Научная статья на тему 'Accuracy solution of A. A. Novikov problem'

Accuracy solution of A. A. Novikov problem Текст научной статьи по специальности «Математика»

CC BY
136
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Accuracy solution of A. A. Novikov problem»

ACCURACY SOLUTION OF A.A. NOVIKOV PROBLEM

Tsitsiashvili G.Sh., Osipova M.A.

Institute for Applied Mathematics, Far Eastern Branch of RAS 690041, Vladivostok, Radio str. 7, e-mail: guram@iam.dvo.ru, mao1975@list.ru

Introduction

In this paper we consider the Laplas model described by the following autoregressive random sequence

X, = RXk-X , Xo = 0, t = inf (k : Xk > X),

(1)

p(n >t) =, t>o, p(n <t) = expW, t<0,.

Our problem is to calculate a distribution of a reaching moment t . This problem was put before the authors of this paper by A.A. Novikov. The problem origins in the risk theory and in the reliability theory. M. Jacobson found approximate solution of this problem by martingale technique. V.V. Mazalov suggested to solve the problem for R < 1 approximately by some recurrent procedure which includes a compressing operator. In this paper we apply some recurrent integral equalities to find accuracy solution represented by mixtures of exponentials. This solution is illustrated by numerical calculations. Our solution may be used for an arbitrary R and when as R so X depend on k .

1. Main results

Denote X, = 0, X,-s = XRk-s, s = 1,...,k, and designate fork > 1

Tk (x) = P (Xk > x, t> k), x > 0, Sk (x) = P (Xk < x,t> k) , x < 0, P (t = k) = Tk (X) .

Denote

B (k, S, j) = exp{-IX^2-s { j -1)), B2 (k,s, j) = exp^X^2-* ( j +1)),

B3 (k, s, j) = exp {-1X^-s { j +1)), B4 (k, s, j) = exp {xxi+[-s ( j -1)), A (k, s, j) = B (k, s, j) - B4-1 (k, s, j), A2 (k, s, j) = B2 (k, s, j) - B3-1 (k, s, j), A3 (k, s, j) = B2-1 (k, s, j) - B3 (k, s, j), A4 (k, s, j) = B1-1 (k, s, j) - B4 (k, s, j).

Theorem 1. The following formulas are true for k > 0, and for x > 0

k- s f ix ) k- s f ix)

Tk (x)= 2 akk-sj exp rj j+ s bkk-sj exp [rjj+ckk-s (2)

with Xk-s+1 < x < Xk-sfor some s e{1,...,k} and for x < 0

Sk (x)= k-? dk] exp {X) (3)

and

P (t = k) = ak ooexp (-XX). (4)

Here

and

aioo = 2' = 0' Cl° = 0 :

-^10 = 2' ci -i = 0

ak+1 k+1-s j = akk-s j-1

R2j

1 - R21 R2 j

7 _ 7

bk+1 k+1-s j = ~bk k-s j-1 1 R 2 j ■

1 ( k -1 d

4k+1 k+1-s 0

kj

s -1 k-t

E E

2 V j=0 1 + RJ+1 t=1 j

, 0 < j < k - s +1, 1 < s < k, 0 < j < k - s +1, 1 < s < k,

A ( k, t, j ) akk-t j A2 (k't' j) bkk-t j

1 - RJ+ 1 + RJ+1

k-s

l-E j=0

B1 (k's' j) "kk-s j , B2 (k's' j) bkk-

s J

b

k+1 k+1-s 0

1 ( k k-s

E E

Vt=s+1j=0

2

1 - RJ+ 1 + RJ+1

A3 (k't' j) akk-s j + A4 (k't' j) bkk-s j

1 < s < k + 1,

1 + Rj+1

1 - Rj+1

k-s

E

j=0

B3 (k's' j)akk-s j B4 (k's' j)bkk-

's J

1 < s < k' bk+100 = 0'

lk+10

1 + Rj+1 1 - RJ+1

Ck+1 k+1-s = Ck k-s - ak 0 0 exp (-AX)' 1 < s < k' ck+10 = ck+1 -1 = 0 '

1 (kE Jj

2 V jE0 1 - RJ+1 ' s=1 jt0 1 + RJ+1

k k-s akk s j k k-s bkk s , ^

E E A3 (k, s, J) + E E T^A (k' s, J)

s=1 J=0 1 - RJ+1

R2(J+1) 4+1 j+1 = -dk j 1 _ r2( j+1)

0 < j < k -1.

(5)

(6) (7)

(8)

(9) (10) (11)

(12)

2. Theorem 1 proof

It is obvious that

and

T1 (x ) = exp (~ÄX), x > 0, $ ( x ) = exp (AX), x< 0,

P (T = 1) = exp (-AX) .

