Научная статья на тему 'ALGORITHM AND INSTALLATION FOR MEASURING THE CURRENT LACING VOLTAGE IN HIGH-POWER RF AND MICROWAVE BIPOLAR AND HETEROJUNCTION BIPOLAR TRANSISTORS'

ALGORITHM AND INSTALLATION FOR MEASURING THE CURRENT LACING VOLTAGE IN HIGH-POWER RF AND MICROWAVE BIPOLAR AND HETEROJUNCTION BIPOLAR TRANSISTORS Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
12
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MICROWAVE BIPOLAR TRANSISTOR / CURRENT LACING VOLTAGE / NON-DESTRUCTIVE METHOD / MEASUREMENT / INSTALLATION

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Litvinov K.A., Radaev O.A., Kozlikova I.S., Sergeev V.A., Kulikov A.A.

Methods of measuring the current lacing voltage in high-power bipolar (BT) and heterojunction bipolar (HBT) RF and microwave transistors are considered. A method and installation for determining the current lacing voltage in a transistor without introducing the device into the hot spot mode by the steepness of the dependence of the variable component of the voltage at the emitter junction on the collector voltage at a given emitter current and the supply of the sum of linearly increasing and small alternating voltage to the collector is described. A critical drawback of the known methods for determining the voltage of the UKL localization in BT and HBT is that the devices enter the hot spot mode thus the purpose of the work was to develop and experimentally test an algorithm and installation for measuring the voltage of the UKL localization without introducing the device into the hot spot mode.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ALGORITHM AND INSTALLATION FOR MEASURING THE CURRENT LACING VOLTAGE IN HIGH-POWER RF AND MICROWAVE BIPOLAR AND HETEROJUNCTION BIPOLAR TRANSISTORS»

i l St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.2 Научно-технические ведомости СПбГПУ. Физико-математические науки. 15 (3.2) 2022

EXPERIMENTAL TECHNIQUE AND DEVICES

Conference materials UDC 621.396.6

DOI: https://doi.org/10.18721/JPM.153.218

Algorithm and installation for measuring the current lacing voltage in high-power RF and microwave bipolar and heterojunction bipolar transistors

K. A. Litvinov 1 e, O. A. Radaev 2, I. S. Kozlikova 2, V. A. Sergeev ,2, А. А. Kulikov 1 1 Ulyanovsk State Technical University, Ulyanovsk, Russia;

2 Ulyanovsk Branch of Kotel'nikov Institute of Radio-Engineering and Electronics of RAS, Ulyanovsk, Russia

H sva@ulstu.ru

Abstract. Methods of measuring the current lacing voltage in high-power bipolar (BT) and heterojunction bipolar (HBT) RF and microwave transistors are considered. A method and installation for determining the current lacing voltage in a transistor without introducing the device into the hot spot mode by the steepness of the dependence of the variable component of the voltage at the emitter junction on the collector voltage at a given emitter current and the supply of the sum of linearly increasing and small alternating voltage to the collector is described. A critical drawback of the known methods for determining the voltage of the UKL localization in BT and HBT is that the devices enter the hot spot mode thus the purpose of the work was to develop and experimentally test an algorithm and installation for measuring the voltage of the UKL localization without introducing the device into the hot spot mode.

Keywords: microwave bipolar transistor, current lacing voltage, non-destructive method, measurement, installation

Funding: The work was supported by the Russian Science Foundation, the project No. 2229-01134.

Citation: Litvinov K. A., Radaev O. A., Kozlikova I. S., Sergeev V. A., Kulikov A. A., Algorithm and installation for measuring the current lacing voltage in high-power rf and microwave bipolar and heterojunction bipolar transistors, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.2) (2022) 97-101. DOI: https://doi.org/10.18721/ JPM.153.218

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 621.396.6

DOI: https://doi.org/10.18721/JPM.153.218

Алгоритм и установка для измерения напряжения локализации тока в мощных ВЧ и СВЧ биполярных и гетеропереходных биполярных транзисторах

К. А. Литвинов 1 н, О. А. Радаев 2, И. С. Козликова 2, В. А. Сергеев 12, А. А. Куликов 1 1 Ульяновский государственный технический университет, Ульяновск, Россия;

2 Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Ульяновск, Россия

н sva@ulstu.ru

Аннотация. Рассмотрен метод измерения напряжения локализации тока икл в мощных биполярных (БТ) и гетеропереходных биполярных (ГБТ) ВЧ и СВЧ транзисторах. Описан метод и установка для определения напряжения локализации тока икл в транзисторе без введения прибора в режим горячего пятна по крутизне зависимости переменной

© Litvinov K. A., Radaev O. A., Kozlikova I. S., Sergeev V. A., Kulikov A. A., 2022. Published by Peter the Great St.Petersburg Polytechnic University.

4

St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.2

составляющей напряжения на эмиттерном переходе от коллекторного напряжения при заданном эмиттерном токе и при подаче на коллектор суммы линейно нарастающего и малого переменного напряжения. Существенным недостатком известных способов определения напряжения локализации U в БТ и ГБТ является выход приборов в режим горячего пятна, поэтому целью работы являлась разработка и экспериментальная проверка алгоритма и установки для измерения напряжения локализации тока UKJI без введения исследуемого прибора в режим горячего пятна.

