Научная статья на тему 'A MULTIFUNCTIONAL ADDITIVE FOR HEAVY CONCRETES'

A MULTIFUNCTIONAL ADDITIVE FOR HEAVY CONCRETES Текст научной статьи по специальности «Технологии материалов»

CC BY
17
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
HEAVY CONCRETE / MULTIFUNCTIONAL ADDITIVE / CAPROLACTAM / SETTING TIME / DENSITY OF CEMENT PASTE

Аннотация научной статьи по технологиям материалов, автор научной работы — Barannikov Mikhail V., Polyakov Igor' V., Vinogradova Lyubov' A., Polyakov Vyacheslav S.

Introduction. Faster construction and commissioning of industrial and civil facilities is a main factor affecting their operational characteristics at the stage of construction due to high-quality multifunctional additives, having plasticizing properties, coupled with the accelerated curing of composite materials in cement binders. The article addresses a study on the influence of a new multifunctional additive on the physical and mechanical properties of heavy concretes, that determines its plasticizing properties and affects concrete strength. Materials and methods. The study focuses on concrete B30. The Vicat apparatus was used to test the cement paste to identify its normal density and setting time according to GOST 310.3. The strength of cubic specimens was tested using hydraulic press P-120 according to GOST 1080-90. Results. The multifunctional additive was obtained by synthesizing caprolactam mixed with polyalkylene glycol and amino alcohols. The test on the setting time of the cement paste has proven that the multifunctional additive plasticizes, if added to heavy concrete mixes. The impact of the concentration of the multifunctional additive on the setting time, compressive strength and slumping of the concrete mix has been identified. These new data were applied to find the optimal interval of concentrations of the multifunctional additive, added to the concrete mix to make densely reinforced concrete products. The optimal concentration interval is 0.2-0.3 % of the cement mass. Conclusions. The multifunctional additive made of domestic chemical products as a result of the study, improves physical and mechanical characteristics of concrete mixes to be used in the construction of civil and industrial construction facilities.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «A MULTIFUNCTIONAL ADDITIVE FOR HEAVY CONCRETES»

RESEARCH PAPER / НАУЧНАЯ СТАТЬЯ УДК 666.972.16

DOI: 10.22227/1997-0935.2022.6.720-726

A multifunctional additive for heavy concretes

Mikhail V. Barannikov1, Igor' V. Polyakov2, Lyubov' A. Vinogradova1,

Vyacheslav S. Polyakov3

1 Ivanovo State University of Chemistry and Technology; Ivanovo, Russian Federation; 2 Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN);

Moscow, Russian Federation; 3 Polycom; Ivanovo, Russian Federation

ABSTRACT

Introduction. Faster construction and commissioning of industrial and civil facilities is a main factor affecting their operational characteristics at the stage of construction due to high-quality multifunctional additives, having plasticizing properties, coupled with the accelerated curing of composite materials in cement binders. The article addresses a study on the influence of a new multifunctional additive on the physical and mechanical properties of heavy concretes, that determines its plasticizing properties and affects concrete strength.

Materials and methods. The study focuses on concrete B30. The Vicat apparatus was used to test the cement paste to identify its normal density and setting time according to GOST 310.3. The strength of cubic specimens was tested using hydraulic press P-120 according to GOST 1080-90.

Results. The multifunctional additive was obtained by synthesizing caprolactam mixed with polyalkylene glycol and amino alcohols. The test on the setting time of the cement paste has proven that the multifunctional additive plasticizes, if added N N to heavy concrete mixes. The impact of the concentration of the multifunctional additive on the setting time, compressive

g g strength and slumping of the concrete mix has been identified. These new data were applied to find the optimal interval

ty ty of concentrations of the multifunctional additive, added to the concrete mix to make densely reinforced concrete products.

,0 The optimal concentration interval is 0.2-0.3 % of the cement mass.

* O Conclusions. The multifunctional additive made of domestic chemical products as a result of the study, improves physical

U 3 > in E M

to

£ and mechanical characteristics of concrete mixes to be used in the construction of civil and industrial construction facilities.

