Научная статья на тему 'АГРОХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА ПОЧВ ПРИ ПРИМЕНЕНИИ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И СОЛОМЫ'

АГРОХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА ПОЧВ ПРИ ПРИМЕНЕНИИ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И СОЛОМЫ Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
11
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
почва / солома / удобрения / реакция среды / гумус / аммонийный азот / подвижный фосфор / подвижный калий / ферментативная активность / soil / straw / fertilizers / environmental reaction / humus / ammonium nitrogen / available phos-phorus / available potassium / enzymatic activity

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Татьяна Николаевна Черноситова, Ольга Андреевна Пилецкая

Одним из путей пополнения запасов гумуса в агрофитоценозах является использование со-ломы зерновых культур и сои в качестве органического удобрения, так как запашка их биологического урожая увеличивает приход органического вещества и повышает микробиологическую, биологическую и энзиматическую активность почвы. В статье приведены данные определения агрохимических и энзиматических свойств зональных типов почв Амурской области при приме-нении соломы и минеральных удобрений. Для исследований выбраны бурая лесная, бурая лесная глеевая, луговая черноземовидная, аллювиальная почвы – наиболее распространенные на территории Амурской области. Для изучения свойств исследуемых почв заложен лабораторный опыт с различными вариантами внесения соломы зерновых и сои и минеральных удобрений. В качестве минеральных удобрений выбраны аммоний азотнокислый (N30) и калий фосфорнокислый однозамещенный (Р30). Лабораторный опыт разделён на 2 срока компостирования – 90 и 180 дней, для оценки степени деструкции соломы в зависимости не только от вносимых удобрений, но и от гидротермических условий. При исследовании установлено, что выбранные типы почв характеризуются слабокислой реакцией почвенной среды, очень низким и низким содержанием гумуса, среднем и повышенным содержанием подвижного фосфора, повышенным и высоким содержанием подвижного калия. Установлено, что срок компостирования соломы не влияет на реакцию почвенной среды. На всех типах почв наблюдается тенденция к увеличению содержания органического вещества, аммонийного азота, подвижного фосфора и калия во второй срок компостирования при применении минеральных удобрений и соломы. Исследуемые типы почв характеризуются очень слабой и слабой активностью фермента уреазы, средней и очень высокой – фосфатазы. При изучении активности ферментов установлено, что при применении всех систем удобрения активность уреазы выше в первый срок компостирования, активность фосфатазы – во второй срок компостирования. Активность ферментов в разных типах почв варьировала при внесении минеральных удобрений и соломы.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по сельскому хозяйству, лесному хозяйству, рыбному хозяйству , автор научной работы — Татьяна Николаевна Черноситова, Ольга Андреевна Пилецкая

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

AGROCHEMICAL AND BIOLOGICAL SOILS PROPERTIES IN THE MINERAL FERTILIZERS AND STRAW APPLICATION

One of the ways to replenish humus reserves in agrophytocenoses is the use of straw of grain crops and soybeans as an organic fertilizer, since the plowing of their biological crop increases the supply of or-ganic matter and increases the microbiological, biological and enzymatic activity of the soil. The paper presents data on the determination of agrochemical and enzymatic properties of zonal soil types in the Amur Region when straw and mineral fertilizers are used. Brown forest soils, brown forest gley soils, meadow chernozem-like soils, and alluvial soils, the most common in the Amur Region, were selected for research. To study the properties of the studied soils, a laboratory experiment was laid with various op-tions for applying grain and soy straw and mineral fertilizers. Ammonium nitrate (N30) and potassium phos-phate monosubstituted (P30) were chosen as mineral fertilizers. The laboratory experience was divided into 2 composting periods – 90 and 180 days, to assess the degree of straw degradation, depending not only on the applied fertilizers, but also on hydrothermal conditions. The study found that the selected soil types are characterized by a slightly acid reaction of the soil environment, very low and low humus content, me-dium and high content of mobile phosphorus, high and high content of mobile potassium. It has been es-tablished that the period of straw composting does not affect the reaction of the soil environment. On all types of soils, there is a tendency to increase the content of organic matter, ammonium nitrogen, mobile phosphorus and potassium in the second composting period with the use of mineral fertilizers and straw. The studied soil types are characterized by very weak and weak activity of the urease enzyme, medium and very high activity of phosphatase. When studying the activity of enzymes, it was found that when using all fertilizer systems, the activity of urease is higher in the first period of composting, the activity of phos-phatase – in the second period of composting. The activity of enzymes in different types of soil varied when mineral fertilizers and straw were applied.

