Научная статья на тему 'A CHARACTERIZATION OF MEIXNER ORTHOGONAL POLYNOMIALS VIA A CERTAIN TRANSFERT OPERATOR'

A CHARACTERIZATION OF MEIXNER ORTHOGONAL POLYNOMIALS VIA A CERTAIN TRANSFERT OPERATOR Текст научной статьи по специальности «Математика»

CC BY
5
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Ural Mathematical Journal
Scopus
ВАК
Область наук
Ключевые слова
Orthogonal polynomials / Regular form / Meixner polynomials / Divided-difference operator / Transfert operator / Hahn property

Аннотация научной статьи по математике, автор научной работы — Emna Abassi, Lotfi Khériji

Here we consider a certain transfert operator M(c,ω)=IP−cτω, ω≠0, c∈R−{0,1}, and we prove the following statement: up to an affine transformation, the only orthogonal sequence that remains orthogonal after application of this transfert operator is the Meixner polynomials of the first kind.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «A CHARACTERIZATION OF MEIXNER ORTHOGONAL POLYNOMIALS VIA A CERTAIN TRANSFERT OPERATOR»

URAL MATHEMATICAL JOURNAL, Vol. 10, No. 1, 2024, pp. 4-17

DOI: 10.15826/umj.2024.1.001

A CHARACTERIZATION OF MEIXNER ORTHOGONAL POLYNOMIALS VIA A CERTAIN TRANSFERT OPERATOR

Emna Abassi

Faculté des Sciences de Tunis, Université de Tunis El Manar, Rommana 1068, Tunisia

emna.abassi@fst.utm.tn

Lotfi Kheriji

Institut Préparatoire aux Etudes d'Ingenieur El Manar, Universiteé de Tunis El Manar, Rommana 1068, Tunisia

kheriji@yahoo.fr

Abstract: Here we consider a certain transfert operator = Ip — ctw, w = 0, c € R — {0, 1}, and

we prove the following statement: up to an affine transformation, the only orthogonal sequence that remains orthogonal after application of this transfert operator is the Meixner polynomials of the first kind.

Keywords: Orthogonal polynomials, Regular form, Meixner polynomials, Divided-difference operator, Transfert operator, Hahn property.

1. Introduction and preliminaries

Let O be a linear operator acting on the space of polynomials as a lowering operator (the derivative [4, 18, 19], the q-derivative [4, 12, 14, 15], the divided-difference [1], the Dunkl [6, 8, 9, 11, 13], the q-Dunkl [5, 7, 13], other [17, 21]), a transfert operator (see [20]) or a raising operator (see [2, 3, 17]). Many researchers in this vast field cited above had the concern to characterize the O-classical polynomial sequences that is those which fulfill the so-called Hahn property: the sequences {Pn}n>0 and {OPn}n>0 are orthogonal.

By the way, in [20], the authors characterized the I(q,w)-classical orthogonal polynomials where I(q,w) is a transfert operator acting on the space of polynomials P and defined by [20]

I(q,w) := Ip + uhq, u € C \{0}, q € Cw := {z € C, z = 0, zn+1 = 1, 1+ uzn = 0, n € N},

with Ip being the identity operator in P and (hqf )(x) = f (qx), f € P (homothety). Therefore, our goal is to consider the following transfert operator M(c,w) acting on P and defined by

M(c,w) = Ip - CTw, u = 0, c € R -{0,1}, (1.1)

where

(twf)(x) = f (x - u), f € P,

(translation) and to characterize all sequences of orthogonal polynomials {Pn}n>0 having the Hahn property; the resulting up an affine transformation (that is to say up a composition of a homothety and a translation; see (1.4) below), is the Meixner polynomials of the first kind (see Theorem 2

below). Indeed, in Section 2, firstly we deal with the M(cw)-character by presenting some characterizations of it (see Theorem 1), secondly, we establish the system verified by the elements of second-order recurrence relation for the sequences {Pn}n>0 and {M(cw)Pn}n>0 and thirdly we solve it to deduce the desired result (Theorem 2). Moreover, the divided-difference equation fulfilled by its canonical form and the second order linear divided-difference equation satisfied by any Meixner polynomial are highlighted.