KEYWORDS: heavy concrete, multifunctional additive, caprolactam, setting time, density of cement paste

O FOR CITATION: Barannikov M.V., Polyakov I.V., Vinogradova L.A., Polyakov V.S. A multifunctional additive for heavy

E concretes. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2022; 17(6):720-726. DOI: 10.22227/1997-

O .2 0935.2022.6.720-726

<U <D

О % ---- "t^

о I g<

S =

см 5

CL

Corresponding author: Mikhail V. Barannikov, newmichael2014@gmail.com.

Многофункциональная добавка для тяжелого бетона

1 2 Михаил Владимирович Баранников , Игорь Вячеславович Поляков ,

Любовь Алексеевна Виноградова1, Вячеслав Сергеевич Поляков3

1 Ивановский государственный химико-технологический университет (ИГХТУ); г. Иваново, Россия;

2

о 2Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШРАН);

г. Москва, Россия;

23 т 3 Поликом; г. Иваново, Россия

о ^

о ЕЕ -

^ о

§ ° АННОТАЦИЯ

2 Введение. При строительстве объектов промышленного и гражданского назначения одними из основных факторов,

(Л £= влияющих на эксплуатационные характеристики, являются сокращение времени строительства и ввода в эксплуа-

— 2 тацию. Такие условия возможно обеспечить применением высококачественных многофункциональных добавок, об-

^ • ладающих пластифицирующими свойствами, а также ускоряющих твердение композиционных материалов цементных

О ^ вяжущих. Рассматриваются влияние новой многофункциональной добавки на физико-механические свойства тяжелой

О бетонной смеси, определение пластифицирующих свойств и воздействие на прочность бетона.

^ Ш Материалы и методы. Объект исследования — бетон марки В30. Испытания по установлению нормальной густоты

X цементного теста, сроков схватывания проводили с использованием прибора Вика согласно ГОСТ 310.3. Исследо-

X

с

_ вание прочности образцов-кубов выполняли в соответствии с ГОСТ 10180-90 на гидравлическом прессе П-120.

¡^ jj Результаты. Получена многофункциональная добавка путем синтеза капролактама в смеси с полиалкиленгликолями

U > и аминоспиртами. На основе результатов определения сроков схватывания цементного теста доказано, что много-

функциональная добавка обладает пластифицирующими свойствами при добавлении в тяжелую бетонную смесь.

720 © M.V. Barannikov, I.V. Polyakov, L.A. Vinogradova, V.S. Polyakov, 2022

Распространяется на основании Creative Commons Attribution Non-Commercial (CC BY-NC)

Выявлено влияние концентрации введенной многофункциональной добавки на сроки схватывания, прочность при сжатии и осадку конуса бетонной смеси, что позволило установить оптимальный интервал концентраций многофункциональной добавки для введения в бетонную смесь для использования ее при изготовлении густоармированных железобетонных изделий, который составил 0,2-0,3 % от массы цемента.

Выводы. Полученная многофункциональная добавка на основе продуктов отечественного химического производства увеличивает физико-механические характеристики бетонных смесей. Данные смеси могут применяться в строительстве при возведении гражданских и промышленных сооружений.

КЛЮЧЕВЫЕ СЛОВА: тяжелый бетон, многофункциональная добавка, капролактам, сроки схватывания, густота цементного теста

ДЛЯ ЦИТИРОВАНИЯ: Баранников М.В., Поляков И.В., Виноградова Л.А., Поляков В.С. A multifunctional additive for heavy concretes // Вестник МГСУ. 2022. Т. 17. Вып. 6. С. 720-726. DOI: 10.22227/1997-0935.2022.6.720-726

Автор, ответственный за переписку: Михаил Владимирович Баранников, newmichael2014@gmail.com.

INTRODUCTION

The main tasks of the modern construction sector are to reduce the time, needed to make concrete and reinforced concrete products and to accelerate the standard strength development of concrete [1]. This allows for an increase in the capacity of enterprises engaged in the production of reinforced concrete structures (RCS) [2].