Текст научной работы на тему «АГРОХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА ПОЧВ ПРИ ПРИМЕНЕНИИ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И СОЛОМЫ»

Научная статья/Research Article УДК 63:631.8

DOI: 10.36718/1819-4036-2023-4-21 -29

Татьяна Николаевна Черноситова1, Ольга Андреевна Пилецкая2

^Дальневосточный государственный аграрный университет, Благовещенск, Россия

1tnche@yandex.ru

2olgapiletskaya1988@gmail.com

АГРОХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА ПОЧВ ПРИ ПРИМЕНЕНИИ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И СОЛОМЫ

Одним из путей пополнения запасов гумуса в агрофитоценозах является использование соломы зерновых культур и сои в качестве органического удобрения, так как запашка их биологического урожая увеличивает приход органического вещества и повышает микробиологическую, биологическую и энзиматическую активность почвы. В статье приведены данные определения агрохимических и энзиматических свойств зональных типов почв Амурской области при применении соломы и минеральных удобрений. Для исследований выбраны бурая лесная, бурая лесная глеевая, луговая черноземовидная, аллювиальная почвы - наиболее распространенные на территории Амурской области. Для изучения свойств исследуемых почв заложен лабораторный опыт с различными вариантами внесения соломы зерновых и сои и минеральных удобрений. В качестве минеральных удобрений выбраны аммоний азотнокислый (N30) и калий фосфорнокислый однозамещенный (Р30). Лабораторный опыт разделён на 2 срока компостирования - 90 и 180 дней, для оценки степени деструкции соломы в зависимости не только от вносимых удобрений, но и от гидротермических условий. При исследовании установлено, что выбранные типы почв характеризуются слабокислой реакцией почвенной среды, очень низким и низким содержанием гумуса, среднем и повышенным содержанием подвижного фосфора, повышенным и высоким содержанием подвижного калия. Установлено, что срок компостирования соломы не влияет на реакцию почвенной среды. На всех типах почв наблюдается тенденция к увеличению содержания органического вещества, аммонийного азота, подвижного фосфора и калия во второй срок компостирования при применении минеральных удобрений и соломы. Исследуемые типы почв характеризуются очень слабой и слабой активностью фермента уреазы, средней и очень высокой - фосфатазы. При изучении активности ферментов установлено, что при применении всех систем удобрения активность уреазы выше в первый срок компостирования, активность фос-фатазы - во второй срок компостирования. Активность ферментов в разных типах почв варьировала при внесении минеральных удобрений и соломы.

Ключевые слова: почва, солома, удобрения, реакция среды, гумус, аммонийный азот, подвижный фосфор, подвижный калий, ферментативная активность

Для цитирования: Черноситова Т.Н., Пилецкая О.А. Агрохимические и биологические свойства почв при применении минеральных удобрений и соломы // Вестник КрасГАУ. 2023. № 4. С. 21-29. DOI: 10.36718/1819-4036-2023-4-21-29.

Tatyana Nikolaevna Chernositova1, Olga Andreevna Piletskaya2

12Far Eastern State Agrarian University, Blagoveshchensk, Russia

1tnche@уandex.ru

2olgapiletskaya1988@gmail.com

© Черноситова Т.Н., Пилецкая О.А., 2023 Вестник КрасГАУ. 2023. № 4. С. 21-29. Bulliten KrasSAU. 2023;(4):21-29.

AGROCHEMICAL AND BIOLOGICAL SOILS PROPERTIES IN THE MINERAL FERTILIZERS AND STRAW APPLICATION

One of the ways to replenish humus reserves in agrophytocenoses is the use of straw of grain crops and soybeans as an organic fertilizer, since the plowing of their biological crop increases the supply of organic matter and increases the microbiological, biological and enzymatic activity of the soil. The paper presents data on the determination of agrochemical and enzymatic properties of zonal soil types in the Amur Region when straw and mineral fertilizers are used. Brown forest soils, brown forest gley soils, meadow chernozem-like soils, and alluvial soils, the most common in the Amur Region, were selected for research. To study the properties of the studied soils, a laboratory experiment was laid with various options for applying grain and soy straw and mineral fertilizers. Ammonium nitrate (N30) and potassium phosphate monosubstituted (P30) were chosen as mineral fertilizers. The laboratory experience was divided into 2 composting periods - 90 and 180 days, to assess the degree of straw degradation, depending not only on the applied fertilizers, but also on hydrothermal conditions. The study found that the selected soil types are characterized by a slightly acid reaction of the soil environment, very low and low humus content, medium and high content of mobile phosphorus, high and high content of mobile potassium. It has been established that the period of straw composting does not affect the reaction of the soil environment. On all types of soils, there is a tendency to increase the content of organic matter, ammonium nitrogen, mobile phosphorus and potassium in the second composting period with the use of mineral fertilizers and straw. The studied soil types are characterized by very weak and weak activity of the urease enzyme, medium and very high activity of phosphatase. When studying the activity of enzymes, it was found that when using all fertilizer systems, the activity of urease is higher in the first period of composting, the activity of phosphatase - in the second period of composting. The activity of enzymes in different types of soil varied when mineral fertilizers and straw were applied.