Calculate now for x > 0

T2 (x) = ( 0 dS1(u 1-"in(f•XR)dT1 fu 11exP<-A<x -u))

XR

j dT1iui(1 -exp (A(x - u )r

min(x, XR)

(13)

As a result obtain

T2 (x) = 2(1 -R2 ) ifexP (-Ax) - R2 exP ^ )) - 2exP (-AX) ■

+ exp(Ax)exp(-AX (1 + R)) 0 < x < XR 4 (1 + R) ' :

T2 ( x ) = '

= exp (-Ax)( 1 exp (A(R -1)X)

1 - R2

2 (1 - R )

Calculate now for x < 0

$2 (x) = 1^1 (R )(1 -exp (-A2( x - u)) )+(№ V R ) - XRdTl\

XR < x < X .

u 11 exp (A(x - u))

(14)

(15)

As a result obtain

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

S2 {x) = exp exp(Xx)

Xx V 1

1

1

1

R ){2 4(1 + R) 4(1 -R)

1 (1 - exp {-XX (1 + R))) I, x < 0.

(16)

2 ^ 2 (1 - R) 2 (1 + R)

In an accordance with (14) - (16) assume by an induction that for x > 0 the formula (2) is true and for x < 0 the formula (3) takes place. Then for x > 0

Tk+1 (x) = J1 (x) + J2 (x) + J3(x) + J4(x).

Here

Calculate now

J1(x) = I dSk

R

exp (-X(x - u ))= exp (-Xx)k-1 dk

jS) 1 + Rj+1'

j2 (x )=-"'"(jXi+1' dTt (R) =

.exp (-X ^^ exp f-X, f-L-" ^'

t=1 j=)1 - RJ+1

ex

p (-Xx)k k-t btt.

-tj

S S 1 ,=01 + Rj+1

exp I Xu

t=1 j

RJ+1 1

RJ+1

-1

min(x, Xkk++;-t) min( x, Xkk++12-t)

min(x, X^-t)

x> 0.

Then we have for X,

k+ 2-s ^ „ ^ x^k+1-s k+1 S x S Xk+1

X!

J3 ( x) = - I dTk lRl=-ak 00exp (-XX ) + min(x,X1+1) {R )

k-s f Xx ^ k-s f Xx

akk-sj exp{-Rj+i)+ IS bkk-sj expI I + c

RJ+1

k k-s

and

X

1+1

J4 (x )= I dTk lR

min (x, X1+1) { R

exp (-X( x - u))

exp (Xx)sk-sakk_sj f X f 1 ^ min(max(x,Xk++^s ),x1+1 )

:—— S S-exp I -Xu I —— +1

2 s=1 jJ=01 + Rj+1 { '

RJ+1 )) min(max(x,Xk++12-s),X'+1)

exp (Xx )SkSsbkk-s j fX f 1 - S S :——rr exp I Xu

2 s=1 ,t01 - Rj+1

RJ+1

- 1

min( max( x, X^-s), Xlt+1) min(max(x, X^2-1), X1+1)

fors e {1,...,k},

J3 (x) = J4 (x) = 0, s = k +1.

From (17) - (22) we have for x > 0, s e {1,...,k}

T i \ i X^\,exp (-Xx)k"1 dk j ,

Tk+1 (x) = -ak 0 0 exp (-XX ) + -^-- SS 1 + rj + 1 +

min (x, Xkk++12-t)

1-j exp I-X

1

RJ+1

-1

min (x, Xkk++11-t)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

and for s = k +1

exp (-Ax)*k~t bkk-t

E E

Ä jt01 + RJ+1

exp | Au

RJ+1

+1

k+2-t\ k+1 I

min( x, X\ min(x, Xfc1-')

k-s ( — Ax 1 k-s ( Ax 1

+E0 akk-sj exp f Rj+r J+E0 bkk-sj exp V Rj+1 J+ckk-s

j=0

exp (Ax jEk;' akk-tj

"S jE0l + RJ+1'

exp | -Au

+1

min (max( x, X^1-s ), X1+1)

RJ+1 J J min(max(x^2-s ),X1+1)

k k-t b,

exp(Ax)v v 9 E E

2 t=1 j =0

exp (Au ( 1 - rJJ

min( max( x, X^ ), Xl+i)

n(max( x, Xkk++i2 - s ), Xl+i)

Tk+1 (x) = exp (-Ax) E kEt akk-tj

= exp(-Ax)

-Ax )k -l d,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2 tEnE^^ni-1

E kJ + jE=0 1 + RJ+1

min( x, Xkk++i2-')

1

exp(-Ax)

k k-t b E E

'k k-t j

t=1J=0 1 + RJ+1

exp | Au

1

RJ+1

+1

min(x, Xkk++1-') min( x, Xkk++2-')

min(x, Xtl-')

(24)