In several articles [3-6], these issues are addressed in details, and current solutions are analyzed. Nevertheless, the task of accelerating the standard strength development of concrete and retention of its high strength properties is relevant.

Concrete hardening can be intensified by using a number of the techniques, including effective complex chemical additives [7, 8]. This work addresses experimental additives that are classified as surfactants on the basis of their physicochemical properties. These additives intensify topochemical processes and contribute to the acceleration of capillary diffusion of mixing water molecules into inner layers of cement particles.

Of practical interest are multifunctional additives, which act as effective plasticizers of concrete mixes and boost concrete strength in early curing stages [9-11]. As a result of metabolic reactions with calcium hydroxide or cement minerals, such additives strongly affect the hydrolysis of three — calcium silicate, increase the amount of calcium and hydroxide ions in the liquid phase of cement, which leads to the supersaturation of the system with these ions and accelerates coagulative and crystalline structurization of new hydrated substances. Due to the accelerated curing of concrete, cement consumption is adjustable, reusability of molds goes up, the amount of energy, consumed by steam curing, is down [12, 13]. In case of cement ageing at positive temperatures, such additives accelerate concrete strength development 1.5-2.0-fold; hence, the strength of concrete thus produced is equal to 60-65 %, and if steam curing is applied, the strength of concrete goes up to 80 % [14, 15]. The time of isothermal heating of concrete, subject to steam curing, may be reduced by 25-30 % and cement consumption is down by 10-15 % [16, 17].

Raw materials, used to obtain this multifunctional additive (MFA), include products of oligomerization of

caprolactam in a mixture of polyalkylene glycol and amino alcohols (TEA, TETA) and in the presence of reaction initiators.

The aim of synthesis of the multifunctional additive was to obtain a product featuring an optimal combination of properties that allow optimizing two processes that are opposite in terms of time and volume, starting from the launch of mixing. At the same time, the most important thing is the wetting ability of the mixing water in the surface layer of cement grains and the velocity of capillary penetration of water molecules into the lower layers of grains [18]. It is known from the literary data that this effect is enhanced by the use of plasticizers, including super- and hyper-plasticizers [19-21], or by increasing the water-cement ratio (W/C) [22]. The final method is used relatively rarely in these conditions, as it reduces concrete strength.

MATERIALS AND METHODS

To obtain a multifunctional nitrogen-bearing additive, caprolactam, amino alcohols (TEA, TETA), polyalkylene glycols, and reaction initiators were used as reaction initiators. Laboratory specimens of the multifunctional additive were synthesized in a 500 ml three-necked glass flask with a backflow condenser and a thermometer. A portion of the initial caprolactam was loaded into the flask and melted to a temperature of 70-75 °C, then the required amount of distilled water was added as an initiator of the lactam cycle. The caprolactam melt was conditioned for 18-20 min at the above temperature. Further, the pre-set amount of other hand stirred components was added to the flask. Their mixture was prepared separately in a metal glass heated to a temperature of 82-85 °C. After these components were added, the temperature of the reaction mixture was raised to 140-160 °C for the synthesis to last 90 minutes. The resulting additive is a homogeneous light yellow liquid that has non-irritant oil-like smell and unlimited solubility in water.

Concrete B30 (GOST 26633-2015) was employed to conduct the research. The following materials were used to prepare one cubic meter of the concrete mix:

• cement CEM I 42.5 N: 405 kg, GOST 311082020;

< П

tT

iH О Г

0 со

t CO

1 z y 1

J CD

u -

r i

i 3

0 i

01

о n

со со

n NJ i 6

• )

ii

® 7

. DO

■ T

s У с о

<D * ®®

О О 10 10 10 10

• quartz sand: 675 kg; fineness modulus: 2.0-2.5 GOST 8736-2014;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

• crushed granite gravel: 1,085 kg, grain size 5.020.0 mm, GOST 10268-80;

• process water: 162 kg, GOST 23732.

Specimens of concrete mixes were prepared

according to GOST 7473-2010.

