Научная статья на тему 'Анализ опыта применения альтернативных топлив на воздушных судах'

Анализ опыта применения альтернативных топлив на воздушных судах Текст научной статьи по специальности «Промышленные биотехнологии»

CC BY
1056
252
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АЛЬТЕРНАТИВНОЕ ТОПЛИВО / ВИДЫ АЛЬТЕРНАТИВНЫХ ТОПЛИВ / СЖИЖЕННЫЙ ПРИРОДНЫЙ ГАЗ (СПГ) / БЕЗОПАСНОСТЬ ПОЛЕТОВ (БП) / INCREASE OF LEVEL OF SAFETY OF FLIGHTS / QUESTIONING / AVIATION ENTERPRISES / EXPERT ESTIMATIONS

Аннотация научной статьи по промышленным биотехнологиям, автор научной работы — Саргсян Давид Робертович

В статье анализируется опыт применения альтернативных топлив на воздушных судах, виды и особенности топлив. Описываются требования к СПГ и обеспечению БП.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по промышленным биотехнологиям , автор научной работы — Саргсян Давид Робертович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ANALYSIS EXPERIENCE OF ALTERNATIVE FUELS ON AIRCRAFT

In article the technique of carrying out of expert estimations of activity of aviation enterprise of the civil aircraft directed on increase of level of safety of flights is presented.

Текст научной работы на тему «Анализ опыта применения альтернативных топлив на воздушных судах»

УДК 629.735;

АНАЛИЗ ОПЫТА ПРИМЕНЕНИЯ АЛЬТЕРНАТИВНЫХ ТОПЛИВ НА ВОЗДУШНЫХ СУДАХ

Д.Р.САРГСЯН

Статья представлена доктором технических наук, профессором Зубковым Б.В.

В статье анализируется опыт применения альтернативных топлив на воздушных судах, виды и особенности топлив. Описываются требования к СПГ и обеспечению БП.

Ключевые слова: альтернативное топливо, виды альтернативных топлив, сжиженный природный газ (СПГ), безопасность полетов (БП).

Введение

Постоянно нарастающий спрос на авиаперевозки за последние годы развития экономики, а также техники и технологий вызвало большую потребность топливных ресурсов. Вследствие чего инженеры многих ведущих авиастроительных компаний в разных странах, в том числе и в России, начали разработки по обеспечению авиации новым видом топлива. Рассматривается огромное количество альтернатив керосину: биотопливо, синтетическая нефть, сжиженный природный газ (СПГ), водород. Весь накопившийся опыт с момента первого в мире полета на альтернативном топливе (самолета Ту-155 в 1988 году) показывает эффективность, экономичность и экологичность разработок в данном направлении.

В российской авиации рассматривается возможность использования СПГ, в частности, из-за запасов природного газа, а также сопутствующие нефтедобыче газы, которые сжигаются в факелах месторождений при добыче нефти. На данном этапе развития гражданской авиации наиболее близки к реализации проекты вертолетов и самолетов, которые применяют в качестве топлива сжиженные попутные газы, получаемые при добыче нефти (пропан и бутан).

Переоборудование воздушных судов требует минимальных затрат - лишь переделки топливных баков и системы подачи топлива в двигатели. Также требуется обеспечить аэропорты криогенными заправочными станциями, хранилищем топлива и инфраструктуры доставки СПГ до хранилищ. На данном этапе требуется не только участие авиапромышленного комплекса, но и участие газодобывающих компаний для создания соответствующей инфраструктуры.

Опыт применения

Альтернативу авиакеросину начали искать еще в середине ХХ века. История работ в ОКБ А.Н. Туполева по альтернативным видам топлива уходит в 60-е гг. - уже тогда рассматривалась возможность перевода силовых установок проектируемых в ОКБ А.Н. Туполева самолетов на жидкий водород.

В середине 70-х гг. Академией наук СССР совместно с рядом научно-исследовательских институтов и конструкторских бюро была разработана программа научно-исследовательских и опытно-конструкторских работ по широкому внедрению альтернативных видов топлива в народное хозяйство. Так 15 апреля 1988 года впервые поднялся в небо Ту-155 с экспериментальным двигателем НК-88 на криогенном топливе, который выполнил на СПГ и водороде почти 100 полетов. В октябре 1989 года этот самолет совершил показательный перелет по маршруту Москва-Братислава-Ницца (Франция) на 9-й Международный конгресс по природному газу. В июле 1991 г. самолет совершил полет по маршруту Москва- Берлин для участия в Международном конгрессе по природному газу.

При разработке этого самолета была создана экспериментальная база для испытания крио-

генного оборудования и сложился единственный в мире коллектив высококвалифицированных специалистов в области криогенной авиации. В результате этой работы были определены пути создания самолетных и аэродромных криогенных систем и оборудования. Однако в ОКБ А.Н.Туполева продолжились работы в этом направлении, на уровне технических предложений разработаны проекты модифицированных криогенных самолетов Ту-204 (Ту-204К), Ту-334 (Ту-334К), Ту-330 (Ту-330СПГ), нового регионального самолета Ту-136. Кроме того, эти самолеты будут способны одновременно применять альтернативные топлива и авиационный керосин, что делает их более универсальными и надежными. Наиболее глубоко проработаны модификации самолета Ту-204 (Ту-204К) и проект нового регионального самолета Ту-136, учитывающий особенности криогенного топлива (рис. 1).