Let P be the vector space of polynomials with coefficients in C and let P' be its dual. We denote by (u, f} the action of u € P' on f € P. In particular, we denote by

(u)n := (u,xn}, n > 0

the moments of u. The form u is called regular if we can associate with it a sequence of monic polynomials {Pn}n>0 with deg Pn = n, n > 0 ((MPS) in short) [18] such that

(u,PmPn} = TnSn,m, n,m > 0; Tn = 0, n > 0.

The sequence {Pn}n>0 is then called orthogonal with respect to u ((MOPS) in short). In this case, the (MOPS) {Pn}n>0 fulfils the standard recurrence relation ((TTRR) in short) [10, 18]

(1.2)

I Po(x) = 1, Pi(x)= x - A) ,

\ Pn+2(x) = (x - An+l)Pn+l(x) - Yn+lPn(x), n > 0, where

(u,xP^} Tn+1 Pn = -—, Jn+l = - /0, n > 0.

Tn Tn

Moreover, the regular form u will be supposed normalized that is to say (u)0 = 1.

For any form u, any polynomial g and a, w € C\{0}, b € C, we let Tbu, hau, gu, Du = u', Duu be the forms defined by duality [18] namely

(Tbu,f} = (u,T-bf}, (hau,f} = (u,haf}, (gu, f} = (u,gf}, (u', f} = -(u, f'}, (Duu, f} = -(u, D-uf}

where

(T-bf)(x) = f(x + b), (haf)(x) = f(ax), ID.ujf){x) = f{x)~f{x~u}\ f € P,

w

and due to the well known formulas [1, 18] we have

Tb(fu) = (Tbf)(Tbu), ha (fu) = (ha-l f)(hau), u € P', f €P. (1.3)

Let Sb be the Dirac mass at b defined by

(Sb,f} = f (b), b € C, f € P. In addition, let {Pn}n>0 be the (MPS) defined by

Pn(x) = a-nPn(ax + b), n > 0, a = 0, b € C. If {Pn}n>0 is a (MOPS) associated with u, then {Pn}n>0 is a (MOPS) associated with

« = (ha-i o T-bju

and fulfilling the (TTRR) in (1.2) (fin ^ (3n, y«+i ^ Sn+1, n > 0) with [18]

S fin— b ^ Yn+1 , ,

pn =-, ln+1 = —5-, n > 0. (1.4)

a a2

Let now {Pn}n>0 be a (MPS) and let {un}n>0 be its dual sequence, un € P' defined by

(«n, Pm) = dn,m, n,m > 0.

Let us recall some results [18].

Lemma 1 [18]. For any u € P' and any integer m > 1, the following statements are equivalent

(i) (u, Pm-1) = 0, (u,Pn) = 0, n > m,

(ii) EUv € C , 0 < v < m - 1, Am—1 = 0,

such that

m—1

u = ^^ Avuv.

v=0

As a consequence,

— the dual sequence {Sn}n>0 of {Pn}n>0 is given by

Sn = an (ha-i o t—^un, n > 0,

— when {Pn}n>0 be a (MOPS) then u = u0. In this case, we have

un = r—1Pnu0, n > 0

and reciprocally. Lastly, when u0 is regular and $ is a polynomial such that $u0 = 0, then $ = 0.

The monic Meixner polynomials {Mn(.; a,c)}n>0 of the first kind are given by [10, 16]

Mn(X] a, c) = (a + 1)„ (j^j n 2^1 ( 11 " I), n> 0,

they are orthogonal with respect to the discrete weight

p(x) = —-—«N x!

for a > —1, 0 < c < 1. Here, the Pochhammer symbol (z)n takes the form

n

(z)0 = 1, (z)n + k — 1), n > 1,

k=1

and 2F1 is the hypergeometric function defined by

2F1 ,

r

p,q > ^ (p)k(q)k

£

(r)k k!'

fc=0 v

By describing exhaustively the D—w-classical orthogonal polynomials in [1], the authors rediscover the (MOPS) of Meixner {Mn(.; a, c)}n>0 orthogonal with respect to the D—1 -classical Meixner form M(a, c) for a = —n — 1, n > 0, c € C — {0,1} and the positive definite case occurring for a +1 > 0, c € (0, œ) — {1}; they establish successively the (TTRR) elements, the divided-difference

equation, the modified moments, the discrete representation and the second order linear divided-difference equation (see the following),