The influence of the multifunctional additive on physical and mechanical properties of concrete B30 was identified depending on its concentration in the concrete mix, respectively 0.1, 0.3, 0.5 % of the mass of cement. The additive was dissolved in a pre-set amount of water in the process of preparing specimens of concrete mixes. At the same time, it was found that the additive quickly dissolves in water, if the indoor temperature on production premises is above 0-1 °C.

The Vicat apparatus was used to identify the density and curing time of the cement paste according to GOST 310.3.

The strength of cubic specimens was tested using hydraulic press P-120 according to GOST 1080-90. Three cubic specimens were tested on the 1, 3, 7, 14, 28 days of curing in normal conditions at 20-22 °C to calculate the average compressive strength. To calculate the actual strength of the specimens, the K = 0.95 coefficient was used, that took into account the dimensions of molds (100 x 100 x 100 mm) used to make the cubic specimens.

RESULTS

To identify the plasticizing properties of the multifunctional additive, the normal density of the cement paste was identified without the additive, equal to 28 %, and with additives in an amounts of 0.1, 0.3, 0.5 %. The graph (Fig. 1) shows that an increase in the concentration of the additive proportionally reduces the required amount of mixing water while maintaining the normal density of the cement paste in the range of

N N N N

0 o

N N <o <o

* <D

U 3

> in

E M

HQ N

si

1 ?

<D <D

o % ----

O I

z ■ i co E

E O

CL ° c

Ln O

s g

o EE

CD ^

£

CO °

■8 r

El

Ü (fl

0,0 0,1 0,2 0,3 0,4

Additive concentration, %

Fig. 1. The influence of the concentration of the additive on a change in the normal density of the cement paste Physical and mechanical properties of the concrete mix; compressive strength of concrete B30

Number Specimens Multifunctional additive: concentration, % Curing time, min Compressive strength, MPa Cone slump, cm

Beginning End 28th day

1 No additive - 142 210 39.8 5.3

2 Specimen 1 0.1 178 245 42.3 8.5

3 Specimen 2 0.3 198 294 46.7 16.2

4 Specimen 3 0.5 270 396 39.4 21.4

Fig. 2. Compressive strength of the B30 concrete specimens, depending on the concentration of the multifunctional additive that features normal curing

27-29 %. The multifunctional additive in the amount of 0.1 to 0.5 % reduces the amount of mixing water by 7.4-18 % of the original amount without an additive.

The influence of the concentration of the multifunctional additive on the physical and mechanical properties of the concrete mix, the compressive strength of concrete B30 on the 28th day are shown in Table.

The curing time of the cement paste at W/C = 0.4 and the strength of concrete are shown in Table. The data show that the multifunctional additive is an effective plasticizer for a heavy concrete mix, and its concentration of 0.1 and 0.3 % increases the strength of cubic specimens by more than 6 and 17 %, respectively.

The use of the 0.5 % concentration of the multifunctional additive substantially extends the beginning and end of the cement paste curing, that is, the process of transition of the coagulation-crystalline structure of the cement paste into crystalline is slowed down. The factor of a rise in the concentration of the plasticizer determines the slowdown in the growth of strength of Specimen 3 compared to Specimens 1, 2 and the specimen that has no additive (Fig. 2).

The concrete mix that has a multifunctional additive (whose concentration is 0.3 to 0.5 %) can be efficiently used to make densely reinforced concrete products both in the stationary conditions of production of reinformed concrete products and at open construction sites.

Analysis of the data, presented in Table and Fig. 1 and 2, shows that to achieve the consistency of the concrete mix corresponding to the P-4, P-5, the concentration of the multifunctional additive shall reach 0.2-0.3 % of the mass of cement. If the strength of concrete is 80 % of the grade strength on the 28th day, its value for Specimen 1 increases by 10.3 %, Specimen 2 by D22 %, Specimen 3 by D3 %.

CONCLUSION AND DISCUSSION

The research has confirmed that the method of synthesis, coupled with the use of domestic components of local raw materials can be employed to make an effective plasticizing additive that rises the consistency of heavy concrete mixes from P-1 to P-5.

The experimental additive rises strength properties of concrete B30 specimens if the concentration of the additive equals 0.2-0.3 % of the mass of cement, which allows qualifying it as a multifunctional additive that has prospects for practical use.

