Научная статья на тему 'Метод заканчивания скважины'

Метод заканчивания скважины Текст научной статьи по специальности «Технологии материалов»

CC BY
323
71
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ГИПЕРКУМУЛЯТИВНАЯ СТРУЯ / ХИМИЧЕСКИ АКТИВНОЕ ВЕЩЕСТВО / A HYPERCUMULATIVE JET / CHEMICALLY ACTIVE SUBSTANCE

Аннотация научной статьи по технологиям материалов, автор научной работы — Минин Олег Владиленович, Минин Владилен Федорович, Минин Игорь Владиленович

Предложен новый метод заканчивания скважины, основанный на заносе активного вещества в скважину гиперкумулятивным зарядом.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Минин Олег Владиленович, Минин Владилен Федорович, Минин Игорь Владиленович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

METHOD OF WELL COMPLETION

A new method of well completion based on the drift of the active substance into the well by hypercumulative charge.

Текст научной работы на тему «Метод заканчивания скважины»

УДК: 623.541

МЕТОД ЗАКАНЧИВАНИЯ СКВАЖИНЫ

Олег Владиленович Минин

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, доктор технических наук, заведующий кафедры метрологии и технологии оптического производства, тел. (383)361-07-45, e-mail: kaf.metrol@ssga.ru

Владилен Федорович Минин

Доктор технических наук, профессор, лауреат Государственной премии СССР, e-mail: prof.minin@gmail.com

Игорь Владиленович Минин

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, доктор технических наук, профессор кафедры метрологии и технологии оптического производства, тел. (383)361-07-45, e-mail: prof.minin@gmail.com

Предложен новый метод заканчивания скважины, основанный на заносе активного вещества в скважину гиперкумулятивным зарядом.

Ключевые слова: гиперкумулятивная струя, химически активное вещество.

METHOD OF WELL COMPLETION

Oleg V. Minin

Siberian State University of Geosystems and Technologies, 630108, Russia, Novosibirsk, 10 Plakhotnogo St., doctor of technical sciences, head of a department of metrology and optical technology, tel. (383)361-07-45, e-mail: kaf.metrol@ssga.ru

Vladilen F. Minin

Dr. Sci. Tech., professor, the winner of the State premium of the USSR, e-mail: prof.minin@gmail.com

Igor V. Minin

Siberian State University of Geosystems and Technologies, 630108, Russia, Novosibirsk, 10 Plakhotnogo St., doctor of technical sciences, professor of the department of metrology and optical technology, tel. (383)361-07-45, e-mail: prof.minin@gmail.com

A new method of well completion based on the drift of the active substance into the well by hypercumulative charge.

Key words: a hypercumulative jet, chemically active substance.

При вскрытии продуктивных пластов в нефтяных и газовых скважинах существует проблема увеличения площади поверхности фильтрации и повышения проницаемости в зоне перфорационных каналов.

В технической литературе широко известен метод заканчивания скважин с помощью кумулятивных зарядов в обсадной колонне, цементном камне и окружающем продуктивном пласте. Формирование перфорационных каналов

происходит в результате воздействия на стенки и околоскважинную зону пласта кумулятивной струи, возникающей в результате взрыва заряда взрывчатого вещества (ВВ). Кумулятивный заряд перфоратора содержит оболочку с шашкой ВВ, в которой со стороны основания выполнена кумулятивная выемка, чаше всего конической формы, покрытая металлической облицовкой. На противоположном от основания торце шашки устанавливается детонатор [3]. В кумулятивную струю, которая собственно осуществляет пробитие преграды, переходит в среднем около 10-15% массы облицовки, а остальная ее часть формируется в пест не участвующий в процессе пробития.

К недостаткам метода заканчивания скважин, относится незначительные диаметр перфорируемого канала созданного кумулятивным зарядом перфоратора, его длина и возможность закупоривания его пестом, что снижает движение флюидов из пласта в скважину. Кроме того, кумулятивная струя, пробивая канал, производит уплотнение стенок образующегося канала, что снижает проницаемость пласта. Для восстановления проницаемости в зоне перфорационных каналов требуется проведение дополнительных мероприятий по воздействию на пласт.

Известен метод заканчивания скважины, включающий установку в обсадную колонну кумулятивного заряда и одновременно с ним - газогенерирующе-го заряда из твердого топлива с последующим их инициированием, выполнение перфорационного канала в обсадной колонне и окружающем продуктивном пласте и прирост площади его поверхности фильтрации. При этом инициирование газогенерирующего заряда производят кумулятивным зарядом, а прирост площади поверхности фильтрации продуктивного пласта осуществляют путем перемещения в перфорационный канал газа, образующегося при сгорании газо-генерирующего заряда [1].

Преимуществом этого метода является увеличение площади поверхности канала за счет термического, газоэрозионного и компрессионного воздействия газов, образующихся при сгорании газогенерирующего твердого топлива.

Недостатком метода является незначительные диаметр перфорируемого канала, его длины, недостаточное устранение уплотнения стенок образующихся перфорационных каналов по всей их длине.

