Научная статья на тему 'A convenient synthetic route towards the hybrid binuclear metallophthalocyaninato-capped iron and nickel(II) tris-pyridineoximates'

A convenient synthetic route towards the hybrid binuclear metallophthalocyaninato-capped iron and nickel(II) tris-pyridineoximates Текст научной статьи по специальности «Химические науки»

CC BY
36
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
MACROCYCLIC COMPOUNDS / POLYNUCLEAR COMPLEXES / TEMPLATE REACTION / IRON COMPLEXES / NICKEL COMPLEXES / PHTHALOCYANINES / ZIRCONIUM COMPLEXES / HAFNIUM COMPLEXES / МАКРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ / ПОЛИЯДЕРНЫЕ КОМПЛЕКСЫ / ТЕМПЛАТНАЯ РЕАКЦИЯ / КОМПЛЕКСЫ ЖЕЛЕЗА / КОМПЛЕКСЫ НИКЕЛЯ / ФТАЛОЦИАНИНЫ / КОМПЛЕКСЫ ЦИРКОНИЯ / КОМПЛЕКСЫ ГАФНИЯ

Аннотация научной статьи по химическим наукам, автор научной работы — Dudkin Semyon V., Savkina Svetlana A., Belov Alexander S., Voloshin Yan Z.

Earlier, the hybrid binuclear metallophthalocyaninate-capped iron and nickel(II) tris-pyridineoximates have been prepared using a two-step synthetic procedure via transmetalation reaction of their labile triethylantimony-capped precursors. We elaborated new efficient synthetic pathway to the preparation of the titled complexes. This synthetic approach is based on a one-pot template condensation of 2-acetylpyridinoxime with zirconium and hafnium(IV) phthalocyaninate on the corresponding metal ion(II) as a matrix, thus giving the target compounds in high yields (up to 83 %).

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Dudkin Semyon V., Savkina Svetlana A., Belov Alexander S., Voloshin Yan Z.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Удобный метод получения гибридных биядерных металлофталоцианинатосодержащих трис-пиридиноксиматов железа и никеля(II)

Ранее нами было описано получение гибридных биядерных металлофталоцианинато-сшитых триспиридиноксиматов железа и никеля(II) переметаллированием их сурьма-содержащих предшественников. Мы разработали новый эффективный синтетический путь для получения таких комплексов. Этот путь использует одностадийную темплатную конденсацию 2-ацетилпиридиноксима с фталоцианинатами циркония и гафния(IV) на матрице ионе соответствующего металла(II), и позволяет получать искомые соединения с высокими выходами (до 83 %).

Текст научной работы на тему «A convenient synthetic route towards the hybrid binuclear metallophthalocyaninato-capped iron and nickel(II) tris-pyridineoximates»

Phthalocyanines Фталоцианины

Макрогэтэроцмклы

http://macroheterocycles.isuct.ru

Communication Сообщение

DOI: 10.6060/mhc181003d

A Convenient Synthetic Route towards the Hybrid Binuclear Metallophthalocyaninato-Capped Iron and Nickel(II) Tris-pyridineoximates

Semyon V. Dudkin,a@ Svetlana A. Savkina,a Alexander S. Belov,a and Yan Z. Voloshinab

aNesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia bKurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia @Corresponding author E-mail: sdudkin@ineos.ac.ru

Earlier, the hybrid binuclear metallophthalocyaninate-capped iron and nickel(H) tris-pyridineoximates have been prepared using a two-step synthetic procedure via transmetalation reaction of their labile triethylantimony-capped precursors. We elaborated new efficient synthetic pathway to the preparation of the titled complexes. This synthetic approach is based on a one-pot template condensation of 2-acetylpyridinoxime with zirconium and hafnium(IV) phthalocyaninate on the corresponding metal ion(II) as a matrix, thus giving the target compounds in high yields (up to 83 %).

Keywords: Macrocyclic compounds, polynuclear complexes, template reaction, iron complexes, nickel complexes, phthalocyanines, zirconium complexes, hafnium complexes.

Удобный метод получения гибридных биядерных металлофталоцианинатосодержащих трис-пиридиноксиматов железа и никеля(П)

С. В. Дудкин,^ С. А. Савкина^ А. С. Белову Я. З. Волошин^

аИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, 119991 Москва, Россия ъИнститут общей и неорганической химии им. Н.С. Курнакова РАН, 119991 Москва, Россия @Е-таИ: sdudkin@ineos.ac.ru

Ранее нами было описано получение гибридных биядерных металлофталоцианинато-сшитых трис-пиридиноксиматов железа и никеля(П) переметаллированием их сурьма-содержащих предшественников. Мы разработали новый эффективный синтетический путь для получения таких комплексов. Этот путь использует одностадийную темплатную конденсацию 2-ацетилпиридиноксима с фталоцианинатами циркония и гафния(1У) на матрице - ионе соответствующего металла(11), и позволяет получать искомые соединения с высокими выходами (до 83 %).

Ключевые слова: Макроциклические соединения, полиядерные комплексы, темплатная реакция, комплексы железа, комплексы никеля, фталоцианины, комплексы циркония, комплексы гафния.