Рис. 1

Топливная экономичность самолетов Ту-334К и Ту-330СПГ практически не будет отличаться от базовых Ту-334 и Ту-330. Все эти самолеты могут быть переоборудованы под применение СПГ в течение 3-4 лет. Особое внимание заслуживает проект грузопассажирского регионального криогенного самолета Ту-136 с двумя турбовинтовыми двигателями ТВ7-117СФ, способного при небольших доработках применять СПГ, жидкий водород и пропан-бутановое топливо.

Виды и особенности альтернативных топлив

Самым распространенным альтернативным топливом можно считать сжиженный природный газ (СПГ). Газ относится к категории криогенных топлив. Теплофизические и теплотехнические характеристики показывают ряд преимуществ авиационных сконденсированных топлив (АСКТ) перед традиционным авиакеросином ТС-1. Также существуют синтетические топлива, получаемые из угля, газа, биомасс и растительного масла. Но синтез таких веществ требует дополнительных затрат на переработку угля, биомасс и растительных масел, что дороже керосина, и ему сопутствуют те же проблемы ресурсов и экологии. Поэтому оно вряд ли может рассматриваться как перспективное. Спирты (этиловый и метиловый) и аммиак также могут заменить керосин, но они почти в два раза уступают ему по

теплоте сгорания, следовательно, их удельный расход будет больше. Кроме того, в выхлопе при сгорании этих топлив содержатся вредные окиси азота и углерода.

В качестве альтернативы керосина для авиации может быть рассмотрено криогенное топливо - жидкий водород Н2 и легкие углеводороды от метана СН4 до пентана С5Н12.

К преимуществам водорода как авиационного топлива можно отнести следующее:

- во-первых, наибольшую теплоту сгорания на единицу массы, что дает удельный расход топлива примерно в три раза меньший, чем у керосина. Это позволяет существенно улучшить летно-технические характеристики самолетов;

- во-вторых, наибольший хладоресурс на единицу массы (в 12-15 раз больше, чем у керосина), что можно эффективно использовать для охлаждения горячих деталей двигателя и самолета;

- в-третьих, повышенную температуру самовоспламенения и меньшую излучательную способность, что положительно скажется на работе камеры сгорания.

Однако водородному топливу присущи недостатки, требующие решения сложных технических проблем. Жидкий водород серьезно уступает стандартным авиакеросинам по объемной теплоте сгорания из-за низкой (почти в 11 раз меньше, чем у керосина) плотности, что значительно ухудшает габаритно-весовые характеристики ЛA при переходе с авиакеросина на водород.

Преимущества легких углеводородов также относиться к категории преимуществ водорода, но отличаются доступностью и дешевизной получения (табл. 1).

Таблица 1

Теплофизические и теплотехнические характеристики водорода, углеводородных компонентов АСКТ и авиационного топлива ТС-1

Показатель Н (водород) СН4 (метан) С2Н6 (этан) С3Н8 (пропан) С4Н10 (бутан) С5Н12 (пентан) ТС-1

М 2,016 16,04 3007 44,10 5812 7215 140

t пл., С -259,21 -182,49 -183,27 -187,69 -138,33 -129,72 -60

С -252,78 -161,73 -88,63 -42,07 -0,50 36,07 180

t ж.с., C 6,43 20,76 94,64 145,62 137,83 165,79 290

пл. кг/м 77,15 453,4 650,7 733,1 736,4 762,2 835

кип., кг/м 71,05 422,4 546,4 582,0 601,5 610,5 665

Qн,кДж/кг 114480 50060 47520 46390 45740 45390 43290

Qv.пл, кДж/дм 8832 22700 30920 34010 33680 34550 36150

Qv,кип, кДж/дм 8136 21150 25970 27000 27530 27710 28900

Нисп, кДж/кг 455,1 511,2 485,7 424,0 385,5 3575 287

и, С 510 542 518 470 405 284 -

^н, см/с 267 33,8 40,1 39,0 37,9 38,5 39

Сн, %(об) 4,1 5,3 3,0 2,2 1,9 - 1,2

Св,%(об) 75,0 15,0 12,5 9,5 8,5 - 7,1

Ro, Дж/(кг С) 4157,2 518,8 276,7 188,6 143,2 115,5 59,4

Lо, кгвозд/кгтопл 34,5 17,19 16,05 15,65 15,42 15,29 -

СПГ - (метан) его плотность (даже при температуре кипения) в 1,7 раза больше, чем у керосина, что приводит к необходимости увеличения объемов топливных баков более чем в 1,5 раза (при равной энергоемкости). Кроме того, метан имеет очень низкий диапазон нахождения в жидкой фазе (-20 С), низкую критическую температуру (-82,6 С). Это вызывает необходимость

создания для баков, арматуры и коммуникаций топливных магистралей новых хладостойких конструкций у уплотнительных материалов, а также высококачественной низкотемпературной теплоизоляции, предотвращающей быстрое вскипание метана и обледенения конструкции.