Keywords: soil, straw, fertilizers, environmental reaction, humus, ammonium nitrogen, available phosphorus, available potassium, enzymatic activity

For citation: Chernositova T.N., Piletskaya O.A. Agrochemical and biological soils properties in the mineral fertilizers and straw application // Bulliten KrasSAU. 2023;(4): 21-29. (In Russ.). DOI: 10.36718/1819-4036-2023-4-21-29.

Введение. Послеуборочные остатки сельскохозяйственных культур, « 80 % которых составляет солома зерновых и зернобобовых культур, являются важнейшим ресурсом воспроизводства плодородия пахотных почв [1-6].

Солома зерновых культур с высоким содержанием углерода является ценным материалом для синтеза органического вещества почвы. Однако непосредственная заделка соломы оказывает депрессирующее влияние как на почву, так и на возделываемые культуры, зачастую снижая их урожайность из-за образования токсичных и кислых продуктов разложения органического вещества, а также иммобилизации минерального азота почвы [7, 8].

В полевых севооборотах Приамурья основным источником органического вещества являются солома зерновых культур и сои, пласт многолетних трав, сидеральное удобрение, пожнивные остатки [9].

В Амурской области по состоянию на 2021 г. общая площадь сельскохозяйственных угодий

составляет 2379 тыс. га, из них более половины пахотных земель (64 %) засевается зерновыми культурами (11 %) и соей (53 %). После их уборки на полях остается большое количество пожнивных остатков - соломы, которая является основным источником поступления свежего органического вещества в почву.

По данным зональной системы земледелия Амурской области (2016), установлено, что при запашке соломы пшеницы и сои 2 т/га в почву поступает: N - 14-24; Р2О5 - 6-8; К2О - 18-28 кг/га соответственно культуре. При запашке корней пшеницы и сои 1 т/га в почву поступает: N - 10-11; Р2О5 - 2-4; К2О - 8-6 кг/га соответственно культуре.

Так как отношение углерода к азоту в соломе очень велико, то для нормального его разложения требуется вносить азотные удобрения (7-15 кг на 1 т соломы).

Солома из всех органических удобрений является наиболее экологически чистым и экономически выгодным удобрением. Особенно эффективно ее использование на тяжелых почвах.

Важнейшую роль в процессах биотрансформации соломы в почве играют ферменты - биокатализаторы белковой природы, которые образуются в результате жизнедеятельности высших растений и микроорганизмов, а также поступают в почву после их отмирания, сохраняя при этом свою активность продолжительное время [10]. Принимая участие в разложении остатков растений и микроорганизмов, синтезе и распаде гумуса, гидролизе органических соединений, ферменты могут быть индикаторами скорости разложения соломы в почве [11]. Исследованиями И.В. Черепухиной (2012) [12], О.С. Безугловой (2019) с соавт. [11], А.Х. Куликовой (2017) с соавт. [13] установлено, что применение соломы как отдельно, так и в комплексе с минеральными удобрениями ведет к увеличению ферментативной активности, так как почвенные микроорганизмы получают дополнительное питание, следовательно, повышается их активность в процессах биотрансформации соломы.

Цель исследования - изучение изменения агрохимических свойств и энзиматической ак-

Агрохимическая характер!

тивности зональных типов почв Амурской области различного генезиса и уровня плодородия в зависимости от степени разложения соломы зерновых культур и сои и применения минеральных удобрений.

В результате исследований получены новые данные, характеризующие минерализацию соломы в почве в условиях Амурской области, что, в свою очередь, вносит вклад в изучение региональных особенностей плодородия исследуемых почв и эффективности применения соломы в качестве органического удобрения.

Объект и методы. Для проведения лабораторного опыта были выбраны наиболее распространенные на территории Зейско-Буреинской равнины Амурской области типы почв: бурая лесная (БЛ), бурая лесная глеевая (БЛГ), луговая черноземовидная (ЛЧ), аллювиальная (АД).

По данным литературных источников [9, 14, 15], агрохимическая характеристика основных типов почв приведена в таблице 1.

