Научная статья на тему 'Agronomic evaluation of Fusarium head blight (FHB) resistance in Italian durum wheat cultivars and screening of advanced lines mas selected for FHB resistance'

Agronomic evaluation of Fusarium head blight (FHB) resistance in Italian durum wheat cultivars and screening of advanced lines mas selected for FHB resistance Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
186
28
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
WHEAT / SCAB / FUSARIUM HEAD BLIGHT (FHB) / QTL / DISEASE RESISTANCE / FUSARIUM GRAMINEARUM / MONOSPOROUS CULTURES / INCIDENCE / SEVERITY / FHB INDEX / ПШЕНИЦЯ / КОРЕНЕВА ГНИЛЬ / ФУЗАРіОЗ КОЛОСУ (FHB) / СТіЙКіСТЬ ДО ХВОРОБ / ОДНОСПОРОВі КУЛЬТУРИ / КіЛЬКіСТЬ ВИПАДКіВ УРАЖЕННЯ / СТУПіНЬ УРАЖЕННЯ / ПОКАЗНИК FHB / ПШЕНИЦА / КОРНЕВАЯ ГНИЛЬ / ФУЗАРИОЗ КОЛОСА (FHB) / УСТОЙЧИВОСТЬ К БОЛЕЗНЯМ / ОДНОСПОРОВЫЕ КУЛЬТУРЫ / КОЛИЧЕСТВО СЛУЧАЕВ ПОРАЖЕНИЯ / СТЕПЕНЬ ПОРАЖЕНИЯ / ПОКАЗАТЕЛЬ FHB

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Bentivenga G., Camerini M., Belocchi A., Fornara M., Melloni S.

To evaluate the resistance to FHB, in 2009 41 varieties of durum and bread wheat, mainly from Italy, were tested at the CIMMYT (International Maize and Wheat Improvement Center). In addition, to assess the effect of the Qfhs.ndsu-3BS QTL (one of the major QTL for FHB resistance, first identified in Chinese bread wheat cultivar ‘Sumai 3’, on the chromosome 3B), 125 advanced lines of durum wheat BC4F6 derived from crosses with initial bread wheat (68 with the ‘Sumai 3’ QTL and 57 without) were screened in the same artificial inoculation conditions. For both groups, plots were inoculated at flowering with a suspension of monosporic cultures of F. graminearum, keeping the humidity close to 100%, to favour disease development, by means of a misting system. Thirty days after inoculation, counts of spikelets infected by F. graminearum was carried out in 10 ears for each plot; the damage was expressed as the FHB index (incidence ´ severity/100, where severity = infected spikelets/total spikelets; incidence ´ 100 and infected ears/ears total ´ 100). In both cases, late flowering showed to be a key factor, able to limit the seriousness of the disease. Preliminary data concerning the effect of the Qfhs.ndsu-3BS QTL, didn’t highlight differences between the two groups of advanced lines.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Agronomic evaluation of Fusarium head blight (FHB) resistance in Italian durum wheat cultivars and screening of advanced lines mas selected for FHB resistance»

CEAEKUm Ta HaeiHHHUTBQ

http://dx.doi.org/10.21498/2518-1017.3(32).2016.75978

Agronomic evaluation of Fusarium Head Blight (FHB) resistance in Italian durum wheat cultivars and screening of advanced lines MAS selected for FHB resistance

G. Bentivenga1*, M. Camerini1,4, A. Belocchi1, M. Fornara1, S. Melloni1, A. Spina3, F. Quaranta1, K. Ammar2

1CRA-QCE Unitá di Ricerca per la Valorizzazione Qualitative! dei Cereali Via Cassia, 176 Roma - Italy, *e-mail: gaetano.bentivenga@virgilio.it

2(CIMMYT) International Maize and Wheat Improvement Center Texcoco, Km. 45, Carretera Mexico - Veracruz El Batan, Texcoco - México

3CRA-ACM Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia, 190 Acireale (CT) - Italy 4Universitá Degli Studi Del Molise, Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Via f. De Sanctis snc., 86100 Campobasso - Italy

To evaluate the resistance to FHB, in 2009 41 varieties of durum and bread wheat, mainly from Italy, were tested at the CIMMYT (International Maize and Wheat Improvement Center). In addition, to assess the effect of the Qfhs.ndsu-3BS QTL (one of the major QTL for FHB resistance, first identified in Chinese bread wheat cultivar 'Sumai 3', on the chromosome 3B), 125 advanced lines of durum wheat BC4F6 derived from crosses with initial bread wheat (68 with the 'Sumai 3' QTL and 57 without) were screened in the same artificial inoculation conditions. For both groups, plots were inoculated at flowering with a suspension of monosporic cultures of F. graminearum, keeping the humidity close to 100%, to favour disease development, by means of a misting system. Thirty days after inoculation, counts of spikelets infected by F. graminearum was carried out in 10 ears for each plot; the damage was expressed as the FHB index (incidence x severity/100, where severity = infected spikelets/total spikelets; incidence x 100 and infected ears/ears total x 100). In both cases, late flowering showed to be a key factor, able to limit the seriousness of the disease. Preliminary data concerning the effect of the Qfhs.ndsu-3BS QTL, didn't highlight differences between the two groups of advanced lines.

Keywords: wheat, scab, Fusarium Head Blight (FHB), QTL, disease resistance, Fusarium graminearum, monosporous cultures, incidence, severity, FHB index.

Introduction

Fusarium Head Blight (FHB), or scab, is one of the most devastating diseases affecting cereals, including durum wheat (Triti-cum durum Desf.). It is caused by several fungal species of the genus Fusarium, whose attacks result in quite similar symptoms (Snijders, 1994; Parry et al, 1995; Miedam-er, 1997; Leonard & Bushnell, 2003). Such disease produce severe losses of grain yield, as kernels are the most interested part in the infection process. In addition, reduction of grain quality is also observed, due to the production and the accumulation in kernels of mycotoxins, mainly Deoxynivalenol (DON). Wheat can be attacked by several Fusarium species like, for instance, F. culmorum,

F. graminearum (teleomorph: G. zeae), F. poe, F. crookwellense, F. sporotrichioides and F. sambucinum (Desjardin & Hohn, 1997). However, the most diffused species resulted to be F. graminearum (Dubin et al., 1996) and F. culmorum (Schmolke, 2008). Molecular analyses revealed how the organism previously referred to as F. graminearum strain 1, represents a distinct species, named F. pseudog-raminearum sp. Nov. (Aoky & O'Donnel, 1999), which is not a causal agent of FHB. The optimum temperature for the growth of F. graminearum in the field is 25 °C, with prolonged moisture conditions (air moisture content near 100%). Other species exhibit different optimum growing conditions. Inoculum can be diffused by animal vectors, raindrops (mainly for conidia) and wind