The use of the 0.1, 0.3, 0.5 % concentrations of the multifunctional additive allows rising the standard strength of concrete B30 by 10.3 %; D22 %; D3 %, respectively.

0.4-0.5 % concentrations of the multifunctional additive can be used to prepare heavy concrete mixes to make densely reinforced concrete products and structures.

< n

tT

iH

O r s 2

0 M

t <z>

1 z y i

J CD

u s

r i

n °

i 3

0 i

01

o n

CO CO

n NJ a 0

i 66

• )

mM

® 7

. DO

■ T s □

S y c o <D X

PP

2 2 O O 10 10 10 10

REFERENCES

1. Ngugi H.N., Mutuku R.N., Gariy Z.A. Effects of sand quality on compressive strength of concrete: A case of Nairobi County and Its Environs, Kenya. Open Journal of Civil Engineering. 2014; 04(03):255-273. DOI: 10.4236/ojce.2014.43022

2. Mikerego E., Niyonzima N., Ntirampeba J.C. Impact of impurities of local construction materials on the bearing capacity of the concrete used in structures in Burundi. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2021; 16(10):1357-1362. DOI: 10.22227/1997-0935.2021.10.1357-1362

3. Gora J., Piasta W. Impact of mechanical resistance of aggregate on properties of concrete. Case Studies in Construction Materials. 2020; 13:e00438. DOI: 10.1016/j.cscm.2020.e00438

4. Hong L., Gu X., Lin F. Influence of aggregate surface roughness on mechanical properties of interface and concrete. Construction and Building Materials. 2014; 65:338-349. DOI: 10.1016/j.conbuildmat.2014.04.131

5. Kharchenko A.I., Alekseev V.A., Kharchenko I. Ya., Bazhenov D.A. Structure and properties of fine concretes based on composite binders. VestnikMGSU [Proceedings

tv tv ofMoscow State University of Civil Engineering]. 2019;

3 3 14(3):322-331. DOI: 10.22227/1997-0935.2019.3.322-<o<o 331 (rus.).

g § 6. Rakhimbaev Sh.M., Tolypina N.M., Tolypin D.A. e tn Comparative stability of concrete with aggregates and ¿q ^ fillers of different composition. University news. Con-^ ^ struction. 2018; 10:13-21. DOI: 10.32683/0536-1052-^ E 2018-718-10-13-21 (rus.).

o-jj 7. Tarakanov O.V., Belyakova E.A., Yurova V.S. • Complex organomineral additives with hardening ac-gT cu celerator. Solid State Phenomena. 2018; 284:929-935. 1 ^ DOI: 10.4028/www.scientific.net/SSP.284.929 ^ 8. Smirnov I.R. Complex additives for concrete

g jj based on substances of organic and mineral nature. Science

4 "g and Technique. 2022; 21(l):57-62. DOI: 10.21122/2227° ® 1031-2022-21-1-57-62 (rus.).

cm ^ v '

z -M 9. Bessaies-Bey H., Khayat K.H., Palacios M.,

co ^

o] E Schmidt W., Roussel N. Viscosity modifying agents: Key í? I components of advanced cement-based materials with cl u adapted rheology. Cement and Concrete Research. 2022; ° 152:106646. DOI: 10.1016/j.cemconres.2021.106646

CO —

g cz 10. Al-Khazraji A.A. Use of plasticizers in ceo ment concrete. Journal of Advanced Research in Dy-? >, namical and Control Systems. 2020; 12(3):599-607. ^ f DOI: 10.5373/JARDCS/V12I3/20201229 — 2 11. Garzón-Agudelo P.A., Palacios-Alvarado W., > ^ Medina-Delgado B. Impact of plasticizers on ü w the physical and structural properties of concrete

5 w

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

g used in constructions. Journal of Physics: Conference

s * x C

¡3 -J Received May 19, 2022. IB ¡¡> Adopted in revised form on May 22, 2022. Approved for publication on May 30, 2022.