Таблица 1

основных типов почв

Тип почвы рНкс1 Гумус, % Нг, мг-экв/на 100 г почвы Имин. Р2О5 К2О

по Кирсанову

мг/кг

БЛ 4,6-5,5 1,5-з,о 1,5-7,о о-15 26-5о 81-25о

БЛГ 4,1-5,о 2,о-6,о 5,1- 6,о 15-зо 5-25 2оо-зоо

ЛЧ 4,6-6,о 4,о-8,о з,5-6,о 16-зо з5-8о 171-25о

АД 4,6-5,5 2,о-4,о 2,о-4,о о-15 26-5о 41-8о

Почвенные образцы отбирали площадным методом - по ГОСТ 17.4.3.01-2017 и ГОСТ 17.4.4.022017. На площадке 5*5 м отобрано 5 точечных образцов, из которых методом конверта составлена объединенная проба массой 10-15 кг; глубина отбора - 0-20 см. После отбора образцы почвы усредняли, измельчали и просеивали через сито с диаметром отверстий 5 мм для закладки лабораторного опыта. Далее, после проведения лабораторного опыта, образцы высушивали до воздушно-сухого состояния, измельчали и просеивали через сито с диаметром отверстий 2 мм.

Для изучения агрохимических и биологических свойств исследуемых почв заложен двух-факторный лабораторный опыт в трехкратной проворности по следующей схеме: 1) почва (П); 2) почва + солома зерновых культур (П + Сзк);

3) почва + солома соевая (П + Сс); 4) почва + ИзоРзо (П + ИзоРзо); 5) почва + ИзоРзо + солома зерновых культур (П + ИзоРзо + Сзк); 6) почва + ИзоРзо + солома соевая (П + ИзоРзо + Сс).

В качестве азотного удобрения использовался аммоний азотнокислый из расчета (Изо), в качестве фосфорного удобрения - калий фосфорнокислый однозамещенный из расчета (Рзо). Солому зерновых культур (овса) и сои измельчали до 2 см и вносили в почву из расчета 2 т/га.

Образцы весом 500 г хранили в темном месте в стеклянных бюксах с притертой крышкой для сохранения постоянной влажности. По методике [16] почва компостировалась при температуре 25 °С и влажности 60 % от ПВ. Срок компостирования в 90 дней приравнивается к одному году по сумме активных температур, 18о

дней - к двум годам. Сумма активных температур для центральной и южной сельскохозяйственной зоны Амурской области составляет от 2 160 до 2 300 °С.

После компостирования в почвенных образцах определяли физико-химические, химические и биологические свойства по следующим методикам: обменная кислотность определена методом ЦИНАО (ГОСТ 26483-85); содержание органического вещества - методом И.В. Тюрина в модификации Б.А. Никитина; содержание аммонийного азота по ГОСТ 26489-85; подвижный фосфор и калий - методом А.Т. Кирсанова в модификации ЦИНАО (ГОСТ 54650-2011); активность нейтральной фосфатазы - методом С. Г. Малахова (гидролиз фенолфталеин фосфата натрия) [17]; активность уреазы - методом А.Ш. Галстяна [18].

Статистическую обработку полученных данных выполняли методом оценки различных вариантов лабораторного опыта по средним показателям в программе 8{айзйса.

Физико-химические свс

Результаты и их обсуждение. Солома для удобрения способствует улучшению физико-химических свойств почвы, уменьшает потери азота, повышает доступность фосфатов и биологическую активность почвы, улучшает условия питания растений. Положительное действие соломы возможно при создании благоприятных условий для разложения.

В результате проведенных исследований установлено, что внесение соломы зерновых культур и сои как отдельно, так и совместно с минеральными удобрениями в первый и второй сроки компостирования на всех типах почв приводит к снижению обменной кислотности. При этом содержание гумуса не изменялось (табл. 2). Во второй срок компостирования на всех типах почв наблюдается тенденция к увеличению содержания органического вещества, что может быть связано с более полным разложением химического состава соломы.

Таблица 2

исследуемых почв

Схема опыта Тип почвы

БЛ БЛГ ЛЧ АД

рНсол. гумус, % рНсол. гумус, % рНсол. гумус, % рНсол. гумус, %

П 4,9 5,0 15 1,5 4,5 4,4 19 1,9 5,3 5,3 3,4 3,4 5.2 5.3 2,6 2,6

П+Сзк 5,0* 5,0 13* 1,5 4,5 4,4 18 1,9 5,4 5,5* 3.3 3.4 5.2 5.3 2,5 2,5

П+Сс 5,0* 5,0 1,3* 1,5 4,5 4,8* 19 2,0 5,5* 5,5* 3.3 3.4 5.2 5.3 2.5 2.6

П+№оРэо 51* 5,3* 15 1,5 4,5 4,8* 19 1,9 5,6* 5,7* 34 3,4 5.2 5.3 2,6 2,6

П+№оРэо+Сзк 5,1* 5,2* 15 1,6 4,6* 4,8* 19 1,9 5,6* 5,7* 3.4 3.5 5.2 5.3 2,6 2,7

П+№оРэо+Сс 5,2* 5,2* 15 1,6 4,5 4,5 19 2,0 5,7* 5,8* 3,4 3,6* 5.2 5.3 2,6 2,8*

НСР05 0,1 0,1 0,2 0,2 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,2 0,2

Здесь и далее: в числителе - 1-й срок компостирования, в знаменателе - 2-й срок компостирования; (*) - статистически значимая прибавка на 5 % уровне.