( c 1 + c c

fin = --(a + 1) + --n, 7„+i = ---r(??, + l)(??, + a: + l), n> 0,

1 - c 1 - c (1 - c)2

D-:L ((x + a + 1)M(a, c)) - ((1 - c-1)x + a + 1)M(a, c) = 0,

M(a,c) = (1 -c)"+1 Er(p(+ +t)fc) TT'^ °<lcl<1' a^-n-l, n > 0, k>0 (a + ) ' (x + a + 1)(D-i o DiMn+i)(x; a, c) + ((1 - c-1)x + a + 1)(DiMn+i)(x; a, c)

-(n + 1)(1 - c-i)Mn+i(x; a, c) = 0, n > 0. 2. Main result 2.1. The M(cw)-classical character

First of all, let w = 0 and c € R - {0,1}. By virtue of (1.1) we have

(M(c>w)f)(x) = f (x) - cf (x - w), f € P. (2.1)

Particularly,

(M(C>W) 1)(x) = 1 - c, (M(c>w){n)(x) = (1 - c)xn + lower degree terms, n > 1. (2.2)

When c = 1, M(i w) is not a transfert operator but a lowering one since M(i w) = wD_w. From (1.1), we have

M(clW) = Ip - ctw .

The transposed iM(c w) of M(c w) is

iM(c;W) = Ip - ct_w = M(c,-W),

leaving out a light abuse of notation without consequence. Thus,

(M(c,_w)u,f} = (u, M(c>w)f}, u € P', f € P. Particularly, by virtue of (2.2) we get

n_i in\

(M(c,_w)u)0 = 1 - c, (M(c,_w)u)n = (1 - c) (u)n - c^lj (-w)n-k (u)k, n > 1.

k=0 ^ '

Lemma 2. The following formulas hold

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

M(ciW)(fg)(x) = f(x)(M(i>w)g)(x) + (Twg)(x)(M(c>w)f)(x), f,g € P, (2.3)

M(c,_w)(fu) = (t_wf)(M(c,_w)u) + (M(i>_w)f)u, u € P', f € P, (2.4)

ha o M(c>w) = M(c,a-lw) o ha in P, ha o M(c,_w) = M(c,_aW) ◦ ha in P', a € C - {0}, (2.5)

Tb o M(ciW) = M(ciW) o Tb in P, Tb o M(c,-W) = M(c,-W) o Tb in P', b € C. (2.6)

Proof. The proof is straightforward since definitions and duality. □

by

Now consider a (MPS) {Pn}n>0. On account of (2.2), let us define the (MPS) {Pn](.;c,w)}n>0

= w/0, c € M - {0,1}, n > 0. (2.7)

1—c

Denoting by {uJ1](c, w)}n>0 the dual sequence of {Pn1]( .; c, w)}n>0, we have the result Lemma 3. The following formula holds

M(c,-W)(un1](c, w)) = (1 — c)un, n > 0. (2.8)

P r o o f. Indeed, from the definition it follows

(un1](c,w),pm](x;c,w)) = ¿n,m, n,m > 0,

so we have

((M(C;-w)(un1](c,w)),Pm) = (1 — c)5n,m, n, m > 0,

therefore,

(M(C;-w)(un1](c,w)),Pm) = 0, m > n + 1, n > 0;

(M(C>-W) (un1] (c, w)), Pn) = 1 — c, n > 0.

By virtue of Lemma 1, we get

n

M(c_w)(un1](c,w)) = ^ An,vuv, n > 0.

v=0

But,

,[1]

(M(c,-W)(un1](c,w)),PM) = An)M, 0 < ^ < n,

with An>M = 0, 0 < ^ < n and An,n = 1 — c. The formula (2.8) is then established. □

Definition 1. The (MPS) {Pn}n>0 is called M(c,w)-classical if {Pn}n>0 and {p!1(.; c, w)}n>0 are orthogonal.

Remark 1. When the (MPS) {Pn}n>0 is orthogonal, it satisfies the (TTRR) (1.2). When the (MPS) {Pni](.; c,w)}n>0 is orthogonal, it satisfies the (TTRR) (1.2) with the notations (fin ^ Yn+i ^ yj^+hi, n > 0).