(mainly important for asco-spores, Champeil et al., 2004). Wheat is highly susceptible in the flowering phase (Pugh et al., 1933). Two substances, Betaine and Choline, are commonly detected in anthers and seem able to stimulate F. graminearum growth (Strange & Smith, 1978). FHB can be countered using different strategies like, for instance, application to crops of Ergosterol Biosynthesis Inhibitors (EBI) fungicides, rotation with non-host crops and adequate tillage practices (burial of crop debris). A cheap and cost-effective method to combat the disease is the selection of resistant and/or low-susceptibility genotypes through conventional and innovative plant breeding strategies. Breeding programs are hindered by the fact that resistance towards FHB is under polygenic inheritance; furthermore, climatic conditions have a great influence on the severity of disease, which results in a large genotype X environment interaction (Parry et al., 1995, Miedaner et al., 2001). Sources of resistance were identified in bread wheat (Triticum aes-tivum) genotypes, like the Chinese cultivar 'Sumai 3', the Brazilian genotype 'Frontana' and the Eastern Europe line 'Prag 8' (Mente-wab et al., 2000). Other sources of resistance were found in species of the Triticeae tribe, like Elymus giganteus L. (syn. Leymu race-mosus Lam., 2n = 4x = 28 JJNN) (Mujeeb-Kazi et al., 1983, Wang et al, 1986, 1991), Roegneria kamoji C.Koch (syn. Agropyron tsukushiense Honda, 2n = 6x = 42StsStsHtsYts) and Rciliaris (Trin) Nevski (syn. A. ciliare (Trin) Franchet, 2n = 4x = 28, ScScYcYc ,Weng & Liu, 1989, 1991). The last 2 species originated in the Southern China, a region characterized by a wet and warm climate (Cai et al., 2005). Hybrids were also created, between durum wheat and Thinopyrum juncei-forme, to introduce resistance genes from the latter (Prem & Peterson, 2001). To date, very few sources of resistance were identified in durum wheat (Cai et al., 2005). Up to six types of resistance have been described (Schroeder & Christensen, 1963; Langevin et al, 2004):

• Resistance to initial infection (Type I);

• Resistance to the spread of the infection within a spike (Type II);

• Ability of the host to degrade (Type III) and tolerate (Type IV) deoxynivalenol;

• Resistance to kernel infection (Type V);

• Tolerance to FHB (Type VI).

Identification of molecular markers associated to QTLs for FHB resistance allows Marked Assisted Selection (MAS), which

could be a useful tool for breeders. So far, several studies concerning QTL maps were performed, mainly using sources of resistance collected in Asia, like the cultivars 'Sumai 3', 'Wangshuibai' e 'Wuhan-1' (Bai et al, 1999; Waldron et al, 1999; Buerst-mayr et al, 2002, 2003; Li et al, 2004; Mardi et al, 2005; Somer et al, 2005). One of the main QTL is Qfhs.ndsu-3BS, located on the short arm of the chromosome 3B (Bai et al., 1999; Waldron et al., 1999; Buerstmayr et al., 2002, 2003; Liu & Anderson, 2003; Lin et al., 2004; Mardi et al., 2005; Somer et al., 2005). Aim of this work was to evaluate the resistance towards FHB of a huge group of Italian commercial genotypes, comparing in the same time with that of some resistant and susceptible bread wheat varieties ('Su-mai 3' and 'Gamenya'). In the same time, a field trial was carried out using 125 advanced lines (F6), part of which containing the Qfhs.ndsu-3BS QTL, to assess the effect of the above mentioned QTL on the field resistance in plants inoculated with F. graminea-rum.

Materials and methods

Genotypes

A group of 41 Italian durum wheat (Triti-cum durum Desf.) cultivars and bread wheat (Triticum aestivum) were tested in 2009 at the CIMMYT (International Maize and Wheat Improvement Center) at El Batan research station, Mexico. Another group of 125 durum wheat advanced lines (F6), derived from an initial cross between durum wheat and bread wheat materials derived from 'Sumai 3'. The initial population (sterile) was backcrossed 4 times (BC4); following, F1 plants derived from BC4 were selected using the molecular marker in order to obtain family plants. F2 plants were selected according with the same procedure; in addition, plants were artificially inoculated in field with F. gramineaurum. Even these activities were carried out at El Batan research station. F3 plants were selected without molecular markers and without artificial inoculation at the Obregon CIMMYT research station, Mexico. F4 plants were selected without the molecular marker and with natural inoculation at the CIMMYT Toluca research station, Mexico. Following F5 generation, 68 lines were selected containing the molecular marker, and 57 lines not having the marker.

Селекция та наа'нництво

Field experiments

Each genotype was sown in June 2009 at the El Batan station on 1 m double rowed plots. For the Italian cultivars, the experimental design was a Randomized Complete Block Design with 2 replication. For the advanced lines, a screening scheme without replication was carried out. Sowing was performed by means of a sowing machine, using 5 g of seed for each plot. Maize was the previous crop for both tested groups. Plots were irrigated soon after the sowing, to favour a fast and homogeneous germination. Nitrogen (150 kg ha-1) and Phosphorous (40 kg ha-1) were applied in two solutions, soon after the sowing and 40 days after the sowing. The entire experimental field was equipped with a fine misting system, in order to maintain high air moisture conditions, which are requested for Fusarium growth and development after the inoculation. Misting was ensured by DAN modular microsprinklers, arranged in a 3x4 m scheme. System is managed by a programmable timer, and it is able to ensure high moisture conditions 24 hrs a day.

Inoculum preparation

Inoculum

Choice of inoculum

Inoculum was prepared from monosporic cultures of F. graminearum strains, previously tested in greenhouse experiments on durum wheat plants.

Syringe inoculation was performed, in order to assess type II resistance. The most aggressive strains were successively grown on Rice Medium for the evaluation of their ability to produce DON. For the field infections, the strain was used with both the greater aggressiveness and the greater ability to produce DON.

Inoculum preparation

Five to six fragments of agarized substrate previously inoculated with monosporic cultures of F. graminearum were transferred in glass Erlenmayer flasks containing Lima beans (Phaseolus lunatus L.) liquid medium. Such substrate was prepared from 20 g l-1 of previously washed and dried Lima beans, covered with water and placed to boil until the colour

solution turned to red. Liquid was filtered, volume was adjusted to 1 l and autoclaved at 120 °C for 20 min. Inoculated Erlenmeyer flasks were placed in a horizontal stirrer at 200 rpm for 7 dd. at room temperature (22-25 °C). After 7 dd., the cultures were filtered and poured in a 250 ml flask and stored at 4 °C to allow the sedimentation. After the sedimentation has completed, the conidia at the bottom of the flask were collected and centrifuged for 10 min at 3000 rpm. Supernatant was discarded, sterilised distilled water was added to resuspend the conidia; 0.5 ml of the suspension was collected and poured in 100 ml of sterilised distilled water. Finally, micropipette is used to transfer an aliquot of the diluted suspension on a Petri dish containing Lima beans agarized medium. Suspension was thoroughly distributed upon the surface; inoculated dishes were incubated for 7 dd. with 12 hrs of daylight and 12 hrs of darkness.

Production of the inoculum for field infections

The content of 40 agarized dishes were poured in 2 l of sterilised distilled water (agarized substrate was discarded). This sus-

pension, containing mainly conidia, was diluted with sterilised water up to a 50000 conidia ml-1 density. Conidial density was assessed by means of a Neubauer-counting chamber.