Использование соломы на удобрение - один из путей решения проблемы бездефицитного баланса гумуса и наиболее простой, доступный способ регулирования гумусного состояния почвы. Из применяемых органических удобрений солома содержит наибольшее количество органического вещества, поэтому в почве склады-

вается положительный гумусовый баланс. Наиболее эффективна заделка соломы вместе с минеральными удобрениями, что в 3 раза ускоряет ее разложение. Важнейшим источником азотного питания является аммонийный азот. При этом он поступает в растения быстрее, чем нитраты. Более быстрое поглощение аммиака

объясняется тем, что для его использования на построение органических веществ не требуется предварительного восстановления, которое необходимо при питании растений нитратами.

В наших исследованиях содержание аммонийного азота в первый и второй сроки компостирования увеличивается по всем вариантам удобрения в бурой лесной и бурой лесной глее-

вой почвах, при этом наибольшее увеличение происходило при применении минеральных удобрений совместно с соломой зерновых культур и сои. Также во второй срок компостирования на всех типах почв наблюдается тенденция к увеличению содержания аммонийного азота (табл. 3).

Содержание основных элементов питания исследуемых почв, мг/кг

Таблица 3

Схема опыта Тип почвы

БЛ БЛГ ЛЧ АД

N44 Р2О5 К2О N44 Р2О5 К2О N44 Р2О5 К2О N44 Р2О5 К2О

П 4,7 7,3 85 125 146 167 14,3 14,9 97 109 105 112 56 8,9 76 71 154 174 56 8,2 99 111 68 85

П+Сзк 99* 10,8 84 163* 165* 178 14,3 18,7 99 127* 104 113 73 10,8 70 91* 158 177 64 10,8 105 151* 68 82

П+Сс 79 8,6 84 144* 170* 182 14,3 27,4* 94 129* 107 112 64 14,7 79 89* 162* 174 56 10,0 112* 180* 73* 83

П+№оРзо 81 9,4 99* 152* 4 3 15,2 23,0* 87* 135* 109* 114 64 14,3 88* 86* 164* 177 4,7 6,9 121* 166* 73* 85

П+№оРзо+Сзк 10,2* 11,9 129* 145* 132* 192 10,8 23,0* 104* 124* 110* 116 82 10,8 81 89* *5 *6 со| со 65 7,3 127* 163* 75* 82

П+№оРзо+Сс 97* 10,2 100* 137* 175* 195 10,8 16,9 94 124* 104 102* 91 11,7 77 98* 161* 189* и 4,7 126* 157* 75* 90*

НСР05 5 5 8 5 8 5 5 5 7 9 4 10 8 8 9 11 6 7 8 8 10 10 3 4

Фосфор и калий являются важнейшими элементами, определяющими урожайность сельскохозяйственных культур.

В наших исследованиях содержание подвижного фосфора и калия в первый и второй сроки компостирования увеличивается во всех исследуемых почвах по всем вариантам удобрения в 1,1-1,4 раза по сравнению с почвой контрольного варианта. Также следует отметить, что во второй срок компостирования на всех типах почв наблюдается тенденция к увеличению содержания подвижного фосфора и калия. Установлено, что содержание подвижного фосфора варьировало от среднего до повышенного, подвижного калия - от повышенного до высокого. Таким образом, анализируя агрохимические свойства, установлено, что качество соломы зерновых культур и сои, а также использование ее совместно с минеральными удобрениями приводит к одинаковым тенденциям в измене-

нии свойств исследуемых почв. Большее влияние оказывает срок компостирования почв.

Важнейшую роль в процессах разложения соломы и образования гумуса в почве играют ферменты. Ферменты принимают участие в разложении остатков растений и микроорганизмов, синтезе и распаде гумуса, гидролизе органических соединений, поэтому могут быть индикаторами и скорости разложения соломы в почве.

Гидролазы представляют обширные группы ферментов, к ним относятся прежде всего ферменты, катализирующие гидролиз и синтез сложных органических соединений с участием воды, в результате чего происходит обогащение почвы подвижными и доступными растениям и микроорганизмам питательными веществами [10, 19].

Для выявления особенностей азотного и фосфорного обмена в исследуемых почвах изучены ферменты уреаза и фосфатаза класса гидролаз (табл. 4).