Theorem 1. For any (MOPS) {Pn}n>0, the following assertions are equivalent.

a) The sequence {Pn}n>0 is M(c,w)-classical.

b) There exist a polynomial 0 monic, deg 0 < 1 and a constant K = 0 such that

M(c>_w)(0u0) — K-1(1 — c)u0 =0, (2.9)

1 — c — K0'(0) wn = 0, n > 0. (2.10)

c) There exist a polynomial 0 monic, deg 0 < 1, a constant K = 0 and a sequence of complex numbers {An}n>0, An = 0, n > 0, such that

(Кф(х) - 1 + с) (M(C>_W) о M(c>w)Pra)(x) +(c - 1)(Кф(х) - 1)(M(C>W)P„)(x) = A„P„(x), n > 0.

(2.11)

Proof. a) ^ b), a) ^ c).

of u0 and u

M(c,_w)(Pl1](-; c,w)u01](c,w)) = Zn Pnuo, n > 0,

From (2.8) and the regularity of u0 and u0i](c, w), we have

with

, (1 c) (Уу\с,и),(р£](.-,с,и))2)

By (2.4), we get

(t_wPW(.;c,w))M(c,_w)(u0i](c,w)) + (Ma>_w)pW(.;c,w))u0i](c,w) = ZnPnu0, n > 0. In accordance with the definition of M(c -W), one may write

M(c_w)(u01](c,w)) = u01](c,w) - с(т_шu01](c,w)),

which yields

Pl1](.; c,w)u01] (c,w) - с(т_шPl1](.; c,w))(r_w41](c,w)) = Zn PnU0, n > 0. (2.12)

Taking n = 0 in (2.12) leads to

u0i](c, w) - c(t_wu0i](c, w)) = (1 - c)u0. (2.13)

Injecting (2.13) in (2.12) gives

{P^C;c,w) - (t_wPni](.;c,w))}u0i](c,w) = {ZnPn - (1 - c)(t_wP^(.;c,w))}u0, n > 0. (2.14) Now, taking n = 1 in (2.14), we obtain

u0i](c,w)= K0(x)u0, (2.15) where K be a normalization constant since 0 monic and

1 - c Jn Yi

=-- {(1 — + uj + ^/io - 4111-

w I Yi Yi 0 J

Applying the operator t_w to (2.15), we get

(t_w u0i](c,w)) = K (t_w 0)(x)(t_w u0). (2.16)

Replacing (2.16) and (2.15) in (2.13) leads to the desired result (2.9). By virtue of (2.15), the formula in (2.14) becomes

(pW(.; c,w) - (t_wPW (.; c,w))) + (1 - c)(t_wpW(.; c,w)) - Zn Pn}u0 = 0, n > 0.

(2.17)

Therefore,

K0(pJ1](.;c,w) — (t_wpJ1](.;c,w))) + (1 — c)(t_wpJ1](.;c,w)) — ZnPn = 0, n > 0,

thanks to the regularity of u0. Moreover, from (2.1) with the change w <--w, we may write

(t_wpJ1](.; c,w)) = pJ1](.; c,w) — (M(C)_w)Pni](.; c,w))), n > 0. Consequently, the last equation becomes

(K0(x) — 1 + c)(M(Ci_w) o M(CiW)Pn)(x) + (c — 1)(K0(x) — 1)(M(CiW)Pn)(x)

= c(1 — c)ZnPn(x), n > 0.

Writing into (2.17)

' 0(x) = 0'(0)x + 0(0), (M(CiW)Pn )(x) = Pn(x) — cPn(x — w),

(M(C>_W) o M(CiW)Pn)(x) = (1 + c2)Pn(x) — c(Pn(x — w) + Pn(x + w)),

n

Pn(x) = an,fcxfc, an,n = 1, n > 0, k=0

and by comparing the degrees we obtain

1 — c — K0'(0) wn = Zn = 0, n > 0.

Hence (2.10) and a) ^ b).

Finally, (2.17) is (2.11) with An = c(1 — c)Zn = 0, n > 0. We have also proved that a) ^ c).

b) ^ a) Let us suppose that there exist a polynomial 0 monic, deg 0 < 1 and a constant K = 0 such that (2.9)-(2.10) are valid. From (2.9), we have

0 = <M(C>_W) (0u0) — K _1(1 — c)u0,1) = (1 — c)((u0,0) — K _1).

Thus,

K _1 = (u0,0) = 0'(0)fi0 + 0(0) = 0(fi0).

