Научная статья на тему 'АКТУАЛЬНОСТЬ ПРИМЕНЕНИЯ МЕТОДОВ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И МЕТОДОВ КОНЕЧНЫХ ЭЛЕМЕНТОВ В СТРОИТЕЛЬСТВЕ'

АКТУАЛЬНОСТЬ ПРИМЕНЕНИЯ МЕТОДОВ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И МЕТОДОВ КОНЕЧНЫХ ЭЛЕМЕНТОВ В СТРОИТЕЛЬСТВЕ Текст научной статьи по специальности «Строительство и архитектура»

CC BY
178
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
методы математического моделирования в строительстве / методы конечных элементов в строительстве / способ дискретизации. / methods of mathematical modeling in construction / finite element methods in construction / method of discretization.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — I. Nasirov

В статье рассматривается актуальность применения методов математического моделирования и методов конечных элементов в строительстве на примере решения задач по проектированию и управлению строительным производством. Для выявления актуальности применения методов математического моделирования и методов конечных элементов в строительстве рассмотрены вопросы проектирования, организации и управления процесса строительства. А также рассмотрены элементы такого процесса в взаимосвязи между собой и в взаимном влиянии друг на друга, который усложняет анализ и поиск оптимальных решений. Полученные результаты анализируются с целью выявления повышения эффективности строительного производства в целом.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

RELEVANCE OF THE APPLICATION OF THE METHODS OF MATHEMATICAL MODELING AND FINITE ELEMENT METHODS IN CONSTRUCTION

The article discusses the relevance of the application of mathematical modeling methods and finite element methods in construction by the example of solving problems in the design and management of construction production. To identify the relevance of the use of mathematical modeling methods and finite element methods in construction, the issues of design, organization and management of the construction process are considered. And also the elements of such a process are considered in the relationship between each other and in the mutual influence on each other, which complicates the analysis and search for optimal solutions. The results obtained are analyzed in order to identify an increase in the efficiency of construction production as a whole.

Текст научной работы на тему «АКТУАЛЬНОСТЬ ПРИМЕНЕНИЯ МЕТОДОВ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И МЕТОДОВ КОНЕЧНЫХ ЭЛЕМЕНТОВ В СТРОИТЕЛЬСТВЕ»

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

АКТУАЛЬНОСТЬ ПРИМЕНЕНИЯ МЕТОДОВ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И МЕТОДОВ КОНЕЧНЫХ ЭЛЕМЕНТОВ В

СТРОИТЕЛЬСТВЕ Насиров Исмаил Азизович

Ферганский политехнический институт https://doi.org/10.5281/zenodo.7315746

Аннотация. В статье рассматривается актуальность применения методов математического моделирования и методов конечных элементов в строительстве на примере решения задач по проектированию и управлению строительным производством. Для выявления актуальности применения методов математического моделирования и методов конечных элементов в строительстве рассмотрены вопросы проектирования, организации и управления процесса строительства. А также рассмотрены элементы такого процесса в взаимосвязи между собой и в взаимном влиянии друг на друга, который усложняет анализ и поиск оптимальных решений. Полученные результаты анализируются с целью выявления повышения эффективности строительного производства в целом.

Ключевые слова: методы математического моделирования в строительстве, методы конечных элементов в строительстве, способ дискретизации. RELEVANCE OF THE APPLICATION OF THE METHODS OF MATHEMATICAL MODELING AND FINITE ELEMENT METHODS IN CONSTRUCTION

Abstract. The article discusses the relevance of the application of mathematical modeling methods and finite element methods in construction by the example of solving problems in the design and management of construction production. To identify the relevance of the use of mathematical modeling methods and finite element methods in construction, the issues of design, organization and management of the construction process are considered. And also the elements of such a process are considered in the relationship between each other and in the mutual influence on each other, which complicates the analysis and search for optimal solutions. The results obtained are analyzed in order to identify an increase in the efficiency of construction production as a whole.

Keywords: methods of mathematical modeling in construction, finite element methods in construction, method of discretization.

ВВЕДЕНИЕ

Современное строительство - это очень сложная система, в деятельности которой принимает большое количество участников: заказчик, генподрядные и субподрядные строительно-монтажные и специализированные организации; коммерческие банки и финансовые органы и организации; проектные, а нередко и научно-исследовательские институты; поставщики строительных материалов, конструкций, деталей и полуфабрикатов, технологического оборудования; организации и органы, осуществляющие различные виды контроля и надзора за строительством; подразделения, эксплуатирующие строительную технику и механизмы, транспортные средства и т.д.