Таблица 4

Активность уреазы (мг NHз на 1 г почвы за 24 часа) и фосфатазы (Р2О5 на 1 г за 24 ч) в исследуемых почвах

Тип почвы

БЛ БЛ 1Г Л Ч АД

Схема опыта а з а з а т а з а з а т а з а з а т а з а з а т

а си р У го -& с о Ф а си р У го -& с о Ф а си р У го -& с о Ф а си р У го -& с о Ф

П о,529 4,91 о,524 2,87 о,529 3,11 о,429 4,91

о,269 3о,65 о,45о 17,21 о,343 26,33 о,38о 25,85

П+Сзк о,5о4 5,39 о,474 3,23 о,479 3,11 о,329 4,85

о,315 25,85 о,264 19,85 о,376 21,29 о,231 23,45

П+Сс о,489 3,47 о,379 3,59 о,379 15,41 о,392 6,83

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

о,292 2о,81 о,45о 18,89 о,45о 8,57 о,315 25,85

П+№оРэо о,479 4,о1 о,379 3,59 о,484 3,35 о,354 4,91

о,357 21,29 о,334 16,25 о,427 22,25 о,427 25,73

П+№оРэо+Сзк о,4о4 3,71 о,429 3,23 о,479 3,59 о,354 4,43

о,287 33,о5 о,427 14,33 о,427 17,45 о,38о 29,45

П+№оРэо+Сс о,429 3,95 о,4о4 3,59 о,454 2,87 о,354 4,73

о,38о 23,45 о,473 16,25 о,45о 19,85 о,315 28,25

Уреаза в агроценозе катализирует разложение мочевины, которую вносят в качестве азотного удобрения. Мочевина может образовываться в почвах и при внесении растительных остатков в качестве промежуточных продуктов метаболизма азоторганических соединений. На уреазную активность в агроценозе влияет севооборот, содержание органического вещества, глубина и способы обработки почвы, загрязнение тяжелыми металлами, температура [19].

При изучении активности уреазы наблюдалось повышение активности фермента в первый срок компостирования во всех изучаемых почвах, что может быть обусловлено интенсивной микробиологической деятельностью в начальные сроки компостирования. В почве контрольного варианта первого срока компостирования наибольшая активность уреазы проявляется в бурой лесной и луговой черноземовидной почвах. В почве контрольного варианта второго срока компостирования наибольшая активность фермента проявляется в бурой лесной глеевой почве.

Фосфатаза катализирует гидролиз фосфо-рорганических соединений по фосфорно-эфирным связям, и ее активность характеризует процесс минерализации органических соединений фосфора. Увеличение поступления в почву

фосфатаз как микробного, так и растительного происхождения наблюдается в системах земледелия, где фосфор находится в минимуме, а растение испытывают стресс от его недостатка. Так, при недостатке фосфора в почве у растений возрастает содержание кислых фосфатаз в корневых выделениях, которые увеличивают растворение и ремобилизацию фосфатов. Другим фактором, влияющим на синтез, активность и стабильность фосфатаз, является рН почвы. Кислотность зависит от концентрации ортофос-фатов в почвенном растворе, которая, в свою очередь, определяет индукцию и экссудацию фосфатаз. Также известно, что растворение фосфорсодержащих минералов в почве в результате деятельности фосфомоноэстераз усиливается при внесении в почву большого количества органического углерода, поэтому активность фосфатаз коррелирует с содержанием органического вещества [19].

При изучении активности фосфатазы наблюдалось значительное повышение активности фермента во второй срок компостирования во всех изучаемых почвах. Это может быть связано с интенсивной микробиологической деятельностью и активацией определенных функциональных групп белковой молекулы фермента

под воздействием гидротермических условий. Так как ко второму сроку компостирования могло сложиться оптимальное сочетание температуры воздуха и влажности почвы для активизации гидролитических процессов фосфороргани-ческихсоединений.

В контрольном варианте первого срока компостирования наибольшая активность фосфата-зы проявляется в бурой лесной и аллювиальной дерновой почвах. В контрольном варианте второго срока компостирования наибольшая активность фермента проявляется в бурой лесной почве (см. табл. 4).

Исследования показали, что при применении минеральных удобрений и соломы в изучаемых типах почв активность уреазы и фосфатазы варьировала (повышалась и снижалась), так как в почвах происходили изменения в содержании питательных веществ, что, в свою очередь, влияло и на микробиологическую активность.

В исследуемых почвах в зависимости от вносимых удобрений и срока компостирования активность уреазы изменялась от очень слабой до слабой, активность фосфатазы - от средней до очень высокой.

Заключение. Изучение агрохимических свойств и ферментативной активности бурой лесной, бурой лесной глеевой, луговой чернозе-мовидной, аллювиальной почв в зависимости от систем удобрения показало, что применение соломы, минеральных удобрений и срок компостирования оказывают влияние на агрохимические свойства и состояние ферментных систем в почвах. Также установлено, что срок компостирования почвы оказывает большее влияние на изменение агрохимических свойств и ферментативной активности, чем вид соломы и используемые минеральные удобрения.