Ключевые слова: СВЧ биполярный транзистор, напряжение шнурования тока, неразрушающий метод, измерение, установка

Финансирование: Работа выполнена при поддержке Российского научного фонда, проект № 22-29-01134.

Ссылка при цитировании: Литвинов К. А., Радаев О. А., Козликова И. С., Сергеев В. А., Куликов А. А. Алгоритм и установка для измерения напряжения локализации тока в мощных ВЧ и СВЧ биполярных и гетеропереходных биполярных транзисторах // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.2. С. 97-101. DOI: https://doi.org/10.18721/ JPM.153.218

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

Introduction

It is known that current distribution in high-power bipolar (BT), including heterojunction bipolar (HBT), loses stability at certain values of collector voltage of the UKL localization under which the so-called "current cord" and "hot spot" (HS) are formed in the structure of the device [1-4]. The line of mode parameters in current-voltage coordinates corresponding to current lacing defines one of the boundaries of the safe operation area (SOA) of BT and HBT, going beyond which, even for a short time, leads either to irreversible destruction of the instrument structure and catastrophic failure of the device, or to degradation of the device [5]. Even in the absence of irreversible damage, strong overheating of the local region of the structure is accompanied by large thermal deformations, an increase in the number of dislocations and microcracks in the semiconductor, and accelerated MBT degradation.

A critical drawback of the known methods [6-8] for determining the voltage of the U localization in BT and HBT is that the devices enter the HS mode thus the purpose of the work was to develop and experimentally test an algorithm and installation for measuring the voltage of the UKL localization without introducing the device into the HS mode.

Materials and Methods

According to the model presented in [9], for the case of defects of an electrophysical nature in the BT structure, the dependence of the variable voltage component UEB on emitter junction from the collector voltage is described by the formula:

b

UEB (UK ) = UEB (0)

1+-

(1 - Uk/Ukl )2

(1)

where ÛEB (0) is the amplitude of the alternating voltage at the emitter junction at a collector voltage ÛK0 close to zero; b — is a dimensionless parameter depending on the magnitude of the defect in the BT structure, and, as a rule, b << 1.

Based on this model, in [9] a non-destructive method and in [10] the installation are proposed for determining the Û at a given emitter current by three counts of the alternating voltage at the emitter at three collector voltages Û, ÛK1, ÛK2 of a transistor included in a circuit with a common base, when the sum of a linearly increasing voltage and a small sinusoidal voltage is applied to the collector: û - mû

Û — K2 m U K1 (2)

U ÊL ~ -, ' (Z)

1 - m

© Литвинов К. А., Радаев О. А., Козликова И. С., Сергеев В. А., Куликов А. А., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

where

= Jaa^zj, a = Ueb {UKi)/UEB (UK0), a2 = Ueb (UK2)/UEB (UK0).

The accuracy of this method strongly depends on the choice of collector voltage values, while there is a possibility of the device entering the HS mode. In order to exclude the devices from entering the HS mode and to increase the accuracy of determining the UKL when setting the transistor mode, the new method proposes to measure the amplitude of the alternating emitter voltage at a low collector voltage; then measure the values of the collector voltage, at which the amplitude becomes equal to (1+k1) and (1+k2), and the voltage UKL is calculated by the formula:

ylk2 / k\UK 2 - UK

4k2Tk1-1

where k1 and k2 are the given coefficients of response.

Figure 1 shows a characteristic type of BT dependence with current localization with specified levels, and Figure 2 shows a block diagram of the device implementing the method [11].

Ukl =,r:.K2 . K, (3)

(/+¿2)^(0) (/+*/){£,( 0) tu

1 /

/

/ ■ / 1 1 1

1 1 1 1

Uk«

Un Ua U„ Uk

Fig. 1. Type of BT dependence with current Fig. 2. Block diagram of the device implementing localization and preset levels the method

The device implementing the method contains a block 1 for connecting a transistor; a control device 2; a current source 3; a linearly increasing voltage generator 4; a low frequency generator 5; a power amplifier adder 6; a separating capacitor 7; an envelope extraction device 8; a resistive divider 9; a sampling and storage device 10; comparators 11 and 12; logger 13 and computer 14.