Necessarily, 0(fi0) = 0. Let v = K0u0. We are going to prove that the (MPS) {pJ1](.; c, w)}n>0 is orthogonal with respect to v. We have successively

(v,P01] (.; c,w)) = K (u0,0) = 1, (2.18)

for all n > 1,

KK

{v,pw(.-,c,uj)} = --<0mo,M(c,w)P„> = --(M (C,_W)(<M)),-Pn)

1 — c 1 — c

K

(K-\l-c)uo,Pn) = 0,

(2.9) 1 — c

and for m > 1, n > 0,

K

ct_„(0uo)=(<£-K-1(1-c))uo 1 - c or equivalently, for m > 1, n > 0,

(v, xmP^{- c, uj)) = --(0uo,xm(Pn(x) - cPn(x ~ uj)))

1-c

K Kc

: --<«imo,xmPn(x)) - —- (<fmo, Tuj {(( + co)mPn(0) (x))

1 - c 1 - c

KK

-- --((¡)uo,xmPn(x)) - --(cr_w(</mo), (x + uj)mPn(x))

1 - c 1 - c

K

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(<M), (Xm - (x + uj)m)Pn(x)) + (uo, (X + u)mPn(x)),

c k=i ^ '

g m_fc(ti0ja.fcpn(a;)) + £

c k=0 ^ ' k=0 ^ ' from which thanks to the orthogonality of {Pn}n>0 and (2.10) we get

<v,xmPn1](.; c,u)) =0, 1 < m < n - 1, n > 2,

1 - c

(v, xnP^(.; c, uj)) = (l- (p[ ' nuj) (uq, Pi2,) ± 0, n > 1

1 - c n

By the identities in (2.18)-(2.19), we see that {Pn1](.; c,u)}n>0 is orthogonal with respect to v. We then obtain the desired result.

c) ^ b) Comparing the degrees in (2.11), we can deduce (2.10). Making n = 0 into (2.11), we obtain

A0 = c(1 - c)2. (2.20)

Moreover, from definitions, (2.11) may be written as

0((M(c>w)Pn) - (T-w o M(c,w)Pn)) + K-1(1 - c)(T-w o M(c,w)Pn) = c-1K-1AnPn, n > 0,

then,

(U0,0((M(c,w)Pn) - (T-w o M(c,w)Pn)) + k-1(1 - c)(t—w o M(c,w)Pn)) = c-1K-1An(U0, Pn), n > 0. Equivalently,

<M(c,-w)(<M)) - (M(c,-w) oTw)(0uc) + K-1(1 - c)(M(c,—w) oTwU0), Pn) = c-1K-1An(U0, Pn), n > 0. By virtue of Lemma 1 and (2.20), we get

M(c,-w)(<M)) - (M(c,-w) o Tw)(0U0) + K-1(1 - c)(M(c,—w) o TwU0) - K-1(1 - c)2U0 = 0. A similar expression is

M(c,-w) (0uc) - K-1(1 - c)U0 = (M(c,-w) o Tw)(0uc) (2 21)

-K-1(1 - c)(M(c,—w) o TwU0) - K-1(1 - c)cu0. (. )

But, by (2.6) and definition of the operator (M(c _w), we have for the right side of (2.21),

(M(c,_w) o tw)(0u0) - K_i(1 - c)(M(c,_w) o Twu0) - K_i(1 - c)cu0 = Tw (M(c,_w)(0u0^ - K_i(1 - c)rw ((M(c,_w)u0) + cr_wu0) = Tw (M(c,_w)(0u0) - K_i(1 - c)u^.

Therefore, (2.21) becomes

M(i>w)(M(c>_w)(0uo) - K_i(1 - c)u0) = 0. From the fact that the operator M(i w) is injective in P' we get (2.9). □

Lemma 4. If u0 satisfies (2.9), then «0 = (ha-i o r_b)u0 fulfills the equation

M(c,_wa-i) (a_ deg*0(ax + b)u0) - a_deg*K_i(1 - c)«0 = 0. P r o o f. We need the following formulas which are easy to prove from (1.3)

g(Tbu) = Tb((r_bg)u); g(hau) = ha((hag)u), g € P, u € P '. (2.22)

Now, with u0 = (rb o (ha) «0, we have

-K_i(1 - c)u0 = (rb o (ha)(-K_i(1 - c)«0).