Исследуемые типы почв характеризуются слабокислой реакцией почвенной среды, очень низким и низким содержанием гумуса, среднем и повышенным содержанием подвижного фосфора, повышенным и высоким содержанием подвижного калия. На всех типах почв увеличилось содержание органического вещества, аммонийного азота, подвижного фосфора и калия во второй срок компостирования при применении минеральных удобрений и соломы зерновых культур и сои.

Исследуемые типы почв характеризуются очень слабой и слабой активностью фермента

уреазы, средней и очень высокой - фосфатазы. При изучении активности ферментов установлено, что при применении всех систем удобрения активность уреазы выше в первый срок компостирования, активность фосфатазы - во второй срок компостирования. Максимальную активность уреаза и фосфатаза проявили в бурой лесной почве. Активность ферментов в разных типах почв варьировала при внесении минеральных удобрений и соломы.

Список источников

1. Белоусов А.А. Оценка биологического качества органического вещества в структурных агрегатах чернозема выщелоченного в условиях минимизации обработки // Вестник КрасГАУ. 2022. № 4. С. 37-43. DOI: 10.36718/1819-4036-2022-4-37-43.

2. Ладонин В.Ф., Юркин С.Н., Анисимова Т.Ю. О факторах формирования урожаев в Нечерноземной зоне // Плодородие. 2002. № 5. С. 5-10.

3. Высвобождение элементов питания при заделке соломы в дерново-подзолистые почвы в зависимости от ее видового состава и удобрения азотом / Т.М. Серая [и др.] // Агрохимия. 2013. № 3. С. 52-59.

4. Русакова И.В., Еськов А.И. Оценка влияния длительного применения соломы на воспроизводство органического вещества дерново-подзолистой почвы // Доклады РАСХН. 2011. № 5. С. 28-31.

5. Русакова И.В., Московкин В.В. Микробная деградация соломы под влиянием биопрепарата БАГС и приемы повышения эффективности его применения на разных типах почв // Агрохимия. 2016. № 8. С. 56-61.

6. Delgado J.A. Crop residue is a key for sustaining maximum food production and for conservation of our biosphere // J. Soil Water Conserv. 2010. I. 65(5). P. 111A-116A.

7. Пегова Н.А. Влияние вида пара, соломы и систем обработки дерново-подзолистой почвы на ее агрохимические свойства // Агрохимия. 2020. № 4. С. 3-12.

8. Черепухина И.В., Безлер Н.В. Солома зерновых культур как фактор, способствующий улучшению гумусового состояния почвы // Плодородие. 2017. № 5. С. 35-38.

9. Система земледелия Амурской области: производ.-практ. справ. / Дальневост. гос. аграр. ун-т. Благовещенск, 2016. 570 с.

10. Хазиев Ф.Х. Методы почвенной энзимоло-гии. М.: Наука, 2005. 252 с.

11. Ферментативная активность чернозема обыкновенного при разложении соломы в почве / О.С. Безуглова [и др.] // Успехи современного естествознания. 2019. № 12, ч. 2. С. 199-204.

12. Черепухина И.В. Микробиологические и биохимические процессы в черноземе выщелоченном при использовании микроми-цета-целлюлозолитика с соломой ячменя: дис. ... канд. биол. наук: 03.02.13. Воронеж, 2012. 170 с.

13. Куликова А.Х., Антонова С.А., Козлов А.В. Ферментативная активность почвы в зависимости от системы удобрения // Вестник Ульяновской государственной сельскохозяйственной академии. 2017. № 4 (40). С. 36-43.

14. Голов Г.В. Почвы и экология агрофитоце-нозов Зейско-Буреинской равнины. Владивосток: Дальнаука, 2001. 162 с.

15. Система земледелия Амурской области. Благовещенск: Приамурье, 2003. 304 с.

16. Чагина Е.Г. Изменение плодородия почв при интенсивном земледелии. Новосибирск: Наука, 1986. 56 с.

17. Малахов С.Г. Временные методические рекомендации по контролю загрязнения почв / Москов. отделение гидрометеоизда-та. М., 1984.

18. Муртазина С.Г., Гайсин ИЛ, Муртазин М.Г. Практикум по почвоведению / Казан. гос. с.-х. академия. Казань, 2006. 225 с.

19. Лабутова Н.М. Основы почвенной энзимо-логии. СПб.: Изд-во С.-Петерб. ун-та, 2016. 104 с.

References

1. Belousov A.A. Ocenka biologicheskogo kachestva organicheskogo veschestva v struk-turnyh agregatah chernozema vyschelochen-nogo v usloviyah minimizacii obrabotki // Vestnik KrasGAU. 2022. № 4. S. 37-43. DOI: 10.36718/1819-4036-2022-4-37-43.