Field infections

In every plot, infection was performed when at least 50% of the plants were at full flowering. For each genotype, ten plants were chosen for the evaluation. Each plot were identified by a label, whose colour corresponded to a specific flowering date. Inoculation was performed by means of a CO2 sprayer (3 seconds per plot) with the 50000 conidia ml-1 solution.

Disease evaluation

Visual evaluation of the symptoms was carried out for each plot on every selected spike, 30 dd. after the inoculation. Damage caused by the disease was expressed as FHB Index, which was calculated as follows:

FHB Index = Severity x Incidence/100 Where: Severity = (Diseased spikeLets/totaL spikeLets) x 100 Incidence = (Diseased spikes/totaL spikes) x 100

Field infections and misting system

Ceflenu,ifl ma HaciHHLiu,mBO

Diseased spikelets

(Photo Dr. Bentivenga)

Macroconidia of F. graminearum (Photo Dr. Bentivenga)

Morphophysiological evaluation

Flowering dates, physiological ripening (both expressed as days after August, the 1st) and plant heights (cm) were determined for each plots following field surveys. After harvesting, Thousand Kernels Weight (TKW, g.), number of seeds spike-1 and number of damaged seeds were assessed.

Statistical analysis

For the Italian genotypes data were evaluated using analysis of variance (ANOVA) and correlation by means of MSTAT 2.1 software. Means were separated according with the Student-Neuman-Keul's (SNK) Multiple range Test for the varieties group. For the second group of advanced line (F6), data were evaluated using analyses of correlation by Excel.

Results

Italian genotypes

Analysis of variance (tab ANOVA) showed a strong influence of genotype on the most of the observed variables. Values of FHB Index (Tab. 1) revealed a large variability. The lower value was 0.05 for bread wheat cultivar 'Sumai 3'; on the contrary, the highest one was 66.05 for the highly susceptible genotype 'Gamenya'. Regarding the group of Italian durum wheat cultivars, only 3 ones ('Dup-ri', 'Tiziana' and 'Dylan') revealed to be enough FHB resistant, seen as their FHB Index were respectively, 1.85, 2.45, 3.85. A significant (r = 0.6166, P = 0,001) positive correlation emerged between FHB Index and % of damaged seeds trasf. (Tab. 2); indeed, low FHB Index values were associated with a reduced number of damaged seeds. In particular, the 3 above mentioned durum wheat cultivars were characterized by a % of damaged seeds not exceeding 4%. Flowering dates (expressed as dd after 1st August) ranged from 11 to 31 (average value 19.2). 'Overall', 'Dupri', 'Tiziana' and 'Dylan' in the Mexican growing environment showed flowering dates of, respectively, 26, 22 and 22 days. Thus, compared to the rest of the genotypes, they resulted medium-late maturing cultivars. Significant correlations emerged between other observed traits; in particular, FHB Index was negatively correlated with flowering date, accordingly with the findings reported in other works. Moreover, another negative correlation emerged between FHB Index and plant height. As expected, a significant negative correlation was also found between FHB Index and Thousand Kernel Weight.

Advanced lines

A group of 125 advanced lines were tested for their susceptibility towards FHB; 68 lines showed to contain the molecular marker for the Qfhs.ndsu-3BS QTL, whereas the remai-

i

Table 1

Analysis of variance (ANOVA) of the 41 Italian varieties

r

<

7}

i

H' o«

SP

c

a

■<

i a

JC

o

H

ra

i

M

O

Variety

ARCANGELO

BRAVO

CAMPODORO

CRESO

CRISPIERO

DAUNIA

DUILIO

DUPRI

DURANGO

DYLAN

FALCIN

FORTONE

GABBIANO

GAMENYA

GONGO/CBRD

GRECALE

HEILO

IRIDE

ITALO

LEVANTE

MERIDIANO

NERONE

NIBBIO

OCORONI F86

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

PELEO

PERSEO

PICENO

PLINIO

POGGIO

RAMSETE

ROMANO

SAADI

SARAGOLLA

SI METO

SUMAI#3

SUMMA

TIZIANA

TRESOR

ULISSE

VETTORE

VIRGILIO: DR

media

min

max

Flowering day from 1/8

14 31

25 17 21 11 17

26 31 22 11 19

24 17 26 14

13 19 17 21 17

25 17 11 16

14 21 17 16 11 28 17

24 29

26 11 22 19 17 16

25

19,22 11,00 31,00

fh a

ad eh

eg h

eh ad a bf h dh ae eh ad fh gh dh eh

eg

eh ad eh h fh fh eg

eh fh h

ac eh ae ab ad h df dh eh fh ad

Physiological maturity days from 1/8

71,5 69,5 72,5 62 69,5 68,5 65 74 74 65 60,5 65 69,5 56 72,5 65,5 65 65 56 74 68 74 56 59 60,5 60,5 63,5 69,5 65 56 74 69,5 74 74 74 60,5 65 56 65 56 69,5

66,10 56,00 74,00

Plant height cm

54,5 73,5 73 55 69 60 68

65 80 62,5 70,5 67,5 72,5 82,5 91,5 66,5 62,5 62,5 52,5 65,5 70,5

80

64 62 63 63,5

66 61,5

61 58,5 69 63,5 75,5 62,5 105

65 64,5 47,5 65,5 61,5 68

67,12 47,50 105,00

g

ce ce fi ch ei ch dh cd ei

eg

ch cf c b dh ei ei hi dh cg

cd dh ei di di dh ei ei ei ch di ce ei a dh dh i

dh ei ch

Weight 1000 seeds

28,35 30,45

33.1 33,85 38,3

26 34,55 32,65 31,05

36 37,35 27,15 31,5 16,45 37,25 26,75

28.05 32,55 25,25 32,65 37,55 27,65 25,9 27,95 33,35 35,45 33,65

30.6 37,25 34,9 33,6 33,15 35,45 29,05 33,05 28,95 38,35 27,05 28,45 25,85

27.2

31,31 16,45 38,35

ab ab ab a a

ab a a

ab a a

ab a b a

ab b a

ab a a

ab ab ab a a a

ab a a a a a

ab a

ab a

ab ab ab ab

Severity

40,1 19,25 14,5 36,1 22,05 41,55 34,55 3,35 26,55 8 18,1 30,25 19,55 66,05 0,8 22,9

22.3

33.4

43.05 20,1 42,8 15,55 43,45 27,25 30,4

31.4 21,95 53,25 26,1 34,55 12,3

45.5

15.8

21.9 0,25 53,1 5,45

26.6 44,65 41,35 17,9

27,66 0,25 66,05

Severity tras ang

39.3 25,9 22,35 36,95 27,9 40,1 35,95 9,35 31,05 15,55

24.7 33,1 26,25 54,5 3,6

28,55 27,9 34,5 40,95 26,25

40.8

23.1

41.2

31.4 33,4

33.9

27.4 46,9 30,15

36

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20.5 42,45 23,05 27,8 2,05 46,8 13,5 29,8 41,95 39,95