Series. 2021; 2046(1):012069. DOI: 10.1088/17426596/2046/1/012069

12. Leshkanov A., Dobshits L., Anisimov S. Influence of presteaming period and curing temperature on the plasticized concrete strength. IOP Conference Series: Materials Science and Engineering. 2020; 896(1):012094. DOI: 10.1088/1757-899x/896/1/012094

13. Rasheed A., Usman M., Farooq S., Hanif A. Effect of super-plasticizer dosages on fresh state properties and early-age strength of concrete. IOP Conference Series: Materials Science and Engineering. 2018; 431:062010. DOI: 10.1088/1757-899X/431/6/062010

14. Langner E.A., Shikhovtsov A.A., Tsarev A.A., Petrosyan V.V. Modern technologies for accelerating concrete strength development. The Eurasian Scientific Journal. 2020; 12(5). (rus.).

15. Loboda K., Zagoruyko T., Zaichenko M. Highperformance concrete with restrained shrinkage. Proceeding of the Donbas National Academy of Civil Engineering and Architecture. 2018; 131(3):64-67.

16. Usov B.A., Okolnikova G.E. The chemical additives in the prefabricated reinforced concret technology. Ecology and Construction. 2015; 4:7-14. (rus.).

17. Temesheva D.K., Plotnikova L.G. Improving the quality of highly mobile concrete mixes for monolithic construction. Polzunovskiy Almanac. 2021; 1:173-175. (rus.).

18. Polyakov I.V., Barannikov M.V., Stepano-va E.A. Additives for heavy concrete based on industrial waste from chemical industries. ChemChemTech. 2021; 64(4):104-109. DOI: 10.6060/ivkkt.20216404.6330

19. Govin A., Bartholin M.-C., Schmidt W., Grosseau Ph. Combination of superplasticizers with hydroxypropyl guar, effect on cement-paste properties. Construction and Building Materials. 2019; 215:595604. DOI: 10.1016/j.conbuildmat.2019.04.137

20. Fares G., Al-Negheimish A., Khan M.I. Polycarboxylate superplasticizer and viscosity modifying agent: Mode of addition and its effect on cement paste rheology using image analysis. Journal of Building Engineering. 2022; 48:103946. DOI: 10.1016/j. jobe.2021.103946

21. Vinogradova L.A. Effect of Introducing Po-liplast SP-3 Superplasticizer on the Properties of Concrete. Glass and Ceramics. 2018; 75(3-4):160-162. DOI: 10.1007/s10717-018-0047-0

22. Alawode O., Idowu O.I. Effects of water-cement ratios on the compressive strength and workability of concrete and lateritic concrete mixes. The Pacific Journal of Science and Technology. 2011; 12(2):99-105.

B i o n o t e s : Mikhail V. Barannikov — Candidate of Technical Sciences, Researcher, Department of Chemistry and Technology of Macromolecular Compounds; Ivanovo State University of Chemistry and Technology; 7 Sheremetevsky av., Ivanovo, 15300, Russian Federation; ID RISC: 891517, Scopus: 57194554340, ResearcherlD: X-8173-2018, ORCID: 0000-0003-3908-139X; newmichael2014@gmail.com;

Igor' V. Polyakov — postgraduate student, Scientific Center for Nonlinear Wave Mechanics and Technology; Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN); 4 Maly Kharitonevsky lane, Moscow, 101000, Russian Federation; Scopus: 57190391056; polyakovigor009@gmail.com;

Lyubov' A. Vinogradova — Candidate of Chemical Sciences, Associate Professor, Associated Professor of the Department Technology of Ceramics and nanomaterials; Ivanovo State University of Chemistry and Technology; 7 Sheremetevsky av., Ivanovo, 15300, Russian Federation; ID RISC: 602542, Scopus: 57203041827, ResearcherlD: E-9041-2019; lavi@isuct.ru;

Vyacheslav S. Polyakov — Candidate of Technical Sciences, Researcher; Polycom; 40a 2nd Chapaeva st., Ivanovo, 153048, Russian Federation; vs_polyakov@mail.ru.

Contribution of the authors: all authors made an equivalent contribution to the preparation of the publication. The authors declare the absence a conflict of interest warranting disclosure in this article.