МАТЕРИАЛЫ И МЕТОДЫ

Для решения физических и инженерных задач при проектировании несущих конструкций многоэтажных сооружений в строительной отрасли принято использовать

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

численные методы. Одним из самых распространенных и эффективных из них как внашей стране, так и во всем мире является метод конечных элементов (МКЭ). Ведущее положение этого метода объясняется широкой областью и относительной простотой его применения: независимостью расчета от типа конструкции и физических свойств применяемых материалов, упрощенной системой учета взаимодействия расчетных конструкций с окружающей их средой, возможностью автоматизации расчета на любом его этапе.

Метод конечных элементов (МКЭ) в строительстве впервые на практике был использован в начале 50-х годов двадцатого века. Изначально его развитие происходило в двух независимых друг от друга направлениях: инженерном и математическом. На раннем этапе становления формулировки метода отталкивались только от принципов строительной механики, и это существенно ограничивало область его применения. И лишь после формулировки основ МКЭ с возможностью небольших отклонений, стало возможным его использование и в решении других задач. Активному развитию метода конечных элементов способствовал и прогресс в области компьютерной техники, а также появляющаяся возможность его использования в большинстве областей науки и практики.

В развитии метода конечных элементов свои роли сыграли как вариационные основы механики, так и математические методы, которые были основаны на вариационных принципах. Разбитие задачи с помощью вариационного метода Ритца было впервые применено Рихардом Курантом в 1943 году, и только в 50-е годы двадцатого века увидели свет такие же работы других ученых (Поли, Герша и других).

РЕЗУЛЬТАТЫ

Для того, чтобы построить объект, необходимо организовать согласованную работу всех участников строительства. Строительство протекает в непрерывно меняющихся условиях. Элементы такого процесса связаны между собой и взаимно влияют друг на друга, что усложняет анализ и поиск оптимальных решений.

На стадии проектирования строительной или любой другой производственной системы, устанавливаются ее основные технико-экономические параметры, организационно-управленческая структура, ставится задача определения состава и объема ресурсов - основных фондов, оборотных средств, потребности в инженерных, рабочих кадрах и т.д.

Чтобы вся система строительства действовала целесообразно, эффективно использовала ресурсы, т.е. выдавала готовую продукцию - здания, сооружения, инженерные коммуникации или их комплексы в заданные сроки, высокого качества и с наименьшими затратами трудовых, финансовых, материальных и энергетических ресурсов, надо уметь грамотно, с научной точки зрения, осуществлять анализ всех аспектов ее функционирования, находить наилучшие варианты решений, обеспечивающих ее эффективную и надежную конкурентоспособность на рынке строительных услуг.

В ходе поиска и анализа возможных решений по созданию оптимальной структуры предприятия, организации строительного производства и т.д. всегда появляется желание (требуется) отобрать лучший (оптимальный) вариант. Для этой цели приходится использовать математические расчеты, логические схемы (представления) процесса строительства объекта, выраженные в виде цифр, графиков, таблиц и т.д. - другими

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

словами, представлять строительство в виде модели, используя для этого методологию теории моделирования.

В основе любой модели лежат законы сохранения. Они связывают между собой изменение фазовых состояний системы и внешние силы, действующие на нее.

Любое описание системы, объекта (строительного предприятия, процесса возведения здания и т.д.) начинается с представления об их состоянии в данный момент, называемом фазовым.

ОБСУЖДЕНИЕ

Успех исследования, анализа, прогнозирования поведения строительной системы в будущем, т.е. появления желаемых результатов ее функционирования, во многом зависит от того, насколько точно исследователь "угадает" те фазовые переменные, которые определяют поведение системы. Заложив эти переменные в некоторое математическое описание (модель) этой системы для анализа и прогнозирования ее поведения в будущем, можно использовать достаточно обширный и хорошо разработанный арсенал математических методов, электронно-вычислительную технику.

Для обеспечения устойчивости в деятельности строительного производства необходимо дать описание системы на языке математики, то есть разработать ее математическую модель. А описание экономической системы в виде математической модели требует разработки экономико-математической модели.

Многочисленные виды моделей нашли широкое применение для предварительного анализа, планирования и поиска эффективных форм организации, планирования и управления строительством.

Для применения МКЭ в расчетах конструкции следует представить ее в виде, понятном электронному мозгу, то есть компьютеру. И так как компьютер может оперировать только с цифрами, то и конструкция должна быть представлена именно в цифровом варианте. Таким образом, нужно создать математическую модель, которая будет не только полностью соответствовать рассчитываемой конструкции, но и состоять только из цифр. Целью работы будет решение этой математической модели и определение неизвестных.

Суть метода конечных элементов заключается в разбиении всей области, занимаемой конструкцией, на некоторое количество малых подобластей с конечным размером. Эти подобласти носят название конечных элементов, а само разбиение называется дискретизацией.