Further,

M(c,-w)(0Uo) = M(c_w)(0(Tb(ha«O))) = M(c>-w^7b((r-b0)(hauo)))

= (Tb O M(c_w))((T-b0)(ha«o)) ( = )(Tb O M(c_w))(ha((ha O r-60)«o)) (2.0) (2.22)

= (Tb O ha O M(c_wa-1 )) ((ha ◦ T-b0)«o) . (2-5)

Consequently, equation (2.9) becomes

Tb O ha(M(c,-Wa-1^+ 6))«o) - K-1(1 - c)«o) =0. This leads to the desired equality. □

2.2. Determination of all M(c w)-classical (MOPS)s

Lemma 5. Let {Pra}ra>0 be a M(c,w)-classical (MOPS). The following equality holds

■ pn+i(x -u) = (ßn+1 - Ailirflite c, v) + (7n+! - 7,[!!i)41](^; C, u), n > 0. (2.23)

1 - c

Proof. From the (TTRR) (1.2) we have

Pn+2(x) = (x - ^n+i)Pn+i(x) - Yn+iPn(x), n > 0. (2.24)

Applying the transfert operator to (2.24), using (2.3) and (2.7) we obtain

(1 - c)p1+2(x; cw) =(1 - c)(x - ^™+i)pl+i(x; cw) + c^pn+i(x - w) (2

—Yn+i(1 - c)Pii](x; c,w), n > 0.

But from the (TTRR) of {Pni](.;c, w)}n>0, one may write

xP^C; c,w) = Pni+2(.; c,w) + Ani+iPn+i(.; c,w) + Yni+iPni](.; c,w), n > 0. (2.26) Now, injecting (2.26) in (2.25) leads to the desired result (2.23). □

Proposition 1. The coefficients An, Yn+i, , 7«+ satisfy the following system

=UJ-^, 77, >0, (2.27)

1-c

7n+i-7!!!i = -w2^^2(77 + l), 77 >0, (2.28)

1 + c

Pn+1 - Pn = W 1-, n > 0, (2.29)

1 — c

7,l1] = ^-T7n+i, n> 1. (2.30)

P r o o f. Firstly, the higher degree test in (2.23) yields

Pn+1 " tf+i = w , n > 0. (2.31)

1-c

Secondly, n = 0 in (2.23) gives

71 " 7!11 + 411)- (2-32)

1-c

Thirdly, applying the transfert operator M(c w) to

Pi(x) = x - A0 and by virtue of (2.7) and (2.31)-(2.32) we get (2.27) and

7i-7!11 = -W2(I^. (2-33)

Thanks to (2.27), the formula in (2.23) becomes

cwPn+i(x - w) = cwPn+i(x; c,w) + (1 - c)(Yn+i - Yn+i)Prli](x; c,w), n > 0. (2.34)

Moreover, multiplication of (2.24) by cw with the change x ^ x - w yields

cwPn+2(x - w) = (x - w - An+i)cwPn+i(x - w) - Yn+icwPn(x - w), n > 0. (2.35)

Replacing (2.34) for the index n, n + 1, n + 2 in (2.35), using (2.26) for the index n, n + 1, the formula in (2.27) and the fact that {P,ii](.; c, w)}n>0 is a basis , we obtain successively

(7!!!2-7n+2)-(7,ili-7n+i)=w2^r^2, 77 >0, (2.36)

(Yn+i - Yn+i) |(1 - c)(An - An+i) + (1 + c)w} = 0, (2.37)

(Yn+i - Yn+i)Yni] = (Yni] - Yn)Yn+i, n > 1. (2.38)

Summing on (2.36) and taking into account (2.33) lead to (2.28) and (2.37) yields (2.29). Lastly, (2.30) is a direct consequence of (2.38) and (2.28).

Now, we are able to solve the system (2.27)-(2.30). Summing on (2.29) leads to

1 + c

fin =f30+uj --n, n > 0. (2.39)

1 — c

Injecting (2.39) in (2.27) yields

fiW = fi0 -co + u ii^n, n > 0. (2.40)

1 — c 1 — c

Also, injecting (2.30) in (2.28) gives

7ra+2 ^-a;2—n>0.

n + 2 n + 1 (1 — c)2 Summing the previous equality leads to

Jn+1 = (n + 1) (71 + Ce;2(1^c)2 n), n > 0. (2.41)

After replacing (2.41) in (2.30) we deduce the following

7,[!!i = (n + 1) (71 + w2 + !)) > n ^ (2-42)

Corollary 1. Let {Pra}ra>0 be a M(c,w)-classical (MOPS). The following statements hold. 1) The recurrence elements of {Pn}n>0 are

' fi0 , 1 + c , ■ n,

fin = U (— + --- n), n > 0,

Vw 1 — c /

+ + n > 0.