СПИСОК ИСТОЧНИКОВ

1. Ngugi H.N., Mutuku R.N., Gariy Z.A. Effects of sand quality on compressive strength of concrete: A case of Nairobi County and Its Environs, Kenya // Open Journal of Civil Engineering. 2014. Vol. 04. Issue 03. Pp. 255-273. DOI: 10.4236/ojce.2014.43022

2. Микерего Э., Нийонзима Н., Нтирампе-ба Ж.К. Impact of impurities of local construction materials on the bearing capacity of the concrete used in structures in Burundi // Вестник МГСУ. 2021. Т. 16. № 10. С. 1357-1362. DOI: 10.22227/19970935.2021.10.1357-1362

3. Gora J., Piasta W. Impact of mechanical resistance of aggregate on properties of concrete // Case Studies in Construction Materials. 2020. Vol. 13. P. e00438. DOI: 10.1016/j.cscm.2020.e00438

4. Hong L., Gu X., Lin F. Influence of aggregate surface roughness on mechanical properties of interface and concrete // Construction and Building Materials. 2014. Vol. 65. Pp. 338-349. DOI: 10.1016/j. conbuildmat.2014.04.131

5. Харченко А.И., Алексеев В.А., Харченко И.Я., Баженов Д.А. Структура и свойства мелкозернистых бетонов на основе композиционных вяжущих // Вестник МГСУ. 2019. Т. 14. № 3. С. 322-331. DOI: 10.22227/1997-0935.2019.3.322-331

6. Рахимбаев Ш.М., Толыпина Н.М., Толы-пинД.А. Сравнительная стойкость бетона с заполнителями и наполнителями разного состава // Известия вузов. Строительство. 2018. № 10 (718). С. 13-21. DOI: 10.32683/0536- 1052-2018-718-10-13-21

7. Tarakanov O.V., Belyakova E.A., Yurova V.S. Complex organomineral additives with hardening accelerator // Solid State Phenomena. 2018. Vol. 284. Рp. 929-935. DOI: 10.4028/www.scientific.net/ SSP.284.929

8. Смирнов И.Р. Комплексные добавки к бетону на основе веществ органической и минеральной при-

роды // Наука и техника. 2022. Т. 21. № 1. С. 57-62. DOI: 10.21122/2227-1031-2022-21-1-57-62

9. Bessaies-Bey H., Khayat K.H., Palacios M., Schmidt W., Roussel N. Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology // Cement and Concrete Research. 2022. Vol. 152. P. 106646. DOI: 10.1016/j. cemconres.2021.106646

10. Al-Khazraji A.A. Use of plasticizers in cement concrete // Journal of Advanced Research in Dynamical and Control Systems. 2020. Vol. 12. Issue 3. Pp. 599607. DOI: 10.5373/JARDCS/V12I3/20201229

11. Garzón-Agudelo P.A., Palacios-Alvarado W., Medina-Delgado B. Impact of plasticizers on the physical and structural properties of concrete used in constructions // Journal of Physics: Conference Series. 2021. Vol. 2046. Issue 1. P. 012069. DOI: 10.1088/17426596/2046/1/012069

12. Leshkanov A., Dobshits L., Anisimov S. Influence of presteaming period and curing temperature on the plasticized concrete strength // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 896. Issue 1. P. 012094. DOI: 10.1088/1757-899x/896/1/012094

13. Rasheed A., Usman M., Farooq S., Hanif A. Effect of Super-plasticizer Dosages on Fresh State Properties and Early-Age Strength of Concrete // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 431. P. 062010. DOI: 10.1088/1757-899X/431/6/062010

14. Лангнер Е.А., Шиховцов А.А., Царев А.А., Петросян В.В. Современные технологии ускорения набора прочности бетона // Вестник Евразийской науки. 2020. Т. 12. № 5.