Известен метод заканчивания скважины, включающий установку в обсадную колонну кумулятивного и газогенерирующего заряда из твердого топлива и кислотного реагента с последующим инициированием газогенерирующего заряда кумулятивным зарядом, выполнение перфорационного канала в обсадной колонне и окружающем продуктивном пласте и перемещение в перфорационной канал газа, образующегося при сгорании газогенерирующего заряда, и затем кислотного реагента [2].

Недостатком данного метода является незначительные диаметр перфорируемого канала, его длины, недостаточное устранение уплотнения стенок образующихся перфорационных каналов по всей их длине.

Известен метод заканчивания скважин, включающий установку в обсадную колонну кумулятивного и газогенерирующего заряда из твердого топлива,

совмещенного с источником кислотного реагента, с последующим инициированием газогенерирующего газогенерирующего заряда кумулятивным зарядом, выполнение перфорационного канала в обсадной колонне и окружающем продуктивном пласте, перемещение в перфорационный канал газа, образующегося при сгорании газогенерирующего заряда, и прирост поверхности фильтрации в окружающем перфорационный канал продуктивном пласте, при этом со стороны торца газогенерирующего заряда, обращенного к кумулятивному заряду, выполняют осесимметричную коническую выемку, при этом в качестве химически активного вещества газогенерирующего заряда может использоваться, для пластов, сложенных из карбонатных пород, смесь компонентов при их следующем соотношении, масс.%: перхлорат аммония 45-50, поливинилхлоридная хлорированная смола марки ПСХ-ЛС 50-55, для пластов, сложенных из терри-генных пород, смесь компонентов при их следующем соотношении, масс.%: перхлорат аммония 34-35, фторопласт марки ФП-4 40-41, поливинилхлоридная хлорированная смола марки ПСХ-ЛС 24-25 (патент РФ № 2287667, МПК Е21В43/117).

Химически активный элемент, способный при детонации совместно с продуктами детонации заряда ВВ генерировать плавиковую и соляную кислоты. Смесь плавиковой и соляной кислоты (глинокислота) в высокотемпературном и газообразном состоянии оказывает химическое воздействие на породу, увеличивая размеры перфорационного канала и пор.

К недостаткам способа заканчивания скважин с метаемым химически активным элементом относится незначительные диаметр перфорируемого канала, его длина, невозможность занесения продуктов разложения химически активного элемента на всю глубину канала, что снижает движение флюидов из пласта в скважину, а также возможность закупоривания перфорационного канала пестом.

Наиболее близким прототипом является метод формирования высокоскоростных кумулятивных струй для перфорации скважин с глубокими незапесто-ванными каналами и с большим диаметром известный кумулятивный заряд, который может быть использован для перфорации скважин [4-5], включающий инициирование бескорпусного или расположенного в корпусе заряда взрывчатого вещества цилиндрический, конический или иной формы, с расположенном в торце заряда с противоположной стороны инициирования заряда выемкой, облицованной металлом или иным инертным материалом, метание, ускорение и сжатие материала кумулятивной облицовки продуктами детонации взрывчатого вещества, его соударения на оси симметрии заряда и формирования кумулятивной струи, при этом в процессе метания и сжатия кумулятивной облицовки дополнительно воздействуют на кумулятивную облицовку за счет принудительного взаимодействия кумулятивной облицовки с одним или несколькими дополнительными телами, их соударения и скольжения частей материала кумулятивной облицовки относительно дополнительного тела с одновременным разворотом частей материала кумулятивной облицовки на угол схождения на ось симметрии заряда более 180 градусов и не превышающей 360 градусов, соуда-

рения частей материала кумулятивной облицовки на оси симметрии заряда под углом более 180 градусов и не превышающим 360 градусов с формированием кумулятивной струи, а дополнительное тело или несколько дополнительных тел выполняют в форме осесимметричной оболочки или системы осесиммет-ричных оболочек, разделенных на разгонные промежутки, достаточные для их ускорения и достижения максимальной скорости метания, при этом дополнительное тело или несколько дополнительных тел размещают соосно с кумулятивной облицовкой на расстоянии от ее внешней поверхности, достаточным для ускорения до максимальных скоростей сжатия и метания материала кумулятивной облицовки, при этом дополнительное тело или несколько дополнительных тел изготавливают из материала с плотностью не более плотности материала кумулятивной облицовки, причем плотность материала дополнительных тел уменьшается с увеличением расстояния от внешней поверхности кумулятивной облицовки.

Достоинством способа является, большие диаметр перфорируемого канала и его длина, созданные кумулятивным зарядом перфоратора, что повышает движение флюидов из пласта в скважину.

Недостатком способа является то, что кумулятивная струя, пробивая канал, производит уплотнение стенок образующегося канала, что снижает проницаемость пласта. Для восстановления проницаемости в зоне перфорационных каналов требуется проведение дополнительных мероприятий по воздействию на пласт.

В предлагаемом изобретении решается задача увеличения продуктивности нефтяных скважин за счет повышения проницаемости стенок перфорационных каналов, способствующему приросту площади поверхности фильтрации продуктивного пласта.