25

30,29 2,05 54,50

ae

eg dh be

eg

ad be hi bg fi eg bf eg

a i

bg eg

be ad

eg

ad ch ad

bg bf bf eg

ab

bg

be eh ac ch

eg i

ab

gi bg

ad ad cg_

FHB Index

37,95

15.8 13,05

36.1 21,15 41,55 33,05

I,85

22.5 3,85

17 29,15

18.6 66,05 0,25

21.7 21,55

33.4

43.05

16.9

42.8

II,8 43,45 27,25 30,4

31.4 19,45 53,25 24,65 32,75

11.2

45.5 14,25

21.9 0,05 53,1 2,45 26,1 44,65 41,35 15,3

26,53 0,05 66,05

FHB Index tras ang

38,05 23,15 21,15 36,95 27,2

40.1 35 6,2

28,35 10,55 23,7 32,35 25,5 54,5 1,95

27.7 27,25

34.5 40,95

23.6

40.8 19,95

41.2 31,4 33,4

33.9 25

46,9 28,9 34,85

19.4 42,45

21.5 27,8 0,65 46,8

9

29.3 41,95 39,95 22,95

ae

eg dh be cf ad be hi bf fi eg

be

eg

a i bf cf be ad

eg

ad eh ad be be be

eg

ab bf be eh ac dh bf i

ab

gi

be ac ad

_eg_

Seeds spikes

25,25 20,2

25.8

23.1 19,45

23.6

30.7 31,75

25.05 35,55 43,65

25.9 18,95 19,85 54,35 30,9

38.4

36.6

32.6 21,75

29.2 26,55 27,35 39,95 34,85

32.2

21.05

25.3 30,95

30.7 25,45 25,7 25,25 15,75

44

16.4 40,4 22,4 24,45 31,25 18,55

28,56 15,75 54,35

be de be be de be be be be be ac be be be a

be bd be be de be be be ad be be de be be be be be be e

ab e

ad ce be be de

%

damaged seeds

5,95 8,2 7,75 5,65 7,55 12,35 10,9 4,45 8,85

3.4 10,25 10,1 9,9

14.4

I,45 12,7 0,75 6,15 9,55

5.05 6,2 8,2 6,85

5

II,55

10.5 9,35 13,65 12,35 7,75 11,05 13,2 5,9 12 0,45 28,4 4,3 8,55

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6.5

9.6 9,1

8,68 0,45 28,40

%

damaged tras ang

14.1 16,45

16.2

13.7 15,9 20,5 18,9 11,95 17,3 10,5 18,5

18.5 17,1 22,3 4,9

20,85 5

14.3 17,95

12.8

14.1 16,65 13,45

12.6 19,7 18,15 17,75 20,6

20.4 14,95 19,3 20,85

14 20,25 3,9

32.2 11,95 16,7 14,7 17,6 17,55

a. 3' to

a. ■a

16,22 3,90 32,20

Ce^eHU,™ ma HacÍHHUu,mBO

o u

% damaged tras ang Colonna 11 1,000

% damaged seeds Colonna 10 1,000 0,963

Seeds spikes Colonna 9 O osf o OJO o VO VH CD <3 1 1

í -

FHB Index tras ang Colonna 8 o m r-* O ^ MrH O Ln VO vH CD CD <3 i

FHB Index Colonna 7 oMN^rn o o cy> 00 LTI LO VH CD <3 CD <3 1

Severity tras ang Colonna 6 o ^ I— O lO m o I"» ® 00 00 M o cy> C^ Nt LO VO VH CD CD CD CD CD i

* *

Severity Colonna 5 OONOMOI^ OMOIMOIDS o <y* ^ <y* ^t Ln Ln VH CD CD CD CD CD CD i

*

Weight 1000 seeds Colonna 4 O^Ol^dLnCOCO o^NfLnxfmpJOj VH CD CD CD CD CD CD CD i i i i ii

* * * t * * *

Plant height, cm Colonna 3 --------------------- OOCOCOOOr^rsrHrH ovHmxfmxfojojm VH CD CD CD CD CD CD CD CD 1 1 1 1 II

Physiological maturity, days from 1/8 Colonna 2 OCOrH\OrHLnii)CMCMI— o^oHíMCMPOcMO^m vH CD CD CD CD CD CD CD CD CD 1 1 1 1 1 1 1

su * *

Flowering days from 1/8 Colonna 1 OSfLnCMCMOr-^NtC^r-^C^ Of-^OLnOOOOC^C^LnOONt rH O O O o O <D CD CD CD CD ■ ■■■■■■

gg da 1/8 gg da 1/8 height-cm 1000 seed Severity tras ang FHB Index tras ang spikes seeds tras ang

flowering p. maturity plant weight Severity FHB Index seeds % damaged % damaged

LTl

o

o o

o o

ning 57 ones were without such marker. Tab. 3 summarizes the main characteristics of the QTL containing lines; FHB Index values ranged from 0.05 to 61.99, with a mean value of 25.37. Plant heights varied in a range of 50-98 cm, the average value was 71 cm. As regard with flowering dates (expressed as days after 1st August), a minimum value of 10 dd. recorded, while the highest value was 30 dd. (mean value 17.4 dd.). A significant negative correlation was recorded between flowering date and FHB Index (r = -0.65, P = 0,01) (Tab. 4), whereas no significant correlation was found between FHB Index and plant height. The 57 lines without the molecular marker (Tab. 5) showed a FHB Index ranging from 0.00 to 90.45 (mean value 22.15). Mean plant height was 72 cm, with a maximum of 87 cm and a minimum of 61 cm. Average flowering date was 20.6 dd., with the dates ranging from 10 dd. to 30 dd. Even in this case, FHB Index was significantly correlated with flowering date (r = -0.78, P = 0,01); contrary to QTL containing lines, correlation between FHB Index and plant height was positive (r = 0.412, P = 0,01) (Tab. 6).

Discussion

Regarding the Italian genotypes, only 3 ones showed low FHB Index values. Such cultivars revealed to be, in the Mexican environment, medium-late maturing. Overall, FHB Index values were negatively correlated with flowering date. Even both groups of advanced lines showed a similar correlation, but lines without QTL molecular marker evidenced a lower mean FHB Index, together with a tighter correlation between FHB Index and flowering date. As well as for Italian genotypes, also for the advanced lines late flowering date showed to be a factor able to reduce FHB symptoms. Thus, effect of biological cycle was predominant in determining the disease development. Indeed, despite the absence of QTL, the 57 lines showed to be comparable, in terms of FHB Index, with the 68 lines selected for the presence of QTL molecular marker. On the basis of these preliminary data, it seems that disease seriousness is more influenced by the biological cycle, rather than the presence or absence of the Qfhs.ndsu-3BS QTL. This could be due to the asynchrony between plant and pathogen biological cycles. The fungus, to infect plants, is obstacled by physiological, morphological and, most of all, environmental barriers. Consequently, many factors play a role in determining disease development and, hence, plant resistance towards the pathogen. It is clear,

Table 3

Characteristic lines with QTL

Flowering days from 1/8 Line number FHB severity, % FHB incidence, % FHB index, % Damaged seeds, % Plant height, cm Physiological maturity