The device works according to the following algorithm. The tested transistor 1 is switched on according to the circuit with a common base. The device works according to the following algorithm. The tested transistor 1 is switched on according to the circuit with a common base. During the action of the control pulse T with a duration generated by the control unit 2 at the signal "start", the emitter current IE is set by the current generator 3, and the sum of the linearly increasing and sinusoidal voltages is applied to the collector from the output of the power amplifier 6:

U7 (t) = Ut / T + U sin Qt, (4)

Kw KM ' U3M m ' v '

generated by the generator 4 linearly increasing voltage and the generator 5 low frequency. The variable voltage component UEB (t) from the emitter of the transistor through the coupling capacitor 7 is fed to the input of the envelope selection device 8, from the output of which the envelope voltage of the variable voltage component at the emitter is fed to the input of the resistive divider 9 and the sampling and storage device 10. According to the second signal of the control device 2 at the time t0, the sampling and storage device 10 remembers and stores the value of the amplitude of the variable component UEB (0) of the voltage at the emitter junction of the transistor when the collector voltage is close to zero. The voltage from the output of the sampling and storage device 10 is supplied to the first inputs of the comparison devices 11 and 12, the second inputs of which receive signals from the first and second outputs of the resistive divider 9. The resistance values of resistors Rx, R2 h R3 are chosen so that the voltage division

^St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.2 ^

factor at the first output of divider 9 is equal to (1+k1), and at the output of the second one it is (1+k2), where k1 and k2 are the given coefficients of exceeding the initial amplitude UEB (0). At times tl and t, when the voltages at the outputs of the resistive divider will be equal UEB (0) comparison devices 11 and 12 generate short pulses, according to the signals of which the recorder 13 measures the voltages UK1 and U at the output of the generator 4 and transfers them to the calculator 14, which calculates the desired localization voltage according to formula (3).

Results and Discussion

An experimental sample of the device is implemented on the basis of an Arduino debugging board. The algorithm and the experimental device were tested on transistors of the KT903B type, some of the results are presented in the table 1. The measurements were carried out at an emitter current of 0.8 A, a collector voltage of 50 V, and a measurement time of 2.5 s.

Table 1

The results of determining UKL for transistors of the KT903B type at two values of the coefficient k

No. trans. UK2 at k2 = 0.8, V U^ at k1 = 0.5, V UKL' V

265 43 36 50.8

377 37 36 38.1

971 42 39 45.1

281 37 33 41.4

The use of the algorithm described above and the data processing unit made it possible to measure the dependence of the current lacing voltage on the emitter current for microwave transistors of the KT920B and KT925B types, see Fig. 3.

Fig. 3. Dependence UKL transistors type KT920B and KT925B from emitter current

It can be seen from the Fig.3 that at lower emitter currents, the value of the localization voltage differs significantly from sample to sample. At high currents, the localization voltages practically coincide. To increase the reliability of rejection, it is necessary to set small emitter currents, at which the spread of UKL values is greater. These results are consistent with known models of thermal instability in BT and HBT.

Defects that reduce the current lacing voltage also manifest themselves in an increase in the thermal resistance of the HBT. To verify this conclusion, the correlation between the lacing voltage U and the thermal resistance Rtrcbl of the collector-base junction was evaluated on a sample oftransistors of the KT840B type; U was measured on the described installation at a current of 1.5 A, and Rtrcb was measured with a thermal resistance meter at a current of 1.1 A. The correlation coefficient was - 0.45, which confirms, taking into account the influence of other factors, the presence of a rather strong relationship between UKL and RTRCB. By selecting measurement modes, the relationship between the indicated parameters can probably be increased.

Conclusion

Thus, using the described algorithm and installation, it was possible to measure the current lacing voltage localization voltage on several samples of transistors. In addition, it was found that there is some correlation between the voltage of the UKL localization and the thermal resistance of the collector-base junction Rtrcb.

The values of collector voltage of the UKL localization in the transistor structure can serve as a measure of defectiveness; therefore, the developed algorithm and installation will be widely used in the field of non-destructive input and output quality control of products at enterprises engaged in the manufacture of electronic equipment.

REFERENCES

1. Sergeev V. A., St. Petersburg Journal of Electronics, 2 (1997) 40-42.

2. Sinkevich V. F., Electronic industry, 2, (2003) 232.

3. Nenadovic N., et al., IEEE Trans. on Electron Devices, 12 (2004) 2175.

4. Bagnoli P. E., Stefani F., IEEE Trans. on Components and Packaging Technologies, 2 (2009) 493.

5. Liu W., et al., IEEE Trans. on Electron Devices, 2 (1996) 220.

6. Ladbrooke P. et al., Patent US 20080228415, 2008.

7. Scholten A. J. et al., IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 1 (2012).

8. Gusev V. A., Kapranov I. Yu., Vestnik SevSTU. Ser. Informatics, electronics, communications : collection of scientific tr., 93 (106) (2008).

9. Sergeev V. A., Dulov O. A., Kulikov A. A., News of universities. Electronics, 2 (10) (2009).

10. Sergeev V. A., Dulov O. A., Kulikov A. A., Patent Russia, (2015) 2537519.

11. Sergeev V. A. et al., Automation of control processes, 3 (96) (2017).

THE AUTHORS

SERGEEV Viacheslav A.

sva@ulstu.ru

ORCID: 0000-0003-4854-2813

KULIKOV Alexander A.

kulikovaa36@yandex.ru

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

KOZLIKOVA Irina S.

kozlikova95@mail.ru

LITVINOV Kirill A.

litvinovkirand@mail.ru ORCID: 0000-0003-1181-7406

RADAEV Oleg A.

oleg.radaev.91@mail.ru ORCID: 0000-0002-8156-9412

Received 08.08.2022. Approved after reviewing 15.08.2022. Accepted 18.08.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.