Introduction

Cage metal complexes and their pseudomacrobicyclic analogs with an encapsulated metal ion (clathroche-

418 © ISUCT Publishing

lates)[1,2] are forms an individual class of the coordination compounds possessing unusual or, even, unique chemical reactivity, physical and physicochemical (including redox) properties.

MaKpoeemepowKXbi /Macroheterocycles 2018 11 (4) 418-420

S. V. Dudkin et al.

Tetrapyrrole- (phthalocyaninate- or porphyrinate-) capped cage and pseudocage metal complexes belong to a subclass of hybrid clathrochelate-based compounds and several types of them with various (pseudo)encap-sulated metal ions and different capping fragments have been synthesized to date.[3-7] Recently,[6] we reported a two-step synthetic approach (Scheme 1) that allowed to obtain the binuclear metallophthalocyaninate-capped metal(II) tris-pyridineoximates using a transmetallation of the initially obtained antimony-capped iron and nickel(II) tris-pyridineoximates with zirconium and hafnium(IV) phthalocyaninates as Lewis acids.

The transmetallation (a capping group exchange) reaction is a most common synthetic approach for the preparation of the hybrid cage metal complexes with tetrapyrrolic macroheterocyclic capping groups.[3-7] However, the use of an extremely toxic triethylantimony(V) dibromide as a capping agent in this two-step procedure, thus allowing to isolate of the trialkylantimony-capped (pseudo-)clathro-chelate complexes with labile capping groups, is its main disadvantage. In the present paper, we report an efficient antimony-free synthesis of the hybrid binuclear metalloph-thalocyaninate-capped iron and nickel(II) tris-pyridineoxi-mates, allowing to obtain them in the moderate or, even high yields using their one-pot template self-assembly.

volume (approximately 5 mL) and, then, it was purified by column chromatography on Al2O3 (eluent: chloroform - methanol 5: 1 (v/v) mixture. The major elute was collected, filtered and evaporated to dryness. The solid residue was washed with hexane and dried in vacuo.

[Fe(AcPyOx)3(HfPc)](ClO). 2-Acetylpyridineoxime (0.057 g, 0.419 mmol), NaClO4-H2O (0.084 g, 0.599 mmol), NaHCO3 (0.030 g, 0.359 mmol), Hf(Cl2)Pc (0.101 g, 0.132 mmol) and FeCl24H2O (0.024g, 0.120 mmol) were used. The product was separated and purified as described above. Yield: 0.108 g (72 %).

[Fe(AcPyOx) (ZrPc)](ClO ). 2-Acetylpyridineoxime

(0.017 g, 0.12) mmol), NaClO4-H2O (0.015 g, 0.105 mmol), NaHCO3 (0.009 g, 0.105 mmol), Zr(Cl2)Pc (0.026 g, 0.39 mmol) and FeCl2-4H2O (0.007 g, 0.35 mmol) were used. The product was separated and purified as described above. Yield: 0.033 g (8) %).

[Ni(AcPyOx) 3(HfPc)](ClO ). 2-Acetylpyridineoxime

(0.057 g, 0.419 mmol), NaClO4-H2O (0.034 g, 0.239 mmol), NaHCO3 (0.020 g, 0.239 mmol), Hf(Cl2)Pc (0.101 g, 0.1)2 mmol) and Ni(ClO4)2-6H2O (0.044g, 0.120 mmol) were used. The product was separated and purified as described above. Yield: 0.098 g (65 %).

[Ni(AcPyOx) (ZrPc)](ClO). 2-Acetylpyridineoxime (0.016 g, 0.119 mmol), NaClO4-H2O (0.014 g, 0.102 mmol), NaHCO3 (0.009 g, 0.102 mmol), Zr(CyPc (0.025 g, 0.37 mmol) and Ni(ClO4)2-6H2O (0.012 g, 0.34 mmol) were used. The product was separated and purified as described above. Yield: 0.027 g (68 %).

Experimental

The materials used and the details of the spectral experiments are described previously.[6]

General procedure for the preparation of metal(IV) phthalo-cyaninate-capped iron and nickel(II) complexes. 2-Acetylpyridi-neoxime was dissolved in ethanol-chlorobenzene 2:3 (v/v) mixture (5 mL) and NaClO4-H2O, NaHCO3, the corresponding metalloph-thalocyaninate {Zr(Cl2)Pc or Hf(Cl2)Pc} and the corresponding metal(II) salt {FeCl2-4H2O or Ni(ClO4)2-6H2O} were added under argon. The reaction mixture was refluxed with stirring for 0.5 h. Then the reaction mixture was cooled to room temperature and the precipitate formed was filtered off, washed with ethanol (10 mL, in two portions), diethyl ether (5 mL) and dried in vacuo for 1 h. The solid product was extracted with dichloromethane (15 mL, in three portions), the extract was rotary evaporated to a small

Results and Discussion

The hybrid binuclear metallophthalocyaninate-capped complexes under study were obtained in the yields from moderate to high (Table 1) by Scheme 2 using the direct template condensation of 2-acetylpyridineoxime with an equimolar amount of the Lewis-acidic zirconium or hafnium(IV) phthalocyaninates on the corresponding metal ion(II) as a matrix.