23 515 6,74 90,00 6,06 5,8 64 13-Oct

30 516 10,22 90,00 9,19 3,9 70 13-Oct

30 517 8,99 80,00 7,20 1,9 74 13-Oct

30 518 18,39 100,00 18,39 5,3 65 13-Oct

23 536 7,14 80,00 5,71 5,1 76 13-Oct

25 537 6,21 80,00 4,97 23,0 71 13-Oct

25 538 8,84 50,00 4,42 13,9 72 4-Oct

23 539 11,24 70,00 7,87 9,5 75 4-Oct

23 540 11,45 80,00 9,16 10,1 71 13-Oct

25 541 10,73 90,00 9,66 9,6 65 13-Oct

30 542 24,55 100,00 24,55 24,9 65 13-Oct

23 545 22,98 90,00 20,68 10,2 67 13-Oct

25 546 10,86 70,00 7,60 6,5 75 13-Oct

26 547 0,54 10,00 0,05 3,8 72 13-Oct

25 548 15,38 80,00 12,31 18,4 70 13-Oct

25 549 17,65 100,00 17,65 3,9 65 13-Oct

25 550 16,85 80,00 13,48 9,0 71 13-Oct

13 551 33,52 100,00 33,52 18,5 80 10-Oct

13 552 25,00 100,00 25,00 16,2 80 10-Oct

13 553 27,55 100,00 27,55 9,4 70 10-Oct

13 554 22,40 100,00 22,40 20,8 65 10-Oct

13 555 17,82 100,00 17,82 6,0 70 10-Oct

19 559 16,77 80,00 13,41 17,9 80 13-Oct

13 560 36,53 100,00 36,53 6,7 75 13-Oct

13 561 34,97 100,00 34,97 23,5 72 4-Oct

13 562 33,52 100,00 33,52 11,7 75 4-Oct

13 563 28,90 100,00 28,90 12,6 71 4-Oct

13 564 16,67 88,89 14,81 12,0 75 4-Oct

13 565 26,14 100,00 26,14 11,7 70 4-Oct

16 566 30,36 100,00 30,36 8,4 76 4-Oct

13 575 34,20 100,00 34,20 16,4 65 4-Oct

13 576 36,81 100,00 36,81 19,1 53 13-Oct

13 577 18,92 100,00 18,92 13,1 50 4-Oct

13 578 27,17 90,00 24,46 13,8 53 13-Oct

10 579 40,13 100,00 40,13 11,3 50 10-Oct

13 580 25,85 100,00 25,85 28,7 53 4-Oct

13 581 23,27 100,00 23,27 24,3 50 10-Oct

30 582 7,69 60,00 4,62 21,5 52 10-Oct

13 583 33,52 100,00 33,52 43,9 57 13-Oct

13 584 34,95 100,00 34,95 28,6 56 13-Oct

10 585 22,94 100,00 22,94 5,7 55 13-Oct

13 586 35,40 100,00 35,40 8,0 67 10-Oct

13 587 37,70 100,00 37,70 38,2 70 10-Oct

13 588 44,59 100,00 44,59 10,5 66 10-Oct

13 589 28,57 100,00 28,57 17,2 66 10-Oct

16 590 35,50 100,00 35,50 5,5 71 13-Oct

16 591 23,75 100,00 23,75 11,1 61 10-Oct

16 592 31,21 90,00 28,09 2,2 70 10-Oct

16 593 32,69 100,00 32,69 9,9 70 13-Oct

16 594 41,08 100,00 41,08 9,3 72 13-Oct

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

16 595 44,94 100,00 44,94 5,2 75 13-Oct

16 596 40,76 100,00 40,76 5,3 77 13-Oct

16 597 29,63 100,00 29,63 20,9 75 10-Oct

16 598 28,42 90,00 25,58 10,4 78 10-Oct

13 599 38,65 100,00 38,65 11,4 77 10-Oct

16 600 33,71 100,00 33,71 5,6 75 13-Oct

16 601 18,58 100,00 18,58 5,2 74 13-Oct

16 606 40,86 100,00 40,86 15,0 79 13-Oct

16 607 34,09 100,00 34,09 2,1 70 13-Oct

16 608 33,73 100,00 33,73 10,6 79 13-Oct

16 609 33,71 100,00 33,71 2,5 79 10-Oct

16 610 32,97 90,00 29,67 3,5 79 13-Oct

16 617 61,99 100,00 61,99 6,3 81 13-Oct

16 621 40,32 100,00 40,32 6,6 90 10-Oct

16 622 40,70 100,00 40,70 10,0 87 13-Oct

16 623 10,53 90,00 9,47 13,2 98 13-Oct

16 624 15,61 100,00 15,61 13,6 96 13-Oct

16 625 22,54 100,00 22,54 12,8 95 13-Oct

Min 10 0,54 10,00 0,05 1,86 50

Max 30 61,99 100,00 61,99 43,86 98

Mean 17,4 26,13 92,92 25,37 12,33 71

Cenenu,ia ma HacÍHHUu,mBO

Table 4

Correlation of advanced lines containing the QTL

Correlation

days from 1 Aug severity incidence FHB index damaged seeds plant height

Days from 1 Correlazione di Pearson 1 -,639** -,583** -,654** -,203* ,035

Aug Sig.(1-coda) 0,000 0,000 0,000 ,048 ,388

N 68 68 68 68 68 68

Severity Correlazione di Pearson -,639** 1 ,630** ,996** ,065 ,058

Sig.(1-coda) 0,000 0,000 0,000 ,298 ,320

N 68 68 68 68 68 68

Incidence Correlazione di Pearson -,583** ,630** 1 ,658** ,121 -,010

Sig.(1-coda) 0,000 0,000 0,000 ,162 ,467

N 68 68 68 68 68 68

FHBindex Correlazione di Pearson -,654** ,996** ,658** 1 ,073 ,051

Sig.(1-coda) 0,000 0,000 0,000 ,278 ,339

N 68 68 68 68 68 68

Damaged Correlazione di Pearson -,203* ,065 ,121 ,073 1 -,311**

seeds Sig.(1-coda) ,048 ,298 ,162 ,278 ,005

N 68 68 68 68 68 68

Plant height Correlazione di Pearson ,035 ,058 -,010 ,051 -,311** 1

Sig.(1-coda) ,388 ,320 ,467 ,339 ,005

N 68 68 68 68 68 68

* La correlazione e significativa al livello 0,05 (1-coda). ** La correlazione e significativa al livello 0,01 (1-coda).