2. Ladonin V.F., Yurkin S.N., Anisimova T.Yu. O faktorah formirovaniya urozhaev v Necherno-zemnoj zone // Plodorodie. 2002. № 5. S. 5-10.

3. Vysvobozhdenie 'elementov pitaniya pri zadel-ke solomy v dernovo-podzolistye pochvy v zavisimosti ot ee vidovogo sostava i udobre-niya azotom / T.M. Seraya [i dr.] // Agrohimiya. 2013. № 3. S. 52-59.

4. Rusakova I.V., Es'kov A.I. Ocenka vliyaniya dlitel'nogo primeneniya solomy na vosproiz-vodstvo organicheskogo veschestva dernovo-podzolistoj pochvy // Doklady RASHN. 2011. № 5. S. 28-31.

5. Rusakova I.V., Moskovkin V.V. Mikrobnaya degradaciya solomy pod vliyaniem bioprepa-rata BAGS i priemy povysheniya effektivnosti ego primeneniya na raznyh tipah pochv // Agrohimiya. 2016. № 8. S. 56-61.

6. Delgado J.A. Crop residue is a key for sustaining maximum food production and for conservation of our biosphere // J. Soil Water Conserv. 2010. I. 65(5). P. 111A-116A.

7. Pegova N.A. Vliyanie vida para, solomy i sistem obrabotki dernovo-podzolistoj pochvy na ee agrohimicheskie svojstva // Agrohimiya. 2020. № 4. S. 3-12.

8. Cherepuhina I.V., Bezler N.V. Soloma zerno-vyh kul'tur kak faktor, sposobstvuyuschij uluchsheniyu gumusovogo sostoyaniya pochvy // Plodorodie. 2017. № 5. S. 35-38.

9. Sistema zemledeliya Amurskoj oblasti: proiz-vod.-prakt. sprav. / Dal'nevost. gos. agrar. un-t. Blagoveschensk, 2016. 570 s.

10. Haziev F.H. Metody pochvennoj 'enzimologii. M.: Nauka, 2005. 252 s.

11. Fermentativnaya aktivnost' chernozema obyk-novennogo pri razlozhenii solomy v pochve / O.S. Bezuglova [i dr.] // Uspehi sovremennogo estestvoznaniya. 2019. № 12, ch. 2. S. 199-204.

12. Cherepuhina I.V. Mikrobiologicheskie i biohi-micheskie processy v chernozeme vyschelo-chennom pri ispol'zovanii mikromiceta-cellyu-lozolitika s solomoj yachmenya: dis. ... kand. biol. nauk: 03.02.13. Voronezh, 2012. 170 s.

13. Kulikova A.H., Antonova S.A., Kozlov A.V. Fermentativnaya aktivnost' pochvy v zavisi-mosti ot sistemy udobreniya // Vestnik Ul'ya-novskoj gosudarstvennoj sel'skohozyajstven-noj akademii. 2017. № 4 (40). S. 36-43.

14. Golov G.V. Pochvy i 'ekologiya agrofitoce-nozov Zejsko-Bureinskoj ravniny. Vladivostok: Dal'nauka, 2001. 162 s.

15. Sistema zemledeliya Amurskoj oblasti. Blago-veschensk: Priamur'e, 2003. 304 s.

16. Chagina E.G. Izmenenie plodorodiya pochv pri intensivnom zemledelii. Novosibirsk: Nauka, 1986. 56 s.

17. MalahovS.G. Vremennye metodicheskie reko-mendacii po kontrolyu zagryazneniya pochv / Moskov. otdelenie gidrometeoizdata. M., 1984.

18. Murtazina S.G., Gajsin I.A., Murtazin M.G. Praktikum po pochvovedeniyu / Kazan. gos. s.-h. akademiya. Kazan', 2006. 225 s.

19. Labutova N.M. Osnovy pochvennoj 'enzimolo-gii. SPb.: Izd-vo S.-Peterb. un-ta, 2016. 104 s.

Статья принята к публикации 07.03.2023 / The article accepted for publication 07.03.2023. Информация об авторах:

Татьяна Николаевна Черноситова1, доцент кафедры экологии, почвоведения и агрохимии, кандидат сельскохозяйственных наук

Ольга Андреевна Пилецкая2, доцент кафедры экологии, почвоведения и агрохимии, кандидат биологических наук

Information about the authors:

Tatyana Nikolaevna Chernositova1, Associate Professor at the Department of Ecology, Soil Science and Agrochemistry, Candidate of Agricultural Sciences

Olga Andreevna Piletskaya2, Associate Professor at the Department of Ecology, Soil Science and Agrochemistry, Candidate of Biological Sciences

i Надоели баннеры? Вы всегда можете отключить рекламу.