Using the formulas (2) rewrite the formulas (23), (24) as follows: for 5 e {1,...,k}

Tk+1(x) =

p (-Ax) (kEr dkj E1 E

2 V JE0l + RJ+1 ¿iE

A (k, t, j) akk-t j . A2 ( k, *, j ) bk k -

tj

1 - RJ+1

1 + RJ+1

k-s

+ E

j=0

B1 (k, s' j) "k k-s j B2 ( k, S' j ) bkk-si

1 - RJ+1 1 + Rj+1

1 k - s

- 2 E

2 J =0

exp

Ax

' Rj+1 I Uk k-s j 1 - RJ+1

exp

Ax

Rj+1 I bkk - s j 1 + RJ+1

k-s ( Ax 1 k-s ( Ax

akk-sj exp f- j J + IE bkk-sj exp | —^ 1 + Ckk-s - ak 00exp (-AX

exp (Ax) ( E kEs

2 Vt=s+ij=0

J- V RJ+1

A3 ( k, ^, j ) ak k - s j A4 ( k, ^,j ) bk k - s j

1 + RJ+1

k-s

-E

J=0

B3 (k, s' j)akk-sj B4 (k, ^ j)bkk-sj

1 + Rj+r 1 - Rj+1

1 k-s

- 2 E

2 J=0

exp

1 - RJ+1

Ax 1

-Rj+i Jakk-sj

1 + RJ+1

exp

Ax

R j + 1 I kk - s j 1 - RJ+1

(25)

- k +E- s (_ Ax 1 k+r-s, (Ax 1

- E ak+1 k+1-sj exp i _T)7 I+ E bk+1 k+1-sj exp i tj I + ck+1 k+1-s ,

j=0 V RJ J j=0 V RJ.

for s = k + 1

Tk+1(x) =

= exp (-Ax)( k-r dkj s-1 k-t

S E

Vj

=01 + RJ+1 t=i j

A (k, t, j) ak k-t j A(k, t,j) bk k-t j

1 - RJ+1 1 + Rj+1

(26)

k-s

E

j=0

Bi (k, s' j ) "k k-s j B2 (k, S'j)bkk-

s J

1 - RJ+1

1 + RJ+1

= ak+i0 0exp (-Ax ).

Calculate now for x < 0

2

Sk+1 (x ) = jdSk {R |f1 -exp (-X2(x - u)) U0 dSk IR )-? dTk IR ))exp (X(x - u »■

(27)

k-1 j f Xx

= jS dkJexplj

1-

1

1

A

2 (1 + RJ+1) 2 (1 - RJ+1)

1 k-1 dk J exp (Xx) exp (Xx) k k~s ak k_,

2 S

2 J=0

-s j

1 - RJ+1

S1 £1 + RJ+1'

s =1 J

exp I -Xu

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

k k—s bu

exp (Xx l^bj exp | Xu

s =1 J

1 ,t01 - RJ+1

RJ+1

-1

1

RJ+1

\r>

x

x

k + 2-s k+1

X

k+1-s k+1

k +2-s k +1

V x

k +1-s k +1

k-1 j f Xx

= S dkjexp| j=0

RJ+1

1-

1___1

2 (1 + RJ+1) 2 (1 - RJ+1)

A3 (k,s,j)akk-s j + A4 (k,s,j)bkk-s j

_ 1 + RJ+1 1 - RJ+1

From the equalities (13) - (16), (25) - (27) we have the formulas (4) - (12). Theorem 1 is proved.

exp (Xx) l s dkj + * kSs 2 {J=01 - RJ+1 s=1 j=0

1 | ^^+1 j exp ff ^

Remark 1. Obtained formulas remain true in a case of variable boundary and interest rate: Xk = Rk_1Xk_1 _1, t = inf (k: Xk > X (k))

then we rewrite

Xt = 0, Xk = X (k) , Xj = min (XjiRk-1, X (k)) , R°° = 1, Rj = R^R^, and replace RJ+1 by RjJ and RJ by R]k+l in previous formulas, 1 < j < k -1, k > 1, without assumption

Rk-1 < 1.

Remark 2. The proof of Theorem 1 contains sufficiently complicated and long symbol transformations. The transformations create manifold mistakes. To avoid these mistakes we examined the transformations by numerical calculations.

Remark 3. Suppose that X=1, R=0.5, X=0.4491 then in an accordance with Theorem 1 we obtain

Table 1.

k N

10 0.03052

20 0.00512968

30 0.000861841

40 0.000144798

50 0.0000243276

60 4.08729* 10-6

70 6.86708* 10-7

80 1.15374* 10-7

90 1.93841* 10-8

100 3.25672* 10-9

Table 1.

The authors thank A.A. Novikov for useful discussions.

i Надоели баннеры? Вы всегда можете отключить рекламу.