-1 (144)), 48-51.
6. Хусанбоев Абдулкосим Мамажонович, Ботиров Алишер Ахмаджон Угли, & Абдуллаева Доно Тошматовна (2019). Развертка призматического колена. Проблемы современной науки и образования, (11-2 (144)), 21-23.
7. Dostonbek, V., & Saydullo, A. (2020). Using gaming technologies in engineering graphics lessons.ACADEMICIA: An International Multidisciplinary Research Journal, 10(5), 95-99.
8. Valixonov Dostonbek, Jumaev Nizomiddin, & Srojidinov Jurabek. (2021). EXPERIMENTAL AND THEORETICAL STUDIES OF THE PROCESS OF CUTTING POLYMER MATERIALS. Academicia Globe: Inderscience Research, 2(05), 485-490. https://doi.org/10.17605/OSF.IO/U8XN3
Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
О
R
VOLUME 2 | ISSUE 4 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7
9. Достонбек Азим Угли Валихонов, Алишер Ахмаджон Угли Ботиров, Зухриддин Носиржонович Охунжонов, & Равшан Хикматуллаевич Каримов (2021). ЭСКИ АСФАЛЬТО БЕТОННИ КАЙТА ИШЛАШ. Scientific progress, 2 (1), 367-373.
10. Усманов Джасур Аминджанович, Холмурзаев Абдирасул Абдулахатович, Умарова Мунаввар Омонбековна, and Валихонов Достонбек Аъзим Угли. "Исследование формы сороудалительной сетки колково-барабанного очистителя хлопка-сырца" Проблемы современной науки и образования, no. 121 (145), 2019, pp. 35-37.
11. Dostonbek, V., & Salimaxon, N. (2021). The effect of scraping and surface cleaning on the scraping of scraping to be dressing in the cutting of polymer materials. ACADEMICIA: An International Multidisciplinary Research Journal, 11(6), 717-721.
12. Botirov, Alisher Akhmadjon Ugli , & Turgunbekov, Akhmadbek Makhmudbek Ugli (2021). INVESTIGATION OF PRODUCTIVITY AND ACCURACY OF PROCESSING IN THE MANUFACTURE OF SHAPING EQUIPMENT. Oriental renaissance: Innovative, educational, natural and social sciences, 1 (11), 435-449.
13. Abdullayeva, Donoxon Toshmatovna, & Turg'Unbekov, Axmadbek Maxmudbek O'G'Li (2021). ПРОДЛЕНИЕ СРОКА ХРАНЕНИЯ ЛИСТОВЫХ ДЕТАЛЕЙ ПРОКАТНОГО ОБОРУДОВАНИЯ. Oriental renaissance: Innovative, educational, natural and social sciences, 1 (11), 1035-1045.
14. I. O. Ergashev, R. J. Karimov, A. M. Turg'Unbekov, & S. S. Nurmatova (2021). ARRALI JIN MASHINASIDAGI KOLOSNIK PANJARASI BO'YICHA OLIB BORILGAN ILMIY TADQIQOTLAR TAHLILI. Scientific progress, 2 (7), 78-82.
15. Ахмадбек Махмудбек Угли Тургунбеков (2021). НОТЕХНОЛОГИК ЮЗАНИНГ ТЕШИКЛАРИГА ИШЛОВ БЕРИШДА ДОРНАЛАШ УСУЛИНИ ТАДБИК ЭТИШ. Scientific progress, 2 (1), 4-10.
16. Abdumajidxon Murodxon O'G'Li Muxtorov, & Axmadbek Maxmudbek O'G'Li Turg'Unbekov (2021). VAKUUM XALQALARI UCHUN SILIKON MATERIALLARNI TURLARI VA ULARNING TAHLILI. Scientific progress, 2 (6), 1503-1508.
17. Тургунбеков, Ахмадбек Махмудбек Угли, & Сирожидинов, Журабек Равшанжон Угли (2022). ДЕТАЛ ЮЗАЛАРИНИ АЗОТЛАШ УСУЛИ ОРКДЯИ МУСТАХКАМЛИГИНИ ХАМДА ИШЛАШ УНУМИНИ ОШИРИШ. Oriental renaissance: Innovative, educational, natural and social sciences, 2 (2), 847-856.
18. Muxtorov, Abdumajidxon Murodxon O'G'Li, Turg'Unbekov, Axmadbek Maxmudjon O'G'Li, & Maxmudov, Abdulrasul Abdumajidovich (2022).
Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
о
R
VOLUME 2 | ISSUE 4 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7
AVTOMOBIL OLD OYNAKLARINI VAKUUMLASH JARAYONIDA VAKUUMLASH TEXNOLOGIYASINING AHAMIYATI. Oriental renaissance: Innovative, educational, natural and social sciences, 2 (3), 93-102.
19. Юсупов С. М. и др. Компазицион материалларни борлаш //Scientific progress. - 2021. - Т. 1. - №. 4.
20. Юсуфжонов О. F., Гайратов Ж. F. Штамплаш жараёнида ишчи юзаларни ейилишга бардошлилигини оширишда мойлашни ахдмияти //Scientific progress. - 2021. - Т. 1. - №. 6. - С. 962-966.