Table 5

Characteristic lines without QTL

Flowering days Line number FHB severity, FHB incidence, FHB index, % Damaged Plant height, Physiological

from 1/8 % % seed, % cm maturity

23 501 11,48 70 8,03 12,2 75 13-Oct

23 502 9,29 60 5,57 15,7 85 13-Oct

23 503 11,41 70 7,99 10,4 87 13-Oct

30 504 10,36 80 8,29 1,2 70 13-Oct

23 505 15,52 90 13,97 2,0 69 13-Oct

30 506 12,82 90 11,54 1,8 65 13-Oct

25 507 8,19 50 4,09 4,2 65 13-Oct

23 508 5,56 60 3,33 6,1 65 13-Oct

25 509 6,04 70 4,23 8,6 65 13-Oct

23 510 14,13 100 14,13 6,6 65 13-Oct

30 511 19,27 80 15,42 19,6 63 13-Oct

23 512 1,70 30 0,51 31,2 65 13-Oct

23 513 10,56 100 10,56 10,0 65 13-Oct

23 514 6,95 70 4,87 8,0 65 13-Oct

25 519 11,11 70 7,78 15,1 63 13-Oct

23 520 10,34 90 9,31 5,8 61 13-Oct

26 521 3,39 40 1,36 4,9 65 13-Oct

30 522 2,75 40 1,10 6,5 70 16-Oct

30 523 11,89 50 5,95 2,3 79 13-Oct

30 524 12,50 80 10,00 2,5 70 13-Oct

30 525 14,05 90 12,65 2,5 69 13-Oct

23 526 6,88 70 4,81 16,8 72 13-Oct

23 527 10,81 90 9,73 18,1 72 13-Oct

25 528 2,72 50 1,36 11,3 75 13-Oct

23 529 11,80 80 9,44 11,5 71 13-Oct

25 530 11,11 70 7,78 7,5 70 13-Oct

23 531 13,41 80 10,73 5,7 69 13-Oct

23 532 6,37 60 3,82 2,2 68 13-Oct

25 533 10,37 80 8,29 11,4 67 13-Oct

23 534 9,94 70 6,96 0,9 71 13-Oct

26 535 0,00 0 0,00 3,7 70 13-Oct

23 543 13,46 90 12,12 3,9 74 13-Oct

23 544 8,33 80 6,67 22,0 69 13-Oct

19 556 15,48 90 13,93 23,9 76 10-Oct

19 557 22,62 80 18,10 24,5 77 13-Oct

13 558 37,08 100 37,08 14,3 80 13-Oct

16 567 36,96 100 36,96 14,5 72 13-Oct

13 568 41,88 100 41,88 25,1 74 13-Oct

13 569 38,95 100 38,95 8,4 71 13-Oct

13 570 47,25 100 47,25 34,6 76 13-Oct

Continuation of Table 5

Flowering days Line number FHB severity, FHB incidence, FHB index, % Damaged Plant height, Physiological

from 1/8 % % seed, % cm maturity

16 571 72,99 100 72,99 23,3 75 13-Oct

13 572 50,84 100 50,84 21,7 74 13-Oct

13 573 52,28 100 52,28 37,6 67 10-0ct

13 574 52,27 100 52,27 15,8 72 4-0ct

16 602 12,22 80 9,78 5,5 79 10-0ct

16 603 10,81 70 7,57 6,1 69 10-0ct

16 604 21,28 100 21,28 3,1 79 13-Oct

16 605 36,26 100 36,26 5,7 82 13-Oct

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

16 611 51,12 100 51,12 7,1 78 13-Oct

13 612 43,29 100 43,29 18,6 74 13-Oct

10 613 90,45 100 90,45 16,5 76 13-Oct

16 614 45,71 100 45,71 13,3 74 10-Oct

13 615 30,18 100 30,18 19,9 70 4-Oct

13 616 43,04 100 43,04 26,4 74 13-Oct

16 618 65,03 100 65,03 6,1 80 13-Oct

16 619 68,60 100 68,60 2,4 82 13-Oct

13 620 45,09 100 45,09 8,8 76 13-Oct

Min 10 0,00 0,00 0,00 0,94 61

Max 30 90,45 100,00 90,45 37,61 87

Media 20,6 23,62 81,05 22,15 11,85 72

Table 6

Correlation of advanced lines without QTL

Correlation

Days from 1 aug Severity Incidence FHB index Damaged seeds Plant height

days from 1 aug Correlazione di Pearson 1 -,773** -,614** -,783** -,466** -,431**

Sig. (1-coda) 0,000 0,000 0,000 0,000 0,000

N 57 57 57 57 57 57

severity Correlazione di Pearson -,773** 1 ,671** 999** ,348** ,423**

Sig. (1-coda) 0,000 0,000 0,000 ,004 ,001

N 57 57 57 57 57 57

incidence Correlazione di Pearson -,614** ,671** 1 ,679** ,228* ,242*

Sig. (1-coda) 0,000 0,000 0,000 ,044 ,035

N 57 57 57 57 57 57

FHB index Correlazione di Pearson -,783** 999** ,679** 1 ,350** ,412**

Sig. (1-coda) 0,000 0,000 0,000 ,004 ,001

N 57 57 57 57 57 57

damaged seeds Correlazione di Pearson -,466** ,348** ,228* ,350** 1 ,054

Sig. (1-coda) 0,000 ,004 ,044 ,004 ,346

N 57 57 57 57 57 57

plant height Correlazione di Pearson -,431** ,423** ,242* ,412** ,054 1

Sig. (1-coda) 0,000 ,001 ,035 ,001 ,346

N 57 57 57 57 57 57

* La correlazione e significativa al LiveUo 0,05 (1-coda). ** La correlazione e significativa al livello 0,01 (1-coda).

therefore, how it results difficult to find the optimal interaction between genotype and a suitable phenotypic expression in a given growing environment. Consequently, a correct varietal choice, together with suitable agronomic practices (crop rotation, tillage systems) are crucial to keep FHB under control. Crop breeding is an effective tool to create and/or improve cultivars, through the valorisation of the existing variability as well as through the introduction of genetic materials from other sources. An effective in-field wheat improvement program for Fusarium resistance, eventually supported by MAS, may lead to the creation of genotypes able to reveal a certain resistance/tolerance when correct agronomic practices are applied.

References

Anderson, J. A., Stack, R. W., Liu, S., Waldron, B. L., Fjeld, A. D., Coyne, C., ... Frohberg, R. C. (2001). DNA markers for Fusarium Head blight resistance QTLs its two wheat populations. Theor. Appl. Genet., 102, 1164-1168. doi: 10.1007/s001220000509 Aoki, T., & O'Donnell, K. (1999). Morphological and molecular characterization of Fusarium pseudograminearum sp. Nov., formerly recognized as the Group 1 population of F. graminea-rum. Mycologia, 91(4), 597-609. doi: 10.2307/3761245 Bai, G. H., Kolb, F. L., Shaner, G., & Domier, L. L. (1999). Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology, 89(4), 343-348. doi: 10.1094/PHYT0.1999.89.4.343 Buerstmayr, H., Lemmesns, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., & Ruckenbauer, P. (2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet., 104, 84-91. doi: 10.1007/s001220200009

Cenenu,ia ma HaciHHLiu,mBO

Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D., ... Lemmens, M. (2003). Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet., 107, 503-508. doi: 10.1007/s00122-003-1272-6 Cai, X., Chen, P. D., Xu, S. S., Oliver, R. E., & Chen, X. (2005). Utilization of alien genes to enhance Fusarium head blight resistance in wheat - A review. Euphytica, 142, 309-318. doi: 10.1007/s10681-005-2437-y Champeil, A., Dore , T., & Forbet, J. F. (2004). Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attack and the production of Mycotoxins by Fusarium in wheat grains. Plant Sci, 166(6), 1389-1415. doi:10.1016/j.plantsci.2004.02.004 Desjardins, A. E. (2006). Fusarium Mycotoxins Chemistry, Genetics, and Biology. St Paul, MN, USA: American Phytopathology Society Press.