(2.43)

2) The recurrence elements of {p!1](.; c, w)}n>0 are

'fio c 1+c

--1--h 1-'

w 1 — c 1 — c

A^-F-A + ^H n > 0,

Vw 1 — c 1 — c / 7&1 = -2T-^(n + 1) (n + 1 + ^ , n > 0.

(2.44)

Proof. The formula (2.43) is a consequence of (2.39) and (2.41). Also, (2.44) is a direct result from (2.40) and (2.42).

Theorem 2. Up to an affine transformation, the only M(c1)-classical (MOPS) is the Meixner's one of the first kind,.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Proof. The classification of the canonical situations depends on the fact that fi0 = 0 or fio = 0.

= 0. For (2.43)-(2.44), put

wfi0 = (1 — c)7i

and

c w2

Then,

— = i-(a + 1).

w 1 - c

Now, for (2.43), choosing a = w, b = 0 in (1.4) and thanks to (2.5)-(2.6) this yields

— c 1 + c Pn = T-(a + l) + -!—n, n> 0,

1 - c 1 - c

c

Jn+I = 71-r?(n + l)(n + a + l), n> 0.

(1 - c)2

Therefore (see (1.5)),

Pn = Mn(.; a,c), n > 0, with a = -n - 1, n > 0. Next, for (2.44), choosing

2wc

a = u, b = — -

1 - c

in (1.4) and thanks to (2.5)-(2.6) this yields

A«1 = 7—(« + 2) + n, n> 0, 1 - c 1 - c

7n+i = (1^c)2 (n + l)(n + a + 2), 77, >0. Thus,

P™ = Mn(.; a + 1,c), n > 0,

with a = -n - 2, n > 0.

A0 = 0. In this case, (2.43)-(2.44) become successively,

1+c

Bn = uj-n, n > 0,

1-c

2

and choosing in (1.4)

we obtain

Consequently,

c w2

wc 1-c

— c 1 + c

An = t-(a + 1) + --n, n > 0,

1 - c 1 - c

c

Jn+I = 71-r?(n + l)(n + a + l), n> 0.

(1 - c)2

Pn = Mn(.; a, c), n > 0,

(2.45)

7n+i = (^(n + 1) (« + ^ . « > 0,

+ n > 0,

V 1 - c 1 - c ) 2 (2 46)

7'i+i = (1^2 + 1) (" + 1 + . " > 0-

For (2.45), putting

with a = — n — 1, n > 0. For (2.46), putting

(1 — c)2 Yi

and choosing in (1.4) we get

Equivalently,

c w2

= a + 1

w c

a = (jj, b =--(a + 3),

1—c

ffl = (a + 2) + n n > o, 1 — c 1 — c

c

7Üi

(n + 1)(n + a + 2), n > 0.

(1 — c)2

PW = Mra(.; a + 1,c), n > 0,

with a = —n — 2, n > 0.

The theorem is then proved.

Remark 2. On account of Theorem 1, Theorem 2 and after some easy calculations we get for the divided-difference equation (2.9) fulfilled by the Meixner form M(a, c),

M(c _d [(x - (a + 1 )^M(a, c)) + (a + 1 )M(a, c) = 0,

and also for the second order linear divided-difference equation (2.11) satisfied by any Meixner polynomial Mn(.; a, c), for all n > 0,

+ 2C) (M(C'-D ° M(c.i)m™)(z; «>c) + (! " c) ~ c) (M^dM»)^; c)

, 2 n + a + 1 ,, , . = c( 1 - c) ^ ^ A/„(■>•: a, c).

Acknowledgements

The authors thank the anonymous referees for their careful reading of the manuscript and corrections.