21. Djurayev A., Yuldashev K. Dynamics of the Screw Conveyor for Transportation and Cleaning of Fiber Material //International Journal of Advanced Science and Technology. - 2020. - Т. 29. - №. 5. - С. 8557-8566.
22. Юсупов С. М. и др. У.(2021). КОМПАЗИЦИОН МАТЕРИАЛЛАРНИ БОРЛАШ //Scientific progress. - Т. 1. - №. 4.
23. Otabek G'Ayratjon O'G'Li Yusufjonov SHTAMPLARNI TA'MIRLASH USULLARI TAHLILI // Scientific progress. 2021. №1
24. Alisher Mahmudovich Mamadjonov, & Xojiakbar Shermahammad O'G'Li Ruzaliyev (2021). SIEMENS NX 12.0 DASTURI YORDAMIDA RAQAMLI DASTUR BILAN BOSHQARILADIGAN DASTGOHLAR UCHUN TEXNOLOGIK JARAYONLARNI LOYIHALASH. Scientific progress, 1 (6), 397401.
25. Alisher Mahmudovich Mamadjonov, & Xojiakbar Shermahammad O'G'Li Ruzaliyev (2021). RAQAMLI DASTUR BILAN BOSHQARILADIGAN DASTGOHLAR UCHUN DETALLARGA ISHLOV BERISH DASTURINI ISHLAB CHIQISH. Scientific progress, 2 (1), 11-17.
26. Bahadirov, G., Sultanov, T., Umarov, B., & Bakhadirov, K. (2020, July). Advanced machine for sorting potatoes tubers. In IOP Conference Series: Materials Science and Engineering (Vol. 883, No. 1, p. 012132). IOP Publishing.
27. Sultanov, T., Bahadirov, G., Umarov, B., & Bakhadirov, K. (2020). Advanced machine for sorting potatoes tubers. In IOP Conference Series: Materials Science and Engineering (pp. 012132-012132).
28. Набиев, Т. С., Обидов, Н. Г., & Умаров, Б. Т. (2021). О методике оценки физико-механических свойств картофеля. In ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ НАУЧНЫХ ИССЛЕДОВАНИЙ. АНАЛИЗ, УПРАВЛЕНИЕ, ПЕРСПЕКТИВЫ (pp. 20-24).
29. THE MAIN TOOLS USED IN THE FINISHING-STRENGTHENING OF DETAILS USING THE METHOD OF PLASTIC DEFORMATION OF THE
Oriental Renaissance: Innovative, educational, natural and social sciences Scientific Journal Impact Factor Advanced Sciences Index Factor
о
R
VOLUME 2 | ISSUE 4 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7
INNER CYLINDRICAL SURFACE LAYER Maxmudov A.A., Mukhtorov A.M., Turgunbekov A.M.Экономика и социум. 2022. № 3-1 (94). С. 99-10
30. Axunbabaev, O. A., & Karimov, R. J. (2022). Improving the process of back compaction in the formation of natural silk fabric on the loom. Science and Education, 3(2), 236-240.
31. Onorboyev, O. A. O., & Karimov, R. J. O. (2022). Determining the optimal variant of mechanical processing of polymer composite materials. Science and Education, 3(3), 180-185.
32. Ismoiljon o'g'li, N. M., & Jaxongir o'g'li, K. R. (2022). PARMALASH OPERATSIYALARIDA MEXANIK ISHLOV BERISH MAROMLARI VA ISHCHI YUZALAR VAQTINI DETAL TAYYORLASH VAQTIGA TA'SIRINI TADQIQ QILISH.
33. Robiljonov, I. I. O., & Karimov, R. J. O. G. L. (2021). IMPROVING THE EFFICIENCY OF MACHINING OF PARTS MADE OF STAINLESS MATERIALS. Scientific progress, 2(8), 581-587.
34. Mirzaxojaev, S. D. O., & Karimov, R. J. O. G. L. (2021). RESEARCH OF MECHANICAL PROCESSING PROCESS ON THE BASIS OF MODERN METHODS OF MEASUREMENT AND CONTROL. Scientific progress, 2(8), 575580.
35. Jaxongir o'g'li, R. K., Toshmatovna, A. D., Muxtoraliyevna, R. M., & Xakimjon o'g'li, T. I. (2021). PROGRESSIVE CONSTRUCTIONS OF ADJUSTABLE SHEET PUNCHING STAMPS. EURASIAN JOURNAL OF SOCIAL SCIENCES. PHILOSOPHY AND CULTURE, 1(2), 46-53.
36. Jaxongir o'g'li, R. K., & Quranbaevich, P. K. (2021). PROGRESSIV SHTAMPLASH KONSTRUKSIYALARINI REJALASHTIRISH. PLANNING OF PROGRESSIVE STAMPING CONSTRUCTIONS. EURASIAN JOURNAL OF LAW, FINANCE AND APPLIED SCIENCES, 1(3), 10-18.