Desjardins, A. E., & Hohn, T. M. (1997). Mycotoxins in plant pathogenesis. Mol. Plant Microbe Interact., 10, 147-152. doi: 10.1094/MPMI.1997.10.2.147 Doohan, F. M., Weston, G., Rezanoor, H. N., Parry, D. W., & Nicholson, P. (1999). Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. Appl Environ Microbiol, 65(9), 3850-3854. Dubin, H. J., Gilchrist, L., Reeves, J., & McNab, A. (Eds.). (1996). Fusarium Head Scab: Global Status and Future Prospects: Proceedings of a Workshop Held at CIMMYT, El Batan, Mexico, 13-17 October, 1996. Mexico, DF: CIMMYT. Leonard, K. J., & Bushnell, W. R. (Eds.). (2003). Fusarium head blight of wheat and barley. St Paul, MN, USA: American Phytopathology Society Press. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. Ames, Iowa, USA: Blackwell Publishing.

Lin, F., Kong, Z. X., Zhus, H. L., Xue, S. L., Wu, J. Z., Tian, D. G.....Ma,

Z. Q. (2004). Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population. I. Type II resistance. Theor. Appl. Genet., 109(7), 15041511. doi: 10.1007/s00122-004-1772-z Liu, S., & Anderson, J. A. (2003). Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci., 43(3), 760-766. doi:10.2135/cropsci2003.7600 Mardi, M., Buerstmayr, H., Ghareyazie, B., Lemmens, M., Mohammadi, S. A., Nolz, R., & Ruckenbauer, P. (2005). QTL analysis of resistance to Fusarium head blight in wheat using a 'Wangshuibai' derived population. Plant Breeding, 124(4), 329333. doi: 10.1111/j.1439-0523.2005.01103.x Mentewab, A., Rezanoor, H. N., Gosman, N., Worland, A. J., & Nicholson, P. (2000). Chromosomal location of Fusarium head blight resistance genes and analysis of the relationship between resistance to head blight and brown foot rot. Plant Breeding, 119 (1), 15-20. doi: 10.1046/j.1439-0523.2000.00439.x Mesterhazy, A. (1995). Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 114(5), 377-386. doi: 10.1111/j.1439-0523.1995.tb00816.x Miedaner, T. (1997). Breeding wheat and rye for resistance to Fusarium disease. Plant Breeding, 116(3), 201-220. doi: 10.1111/j.1439-0523.1997.tb00985.x Miedaner, T., Reinbrech, C., Lauber, U., Schollenberger, M., & Geiger, H. H. (2001). Effects of genotype and genotype-environment interaction on deocynivalenol accumulation and resistance to Fusarium head blight in rye, triticale and wheat. Plant Breeding, 120(2), 97-105. doi: 10.1046/j.1439-0523.2001.00580.x Mujeeb-Kazi, A., Bernard, M., Bekele, G. T., & Mirand, J. L. (1983). Incorporation of alien genetic information from Elymus giganteusinto Triticum aestivum. In S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genetics Symp. (pp. 223-231). Kyoto, Japan, 28 nov.-3 dec. 1983. Beijing: China Agricultural Scientech Press. Nicholson, P., Gosman, R., Draeger, M., Thomsett, M., Chandler, E., & Steed, A. (2007). The Fusarium Head Blight Pathosystem.

Status and knowledge of its components. In H. T. Buck, J. E. Nisi, N. Salomyn (Eds.), Wheat Production in Stressed Environments: Proc. 7th Int. Wheat Conf., 27 November-2 December 2005, Mar del Plata, Argentina. Dordrecht, Netherlands: Springer. doi: 10.1007/1-4020-5497-1_3 Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology, 44(2), 207-238. doi: 10.1111/j.1365-3059.1995.tb02773.x Jauhar, P. P., & Peterson, T. S. (2001). Hybrids between durum wheat and Thinopyrum junceiforme: Prospects for breeding for scab resistance. Euphytica, 118(2), 127-136. doi: 10.1023/A:1004070006544 Pugh, G. W., Johann, H., & Dickinson, J. G. (1933). Factors affecting infection of wheat heads by Gibberella saubinetii. J. Agric. Res., 46(9), 771-797. Qi, L. L., Pumphrey, M. O., Friebe, B., Chen, P. D., & Gill, B. S. (2008). Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor. Appl. Genet., 117(7), 1155-1166. doi: 10.1007/s00122-008-0853-9. Schmolke, M., Zimmermann, G., Schweizer, G., Miedaner, T., Korzun, V., Ebmeyer, E., & Hartl, L. (2008). Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breeding, 127(5), 459-464. doi: 10.1111/j.1439-0523.2007.01486.x Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Giberella zeae. Phytopathology, 53, 831-838. Snijders, C. H. A. (1994). Breeding for resistance to Fusarium in wheat and maize. In J. D. Miller & H. L. Trenholm (Eds.), Mycotoxins in Grain Compounds Other than Aflatoxin. (pp. 3758). St. Paul, Minnesota, USA: Eagan Press. Somers, D. J., Thomas, J., DePauw, R., Fox, S., Humphreys, G., & Fedak, G. (2005). Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theor. Appl. Genet., 111(8), 1623-1631. doi: 10.1007/s00122-005-0094-0 Strange, R. N., & Smith, H. (1978). Effects of choline, betaine and wheat-germ extract on growth of cereal pathogens. Trans Roy MycolSoc, 70(2), 193-199. doi: 10.1016/S0007-1536(78)80030-8 Waldaron, B. L., Moreno-Sevilla, B., Anderson, J. A., Stack, R. W., & Frohberg, R. C. (1999). RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci, 39(3), 805-811. doi:10.2135/cropsci1999.0011183X003900030032x Wang, Y. Z., & Miller, J. D. (1988). Screening techniques and sources of resistance to Fusarium head blight. In A. R. Klatt (Ed.), Wheat Production Constraints in Tropical Environments. (pp. 239-250). Mexico, DF: CIMMYT. Wang, Y. N., Chen, P. D., & Liu, D. J. (1986). Transfer of useful germplasm from Elymus giganteus L. to Common wheat. I. Production of (T. aestivum L. cv Chinese Spring x E. giganteus) F1. J Nanjing Agri Uni, 1(1), 10-14. [in Chinese with English abstract] Wang, Y. N., Chen, P. D., Wang, Z. T., & Liu, D. J. (1991). Transfer of useful germplasm from Elymus giganteus L. to common wheat. II. Cytogenetics and scab resistance of backcross derivatives. J Najing Agri Uni, 14(2), 1-5. [in Chinese with English abstract] Weng, Y. Q., & Liu, D. J. (1989). Morphology, scab resistance and cytogenetics of intergeneric hybrids of Triticum aestivum L. with Roegneria C.Koch (Agropyron) species. Scientia Agric. Sinca, 22, 1-7. [in Chinese with English abstract] Weng, Y. Q., & Liu, D. J. (1991). Morphological and cytological investigation of interspecific hybrids between Roegneria ciliaris, R. japonensis, and R. kamoji. J Nanjing Agri Univ, 14, 6-11. doi: 10.7685/j.issn.1000-2030.1991.01.002. [in Chinese with English abstract] Xunfen, C., Faris, J. D., Hu, J., Stack, R. W., Adhikari, T., Elias, E. M., Kianian, S. F., Cai, X. (2007). Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Mol Breeding, 19(2), 113-124. doi: 10.1007/s11032-006-9049-7