15. Loboda K., Zagoruyko T., Zaichenko M. Highperformance concrete with restrained shrinkage // Proceeding of the Donbas National Academy of Civil

< n

tT

iH О Г

0 со

t CO

1 z y i

J CD

u s

r i

n °

i 3

0 i

01

о n

со со

n NJ i 66

• )

mM

® 7

. DO

■ T

s □

(Л У

с о

<D * ®®

2 2 О О 2 2 2 2

Engineering and Architecture. 2018. Vol. 131. Issue 3. Pp. 64-67.

16. Усов Б.А., Окольникова Г.Э. Химические добавки в технологии сборного железобетона // Экология и строительство. 2015. № 4. С. 7-14.

17. Темешева Д.К., Плотникова Л.Г. Повышение качества высокоподвижных бетонных смесей для монолитного строительства // Ползуновский альманах. 2021. № 1. С. 173-175.

18. Polyakov I.V., Barannikov M.V., Stepanova E.A. Additives for heavy concrete based on industrial waste from chemical industries // ChemChemTech. 2021. Vol. 64. Issue 4. Pp. 104-109. DOI: 10.6060/ ivkkt.20216404.6330

19. Govin A., Bartholin M.-C., Schmidt W., Grosseau Ph. Combination of superplasticizers with hydroxypropyl guar, effect on cement-paste properties //

Construction and Building Materials. 2019. Vol. 215. Pp. 595-604. DOI: 10.1016/j.conbuildmat.2019.04.137

20. Fares G., Al-Negheimish A., Khan M.I. Polycarboxylate superplasticizer and viscosity modifying agent: Mode of addition and its effect on cement paste rheology using image analysis // Journal of Building Engineering. 2022. Vol. 48. P. 103946. DOI: 10.1016/j. jobe.2021.103946

21. Vinogradova L.A. Effect of Introducing Poliplast SP-3 Superplasticizer on the Properties of Concrete // Glass and Ceramics. 2018. Vol. 75. Issue 3-4. Pp. 160-162. DOI: 10.1007/s10717-018-0047-0

22. Alawode O., Idowu O.I. Effects of water-cement ratios on the compressive strength and workability of concrete and lateritic concrete mixes // The Pacific Journal of Science and Technology. 2011. Vol. 12. Issue 2. Pp. 99-105.

Поступила в редакцию 19 мая 2022 г. Принята в доработанном виде 22 мая 2022 г. Одобрена для публикации 30 мая 2022 г.

Об авторах : Михаил Владимирович Баранников — кандидат технических наук, научный сотрудник кафедры химии и технологии высокомолекулярных соединений; Ивановский государственный химико-техно-

м м

су (у логический университет (ИГХТУ); 153000, г. Иваново, пр-т Шереметевский, д. 7; РИНЦ ID: 891517, Scopus:

3 3 57194554340, ResearcherID: X-8173-2018, ORCID: 0000-0003-3908-139X; newmichael2014@gmail.com;

<0 <0 Игорь Вячеславович Поляков — аспирант, Научный центр нелинейной волновой механики и технологии;

U § Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН); 101000, г. Мо-

с $ сква, Малый Харитоньевский пер., д. 4; Scopus: 57190391056; polyakovigor009@gmail.com;

ijg ^ Любовь Алексеевна Виноградова — кандидат химических наук, доцент, доцент кафедры технологии

^ керамики и наноматериалов; Ивановский государственный химико-технологический университет (ИГХТУ);

g 153000, г. Иваново, пр-т Шереметевский, д. 7; РИНЦ ID: 602542, Scopus: 57203041827, ResearcherID: E-9041-

o .2 2019; lavi@isuct.ru; u О

. > Вячеслав Сергеевич Поляков — кандидат технических наук, научный сотрудник; Поликом; 153048,

ф ф г Иваново, ул. 2-я Чапаева, д. 40а; vs_polyakov@mail.ru.

2 3

■8 г

Е!

О И

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации.

О % —■

о

о У Авторы заявляют об отсутствии конфликта интересов.

S = 8 «

z ■ i

от*

от Е

— -ь^

Е §

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CL ° ^ с ю °

S g

о ЕЕ

О) ^

~Z. £ £

ОТ °

i Надоели баннеры? Вы всегда можете отключить рекламу.