В отличие от керосина, метан в камеру сгорания двигателя для исключения двухфазного состояния придется подавать в газообразном виде, что полностью исключает использование штатных топливных агрегатов, коммуникаций, коллекторов и форсунок. Это значительно усложняет конструкцию двигателя, а в ряде случаев делает невозможной его модификацию для питания двумя видами топлива.

Из-за этих же свойств жидкого метана потребуются весьма громоздкие и дорогостоящие наземные средства для его транспортировки, хранения, заправки и т.д., близкие по своим параметрам к водородным. Дооборудование криогенно-топливной базы аэропорта должно включать в себя специальные хранилища, оборудованные тепловой защитой, средствами поддержания криогенного состояния топлива и устройствами, предотвращающими его потери, а также сеть приемораздаточных устройств, парк специальных транспортных средств с теплоизолированными емкостями и т.п.

В то же время по массовой теплоте сгорания метан превосходит керосин на 14%, что обеспечит дальность полета и полезной нагрузки. Сжиженный метан имеет охлаждающую способность в 5 раз выше, чем у керосина, что позволяет использовать хладоресурс для охлаждения деталей и узлов двигателя. Опыт эксплуатации газотурбинных двигателей, применяемых в качестве нагнетателей на компрессорных станциях газопроводов и работающих на природном газе, показал, что срок службы таких двигателей увеличивается на 25%.

Безопасность полетов при применении СПГ

К основным видам опасностей, создаваемых специфическими свойствами, сжижению углеводородных газов, в том числе и СПГ, а также условиями их производства, хранения, транспортировки и заправки относятся: огнеопасность (пожароопасность), взрывоопасность, химическая активность, воздействие низких температур, токсичность. Правила безопасности при производстве, хранении и выдаче сжиженного природного газа (СПГ) на газораспределительных станциях магистральных газопроводов (ГРС МГ) и автомобильных газонаполнительных компрессорных станциях (АГНКС) содержат организационные, технические и технологические требования по организации безопасности производства, выполнение которых является обязательным для всех предприятий, производящих и перевозящих СПГ, при проектировании и эксплуатации комплексов по производству, хранению и выдаче СПГ.

Для обеспечения безопасной эксплуатации такого топлива необходимо располагать качественными и количественными методами оценки и сравнения каждого вида опасности. Качественная и количественная оценка, т.е. определение вида и степени опасности, позволяет провести сравнительный анализ сконденсированного топлива по критериям опасности, и в перспективе формализовать задачу выбора технических средств и методов безопасной эксплуатации топливных систем, использующих СПГ, а также его хранения и транспортировки.

Требования к кандидатам на получение Сертификата технической подготовленности обслуживанию самолета предъявляются по тем характеристикам, которые непосредственно влияют на обеспечение безопасности полетов и на выполнение производственных заданий в установленные сроки.

К ним относятся:

А - возраст;

Б - психофизическая способность выполнять предстоящую работу;

В - базовая подготовка (вуз, училище, техникум, профтехучилище и т.п.);

Г - специальная подготовка для работы на данном виде воздушного судна или AT, знание конкретной авиационной техники, назначения и содержания её технического обслуживания, технологии выполнения и контроля качества работ на ней, применяемого оборудования;

Д - умение выполнять работы, предусмотренные функциями, право на осуществление которых представляет запрашиваемый Сертификат;

Е - общий опыт работы на авиационной технике.

Как показал анализ требований по безопасной эксплуатации самолета Ту-154 при заправке и хранении топлива (СПГ), инженерно-технический персонал ИАС должен знать особенности применения этого вида топлива.

ЛИТЕРАТУРА

1. Альтернативные виды авиационного топлива / Материалы совещания по международной авиации и изменению климата. Документ ИКАО HLM-ENV/09-WP/9.- Монреаль, 10.08.09.

2. www.tupolev.ru Криогенная техника.

3. Правила безопасности при производстве, хранении и выдаче сжиженного природного газа (СПГ) на газораспределительных станциях магистральных газопроводов (ГРС МГ) и автомобильных газонаполнительных компрессорных станциях (АГНКС) ПБ 08-342-00.

ANALYSIS EXPERIENCE OF ALTERNATIVE FUELS ON AIRCRAFT

Sargsyan D.R.

In article the technique of carrying out of expert estimations of activity of aviation enterprise of the civil aircraft directed on increase of level of safety of flights is presented.

Key words: increase of level of safety of flights, questioning, aviation enterprises, expert estimations.

Сведения об авторе

Саргсян Давид Робертович, 1982 г.р., окончил МГТУ ГА (2010), аспирант МГТУ ГА, автор 2 научных работ, область научных интересов - безопасность полетов, альтернативное топливо, ремонт и модернизация ВС.

i Надоели баннеры? Вы всегда можете отключить рекламу.