Бенпвенга Г.1*, КамерЫ М.1,4, Белочш* A.1, Форнара М.1, Меллон С.1, Ст'на А.3, Каранта Ф.1, Аммар К.2

Агроном1'чна оц'нка сп'йкосп 1-тал1-йських сорт'в твердо!' пшениц' до фузар1'озу колоса та скрин'нг удосконале-них за допомогою MAS лтнтй, в1Д1'браних за ознакою сп'йкосп до фузар1'озу колоса // Сортовивчення та охорона прав на сорти рослин. - 2016. - № 3. - С. 30-41. http://dx.doi.org/10.21498/2518-1017.3(32).2016.75978

1CRA-QCE Unita di Ricerca per la Valorizzazione Qualitativa dei Cereali Via Cassia, 176 Roma - Italy, *e-mail: gaetano.bentivenga@virgilio.it 2(CIMMYT) International Maize and Wheat Improvement Center Texcoco, Km. 45, Carretera Mexico - Veracruz El Batan, Texcoco - Mexico 3CRA-ACM Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia, 190 Acireale (CT) - Italy 4Universita Degli Studi Del Molise, Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Via f. De Sanctis snc., 86100 Campobasso - Italy

Для оц1'нки сп'йкосп до фузарюзу колоса в 2009 роц1 41 дт'в т'сля зараження тдрахували юльюсть колоск'в, тнфт-

copт твepдoi та м^га'! пшeницi, пepeвaжнo з 1тал11, пpoй-шoв copтoвипpoбyвaння y CIMMYT (Miжнapoдний цeнтp пoлiпшeння кyкypyдзи та пшeницi). Kpi^ тoгo, викoнaнo oцiнкy впливу oднoгo з ocнoвниx QTL cтiйкocтi дo фyзapioзy кoлoca (Qfhs.ndsu-3BS QTL), впepшe виявлeнoгo y китай^та-гo ^ту пшeницi м'якoi 'Sumai 3', на xpoмocoмi 3B, y 125 yqo-cкoнaлeниx л1н1й пшeницi твepдoi BC4F6, oтpимaниx шляxoм cxpeщyвaння з виxiдним copтoм пшeницi м'якoi 'Sumai 3' (68 л1н1й з 'Sumai 3' QTL та 57 лп'нп'й бeз цьoгo QTL), були дocлi-^ern в oднaкoвиx yмoвax штyчнoгo зapaжeння. Для o6ox гpyп делянки зapaжyвaли т'д чac цвтпння cycпeнзieю oднo-cпopoвиx кyльтyp F. graminearum, тдфимуючи вoлoп'cть дo 100%, щoб ^ияти poзвиткy зaxвopювaння за дoпoмoгoю cиcтeми дpiбнoдиcпepcнoгo звoлoжeння. Чepeз тpидцять

кoвaниx F. graminearum, на кoлoci дecяти pocлин на кoжнiй д1лянц1; пoшкoджeння виpaзили пoкaзникoм зapaжeння фу-зapioзoм (кiлькicть випадюв ypaжeння x ггутнь ypaжeння / 100, дe стутнь ypaжeння = кiлькicть iнфiкoвaниx кoлocкiв / загальна юльюсть випадюв ypaжeння x 100 та юльккть п'нфп"-кoвaнoгo кoлoccя / загальна юльккть кoлoccя x 100). B o6ox випaдкax тзне цвгпння бyлo клю^вим чинникoм, здатним oбмeжити ypaжeнicть xвopoбoю. Пoпepeднi дан]' cтocoвнo впливу Qfhs.ndsu-3BS QTL нe виявили вiдмiннocтi м1'ж двoмa гpyпaми вдocкoнaлeниx л1'н1'й.

Ключов! слова: nшeнuця, кopeнeвà гнuль, фyзàpi-oз кoлocy (FHB), QTL, cmiйкicmь do xвopoб, Fusarium graminearum, odнocnopoвi кyльmypu, юльюшь вunàdкiв ypàжeння, cmyniнь ypàжeння, noкàзнuк FHB.

Бентивенга Г.1*, Камерини М.1,4, Белоччи A.1, Форнара М.1, Меллони С.1, Спина А.3, Каранта Ф.1, Аммар

К.2 Агрономическая оценка устойчивости итальянских сортов твердой пшеницы к фузариозу колоса и скрининг улучшенных с помощью MAS линий, отобранных по признаку устойчивости к фузариозу колоса // Сортовивчення та охорона прав на сорти рослин. - 2016. - № 3. - С. 30-41. http://dx.doi.org/10.21498/2518-1017.3(32).2016.75978

'CRA-QCE Unita di Ricerca per la Valorizzazione Qualitativa dei Cereali Via Cassia, 176 Roma - Italy, "e-mail: gaetano.bentivenga@virgilio.it 2(CIMMYT) International Maize and Wheat Improvement Center Texcoco, Km. 45, Carretera Müxico - Veracruz El Bat6n, Texcoco - Mexico 3CRA-ACM Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia, 190 Acireale (CT) - Italy

4Universita Degli Studi Del Molise, Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Via f. De Sanctis snc., 86100 Campobasso - Italy Для оценки устойчивости к фузариозу колоса в 2009 колосков, инфицированных F. graminearum, на колосьях

году 41 сорт твердой и мягкой пшеницы, преимущественно из Италии, прошел сортоиспытания в CIMMYT (Международный центр улучшения кукурузы и пшеницы). Кроме того, проведена оценка влияния одного из основных QTL устойчивости к фузариозу колоса (Qfhs.ndsu-3BS QTL), впервые выявленного у китайского сорта пшеницы мягкой 'Sumai 3', на хромосоме 3В) у 125 улучшенных линий пшеницы твердой BC4F6, полученных путем скрещивания с исходным сортом пшеницы мягкой 'Sumai 3' (68 линий с 'Sumai 3' QTL и 57 линий без этого QTL), в одинаковых условиях искусственного заражения. Для обеих групп делянки заражали во время цветения суспензией односпо-ровых культур F. graminearum, поддерживая влажность до 100%, чтобы способствовать развитию заболевания с помощью системы мелкодисперсного увлажнения. Через тридцать дней после заражения подсчитали количество

десяти растении на каждой делянке; повреждение выразили показателем заражения фузариозом (количество случаев поражения X степень поражения / 100, где степень поражения = количество инфицированных колосков / общее количество случаев поражения X 100 и количество инфицированных колосьев / общее количество колосьев X 100). В обоих случаях позднее цветение было ключевым фактором, ограничивающим поражение болезнью. Предварительные данные относительно влияния Qfhs.ndsu-3BS QTL не выявили отличиИ между двумя группами улучшенныхлиниИ.

Ключевые слова: пшеница, корневая гниль, фузариоз колоса (FHB), QTL, устойчивость к болезням, Fusarium graminearum, односпоровые культуры, количество случаев поражения, степень поражения, показатель FHB.

Надтйшла 01.06.2016

i Надоели баннеры? Вы всегда можете отключить рекламу.