REFERENCES

1. Abdelkarim F., Maroni P. The Dw-classical orthogonal polynomials. Results. Math.., 1997. Vol. 32, No. 12. P. 1-28. DOI: 10.1007/BF03322520

2. Aloui B. Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising operator. Ramanujan J., 2018. Vol. 45, No. 2. P. 475-481. DOI: 10.1007/s11139-017-9901-x

3. Aloui B. Chebyshev polynomials of the second kind via raising operator preserving the orthogonality. Period. Math. Hung., 2018. Vol. 76, No. 1. P. 126-132. DOI: 10.1007/s10998-017-0219-7

4. Aloui B., Chammam W. Classical orthogonal polynomials and some new properties for their centroids of zeroes. Anal. Math., 2020. Vol. 46, No. 1. P. 13-23. DOI: 10.1007/s10476-020-0012-3

5. Aloui B., Souissi J. Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials. Ramanujan J., 2021. Vol. 57, No. 4. P. 1355-1365. DOI: 10.1007/s11139-021-00425-8

6. Ben Salah I., Ghressi A., Khériji L. A characterization of symmetric TM-classical monic orthogonal polynomials by a structure relation. Integral Transforms Spec. Funct., 2014. Vol. 25, No. 6. P. 423-432. DOI: 10.1080/10652469.2013.870339

7. Bouanani A., Kheriji L., Ihsen Tounsi M. Characterization of q-Dunkl Appell symmetric orthogonal q-polynomials. Expo. Math., 2010. Vol. 28, No. 4. P. 325-336. DOI: 10.1016/j.exmath.2010.03.003

8. Bouras B., Habbachi Y., MarceMn F. Rodrigues formula and recurrence coefficients for non-symmetric Dunkl-classical orthogonal polynomials. Ramanujan J., 2021. Vol. 56, No. 2. P. 451-466. DOI: 10.1007/s11139-021-00419-6

9. Chaggara H. Operational rules and a generalized Hermite polynomials. J. Math. Anal. Appl., 2007. Vol. 332, No. 1. P. 11-21. DOI: 10.1016/j.jmaa.2006.09.068

10. Chihara T. S. An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, 1978. 249 p.

11. Ghressi A., Kheriji L. A new characterization of the generalized Hermite linear form. Bull. Belg. Math. Soc. Simon Stevin, 2008. Vol. 15, No. 3. P. 561-567. DOI: 10.36045/bbms/1222783100

12. Ghressi A., Kheriji L. Integral and discrete representations of certain Brenke type orthogonal q-polynomials. Ramanujan J., 2013. Vol. 30, No. 2. P. 163-171. DOI: 10.1007/s11139-012-9421-7

13. Habbachi Y. A new characterization of symmetric Dunkl and q-Dunkl orthogonal polynomials. Ural Math. J., 2023. Vol. 9, No. 2. P. 109-120. DOI: 10.15826/umj.2023.2.009

14. Kheriji L., Maroni P. The Hq-classical orthogonal polynomials. Acta. Appl. Math., 2002. Vol. 71, No. 1. P. 49-115. DOI: 10.1023/A:1014597619994

15. Kheriji L., Maroni P. On the natural q-analogues of the classical orthogonal polynomials. Eurasian Math. J., 2013. Vol. 4, No. 2. P. 82-103.

16. Koekoek R., Swarttouw R.F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Ana,logue. Rep. Fac. Tech. Math. Inf., Delft University of Technology, The Netherlands. Report 98-17. Delft: TU Delft, 1998. 168 p.

17. Koornwinder T. H. Lowering and raising operators for some special orthogonal polynomials. In: Jack, Hall-Littlewood and Macdonald Polynomials. Contemp. Math., vol. 417. Providence, RI: AMS, 2006. P. 227-238. DOI: 10.1090/conm/417/07924

18. Maroni P. Une theorie algebrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-classiques. In: Orthogonal Polynomials and their Applications, C. Brezinski et al. (eds.), IMACS Ann. Comput. Appl. Math., vol. 9, 1991. P. 95-130. (in French)

19. Maroni P. Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math., 1993, Vol. 48, No. 1-2. P. 133-155. DOI: 10.1016/0377-0427(93)90319-7

20. Maroni P., Mejri M. The I(q,w)-classical orthogonal polynomials. Appl. Numer. Math., 2002. Vol. 43, No. 4. P. 423-458. DOI: 10.1016/S0168-9274(01)00180-5

21. Srivastava H. M., Ben Cheikh Y. Orthogonality of some polynomial sets via quasi-monomiality. Appl. Math. Comput., 2003. Vol. 141, No. 2-3. P. 415-425. DOI: 10.1016/S0096-3003(02)00961-X

i Надоели баннеры? Вы всегда можете отключить рекламу.