Форма конечных элементов будет зависеть от типа самой конструкции и характера деформации. Например, конечными элементами в расчете стержневых конструкций (ферм, балок или рам) будут участки стержней, при расчетах двумерных континуальных систем (пластин, плит или оболочек) — прямоугольные или треугольные подобласти, а при расчете трехмерных конструкций (массивов или толстых плит) — подобласти в виде тетраэдров или параллелепипедов. Но в отличие от настоящей конструкции в такой дискретной модели связывание конечных элементов происходит только в отдельных узлах (точках) некоторым известным количеством узловых параметров.

Функционалом энергии всей конструкции при дискретизации будет алгебраическая сумма отдельных функционалов конечных элементов, и для каждой подобласти должен быть задан независимый от других закон распределения требуемых для решения функций.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

С помощью этих законов возможно выражение перемещений (искомых непрерывных величин) в пределах заданного конечного элемента через значения величин в конечных точках.

Число узлов и число их возможных перемещений (степень свободы) для конечного элемента могут варьироваться, но меньше минимального количества, необходимого для рассмотрения состояний конечных элементов под действием напряжения или деформации в данной принятой модели, их быть не должно. Степени свободы конечных элементов определяются числом независимых перемещений во всех их узлах. Степень свободы всей рассчитываемой конструкции и, как следствие, алгебраический порядок уравнений системы будет определяться суммированием числа перемещений всех известных ее узлов. Исходя из того, что основные неизвестные в расчете методом перемещений — искомые узловые перемещения, то понятия степени свободы конечных элементов и конструкции целиком становятся особо важными в методе конечных элементов.

Способ дискретизации рассматриваемой области, количество конечных элементов, число их степеней свободы, а также форма используемых приближенных функций оказывают непосредственное влияние на точность расчета всей конструкции. Таким образом, метод конечных элементов, как наиболее алгебраический, помогает не только при расчете отдельных строительных конструкций, но и в целом при решении строительных задач. ВЫВОДЫ

Применение методов математического моделирования, а также МКЭ в проектировании и организации управления строительства позволяет оптимизировать процессы проектирования, строительства зданий и сооружений, а также учитывать различные факторы оказывающие существенное влияние на строительное производством в целом. В свою очередь это позволит повысить качество и надежность строительной продукции.

REFERENCES

1. Nasirov Ismail Azizovich. On The Accuracy of the Finite Element Method on the Example of Problems about Natural Oscillations. EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE https://emjms.academicjournal.io

2. Nosirov A.A., №sirov I.A. Simulation of Spatial Own of Vibrations of Axisymmetric Structures EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE http s://emjms.academicj ournal .i o

3. Xamdamaliyevich, S. A., & Rahmankulov, S. A. (2021, July). Investigation of heat transfer processes of solar water, air contact collector. In E-Conference Globe (pp. 161-165).

4. Madaliev, M. E. U., Rakhmankulov, S. A., & Tursunaliev, M. M. U. (2021). Comparison of Finite-Difference Schemes for the Burgers Problem. Middle European Scientific Bulletin, 18, 76-83

5. Abdullayev, B. X., & Rahmankulov, S. A. (2021). Modeling Aeration in High Pressure Hydraulic Circulation. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(12), 127-136.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

6. Abdukarimov, B. A., O'tbosarov, S. R., & Tursunaliyev, M. M. (2014). Increasing Performance Efficiency by Investigating the Surface of the Solar Air Heater Collector. NM Safarov and A. Alinazarov. Use of environmentally friendly energy sources.

7. Rashidov, Y. K., & Ramankulov, S. A. (2021). Improving the Efficiency of Flat Solar Collectors in Heat Supply Systems. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(12), 152-159

8. Madraximov, M. M., Nurmuxammad, X., & Abdulkhaev, Z. E. (2021, November). Hydraulic Calculation Of Jet Pump Performance Improvement. In International Conference On Multidisciplinary Research And Innovative Technologies (Vol. 2, pp. 20-24).

9. Akramov, A. A. U., & Nomonov, M. B. U. (2022). Improving the Efficiency Account

Hydraulic of Water Supply Sprinklers. Central Asian Journal of Theoretical and Applied Science, 3(6), 364-370.

10. Умурзакова, М. А., Усмонов, М. А., & Рахимов, М. Н. (2021). АНАЛОГИЯ РЕЙНОЛЬДСА ПРИ ТЕЧЕНИЯХ В ДИФФУЗОРНО-КОНФУЗОРНЫХ КАНАЛАХ. Экономика и социум, (3-2), 479-486.