A formation of the known[6] metallophthalocyaninate-capped tris-pyridineoximates was confirmed by elemental analysis, 1D ('H and 13C{'H}) and 2D NMR, MALDI-TOF MS data , as well as using their UV-Vis spectra (Figure 1). All the spectral data for these isolated complexes were identical to those described previously.[6]

^NOH

M2+ + 3

o^o'e o

U- |H3C \ I "jV m \ M

(C2H5)3SbBr2> NaHCQ3 C2H5OH Ar

M2+ = Fe2+, Ni2+

\\ N A II \_N CI N NM1' N

* -N'CInN4

CaC03 SiOj

CH2C12 - CH3OH

c^Vr

___^M1

o-o'© 0

HC '"»9 N 1 r»u

CIO4-

M2+ = Fe2+, Ni2+ M1 = Zr4*, Hf+

Scheme 1.

Макрогетероциmbl /Macroheterocycles 2018 11(4) 418-420

419

Hybrid Binuclear Metallophthalocyaninato-Capped Tris-Pyridineoximates

CIO4-

[Fe(AcPy0x)3(ZrPc)](CI04): M2+ = Fe2+, M1 = Zr4* [Fe(AcPyOx)3(HfPc)](С104): M2+ = Fe2*, M1 = Hf4* [Ni(AcPy0x)3(ZrPc)](CI04): м2+ = Ni2+, M1 = Zr4* [Ni(AcPy0x)3(HfPc)](CI04): M2+ = Ni2+, M1 = Hf4*

Scheme 2.

1.0-

9 0.5-

.Q <

0.0

300 400 500 600 Wavelength, nm

700

800

Figure 1. UV-Vis spectrum of a DMSO solution of the parent Hf(Cl2)Pc (black) and that of its derivatives [Fe(AcPyOx)3(HfPc)] (ClO42 (blue) and [Ni(AcPyOx)3(HfPc)](ClO4) (green) in CH2Cl2.

Conclusions

We elaborated a new direct synthetic approach for preparation of the hybrid binuclear metallophthalocya-ninate-capped iron and nickel(II) tris-pyridineoximates using the one-pot reaction giving them in the yields from moderate to high. This allows to avoid the initial isolation of their antimony-capped precursors and, therefore, the use of the toxic trialkylantimony derivatives.

Acknowledgements. The synthesis of the hybrid complexes was supported by the Russian Science Foundation (project 16-13-10475). Their spectral characterization was performed with the financial support from the Russian Foundation for Basic Research (projects 16-03-00368 and 17-03-00587).

Table 1. The isolated yields of the metallophthalocyaninato-capped tris-pyridineoximates, which were obtained using a direct self-assembly and by a transmetallation reaction.

Yield, %

One-pot reaction Trans-metallation[6]

[Fe(AcPyOx)3(ZrPc)](ClO4) 83 39

[Fe(AcPyOx)3(HfPc)](ClO4) 72 42

[Ni(AcPyOx)3(ZrPc)](ClO4) 68 50

[Ni(AcPyOx)3(HfPc)](ClO4) 65 46

References

1. Voloshin Y.Z., Kostromina N.A., Krämer R. Clathrochelates: Synthesis, Structure and Properties. Amsterdam: Elsevier, 2002. 432 p.

2. Voloshin Y.Z., Belaya I.G., Krämer R. Cage Metal Complexes: Clathrochelates Revisited. Springer International Publishing, 2017. 467 p.

3. Voloshin Y.Z., Varzatskii O.A., Korobko S.V., Chernii V.Y., Volkov S.V., Tomachynski L.A., Pehn'o V.I., Antipin M.Yu., Starikova Z.A. Inorg. Chem. 2005, 44, 822-824.

4. Voloshin Y.Z., Varzatskii O.A., Tomilova L.G., Breusova M.O., Magdesieva T.V., Bubnov Yu.N., Krämer R. Polyhedron 2007, 26, 2733-2740.

5. Dudkin S.V., Erickson N.R., Vologzhanina A.V., Novikov V.V., Rhoda H.M., Holstrom C.D., Zatsikha Yu.V., Yusubov M.S., Voloshin Y.Z., Nemykin V.N. Inorg. Chem. 2016, 55, 11867-11882.

6. Dudkin S.V., Belov A.S., Nelyubina Yu.V., Savchuk A.V., Pavlov A.A., Novikov V.V., Voloshin Y.Z. New. J. Chem. 2017, 41, 3251-3259.

7. Zelinskii G.E., Dudkin S.V., Chuprin A.S., Pavlov A.A., Vologzhanina A.V., Lebed G.E., Zubavichus Y.V., Voloshin Y.Z. Inorg. Chim. Acta. 2017, 463, 29-35.

Received 10.10.2018 Accepted 28.12.2018

420

Макрогетероциклы /Macroheterocycles 2018 11(4) 418-420

i Надоели баннеры? Вы всегда можете отключить рекламу.