11. Сатторов, А. Х., Акрамов, А. А. У., & Абдуразаков, А. М. (2020). Повышение эффективности калорифера, используемого в системе вентиляции. Достижения науки и образования, (5 (59)), 9-12.

12. Рашидов, Ю. К., Орзиматов, Ж. Т., Эсонов, О. О. У., & Зайнабидинова, М. И. К. (2022). СОЛНЕЧНЫЙ ВОЗДУХОНАГРЕВАТЕЛЬ С ВОЗДУХОПРОНИЦАЕМЫМ МАТРИЧНЫМ АБСОРБЕРОМ. Scientific progress, 3(4), 1237-1244.

13. Усаров, М. К., and Г. И. Маматисаев. "Вынужденные колебания коробчатой конструкции панельных зданий при динамических воздействиях." Проблемы механики 2 (2010): 23-25.

14. Usmonova, N. A., & Khudaykulov, S. I. (2021, April). SPATIAL CAVERNS IN FLOWS WITH THEIR PERTURBATIONS IMPACT ON THE SAFETY OF THE KARKIDON RESERVOIR. In E-Conference Globe (pp. 126-130).

15. Усаров, Махаматали Корабоевич, and Гиёсиддин Илхомидинович Маматисаев. "КОЛЕБАНИЯ КОРОБЧАТОЙ КОНСТРУКЦИИ КРУПНОПАНЕЛЬНЫХ ЗДАНИЙ ПРИ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ." Научный форум: технические и физико-математические науки. 2019.

16. Madaliev, M. E. U., Maksudov, R. I., Mullaev, I. I., Abdullaev, B. K., & Haidarov, A. R. (2021). Investigation of the Influence of the Computational Grid for Turbulent Flow. Middle European Scientific Bulletin, 18, 111-118.

17. Hamdamalievich S. A. Determination of the deposition of particles contained in the water passing through the sump well //Central asian journal of theoretical & applied sciences. -2022. - Т. 3. - №. 6. - С. 244-251.

18. Hamdamalievich S. A., Nurmuhammad H. Analysis of Heat Transfer of Solar Water Collectors //Middle European Scientific Bulletin. - 2021. - Т. 18. - С. 60-65.

19. ugli Mo'minov, O. A., Maqsudov, R. I., & qizi Abdukhalilova, S. B. (2021). Analysis of Convective Finns to Increase the Efficiency of Radiators used in Heating Systems. Middle European Scientific Bulletin, 18, 84-89.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

20. Maqsudov, R. I., & qizi Abdukhalilova, S. B. (2021). Improving Support for the Process of the Thermal Convection Process by Installing. Middle European Scientific Bulletin, 18, 5659.

21. Madaliev, E. U., & qizi Abdukhalilova, S. B. (2022). Repair of Water Networks. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 3(5), 389-394.

22. Shavkatjon o'g'li, T. B. (2022). Proving The Inequalities Using a Definite Integral and Series. Texas Journal of Engineering and Technology, 13, 64-68.

23. Shavkatjon o'g'li, T. B. (2022). SOME INTEGRAL EQUATIONS FOR A MULTIVARIABLE FUNCTION. Web of Scientist: International Scientific Research Journal, 3(4), 160-163.

24. Malikov, Z. M., & Madaliev, E. U. (2019). Mathematical simulation of the speeds of ideally newtonovsky, incompressible, viscous liquid on a curvilinearly smoothed pipe site. Scientific-technical journal, 22(3), 64-73.

25. Мадхадимов, М. М., Абдулхаев, З. Э., & Сатторов, А. Х. (2018). Регулирования работы центробежных насосов с изменением частота вращения. Актуальные научные исследования в современном мире, (12-1), 83-88.

26. Mo'minov, O. A. O'tbosarov Sh. R."Theoretical analysis of the ventilation emitters used in low-temperature heat supply systems, and heat production of these emitters" Eurasian journal of academic research, 495-497.

27. Рашидов, Ю. К., Орзиматов, Ж. Т., & Исмоилов, М. М. (2019). Воздушные солнечные коллекторы: перспективы применения в условиях Узбекистана. ББК 20.1 я43 Э 40.

28. Abobakirovich, A. B., Sodikovich, A. Y., & Ogli, M. I. I. (2019). Optimization of operating parameters of flat solar air heaters. Вестник науки и образования, (19-2 (73)), 6-9.

29. Abbasov, Y. S., & ugli Usmonov, M. A. (2022). Design of an Effective Heating System for Residential and Public Buildings. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 3(5), 341-346.

30. Usmonova, N. A. (2021). Structural Characteristics of the Cavern at a Fine Bubbled Stage of Cavitation. Middle European Scientific Bulletin, 18, 95-101.

i Надоели баннеры? Вы всегда можете отключить рекламу.