Для решения поставленной задачи метод заканчивания скважин инициируют бескорпусной или расположенного в корпусе заряд взрывчатого вещества цилиндрический, конический или иной формы, с расположенном в торце заряда с противоположной стороны инициирования заряда выемкой, облицованной металлом или иным инертным материалом, метают, ускоряют и сжимают материал кумулятивной облицовки продуктами детонации взрывчатого вещества, его соударяют на оси симметрии заряда и формируют кумулятивную струю, при этом в процессе метания и сжатия кумулятивной облицовки дополнительно воздействуют на кумулятивную облицовку за счет принудительного взаимодействия кумулятивной облицовки с одним или несколькими дополнительными телами, их соударения и скольжения частей материала кумулятивной облицовки относительно дополнительного тела с одновременным разворотом частей материала кумулятивной облицовки на угол схождения на ось симметрии заряда более 180 градусов и не превышающей 360 градусов, соударения частей материала кумулятивной облицовки на оси симметрии заряда под углом более 180 градусов и не превышающим 360 градусов с формированием кумулятивной струи, а дополнительное тело или несколько дополнительных тел выполняют в форме осесимметричной оболочки или системы осесимметричных оболочек,

разделенных на разгонные промежутки, достаточные для их ускорения и достижения максимальной скорости метания, при этом дополнительное тело или несколько дополнительных тел размещают соосно с кумулятивной облицовкой на расстоянии от ее внешней поверхности, достаточным для ускорения до максимальных скоростей сжатия и метания материала кумулятивной облицовки, при этом дополнительное тело или несколько дополнительных тел изготавливают из материала с плотностью не более плотности материала кумулятивной облицовки, причем плотность материала дополнительных тел уменьшается с увеличением расстояния от внешней поверхности кумулятивной облицовки. При этом дополнительные тела выполняют из химически активного вещества, производят инициирование химически активного вещества дополнительного тела при его метании продуктами детонации взрывчатого вещества и взаимодействии с кумулятивной облицовкой, при этом кумулятивный заряд устанавливают в обсадную колонну, выполняют перфорационный канал в обсадной колонне и окружающем продуктивном пласте с одновременным занесением сформированной кумулятивной струей химически активного вещества и прирост поверхности фильтрации в окружающем перфорационный канал продуктивном пласте по всей его длине.

Для реализации предлагаемого метода используют устройство, представленное на рис. 1. На рис. 2 приведен последовательный процесс формирования кумулятивной струи в кумулятивном заряде и занос химически активного материала в перфорационный канал.

Устройство содержит 1 - инициатор, 2 - корпус кумулятивного заряда, 3 -заряд взрывчатого вещества с выемкой, 4 - дополнительное тело из химически активного вещества, 5 - кумулятивная облицовка. Устройство установлено в обсадную колонну 6 с окружающим ее цементным кольцом 7 и продуктивным пластом 8.

Предлагаемый метод с использованием варианта представленного устройства осуществляется следующим образом. В обсадную колонну 6 устанавливают кумулятивный заряд содержащий инициатор 1, корпус кумулятивного заряда 2, заряд взрывчатого вещества с выемкой 3, дополнительное тело из химически активного вещества, включающего твердое топливо 4 и кумулятивную облицовку 5. Производят инициирование кумулятивного заряда с помощью, например, электродетонатора.

Во взрывчатом веществе 3 формируется детонационная волна, которая метает и инициирует (воспламеняет) материал дополнительного тела 4. Дополнительное тело 4 соударяется с облицовкой 5 и передает ей дополнительный импульс. Дополнительное тело 4, совместно с разгонным промежутком между облицовками, может наиболее оптимально отбирать энергию от продуктов детонации ВВ и передавать импульс основной облицовке 5 и быть своеобразным «трансформатором» импульса и регулятором амплитуды и временем приложения его к основной облицовке 5.

кумулятивного заряда, 3 - заряд взрывчатого вещества с выемкой, 4 - дополнительное тело из химически активного вещества, 5 - кумулятивная облицовка. Устройство установлено в обсадную колонну 6 с окружающим ее цементным

кольцом 7 и продуктивным пластом 8

Материал облицовки 5 схлопывается на оси симметрии заряда под углом более 180 градусов с формированием массивной высокоскоростной кумулятивной струей. Одновременно материал дополнительного тела 4 продолжает передавать свою энергию материалу облицовки 5 и перемещается вместе с кумулятивной струей. Этим самым увеличивается продолжительность и эффективность кумулятивного действия формирующейся кумулятивной струи, увеличиваю ее скорость и длину, что ведет к увеличению диаметра и глубины перфорационного канала. Материал дополнительного тела заносится в перфорационный канал на всю глубину вместе с кумулятивной струей. Образовавшиеся в результате сгорания газы материала дополнительного тела в виде высокотемпературного потока химических реагентов химически и эрозионно взаимодействуют с уплотнением слоем стенок канала. Находясь под высоким давлением, газообразные и высокотемпературные кислотные реагенты проникают в окружающую перфорационный канал породу и путем химического взаимодействия с ней создают в пристеночных слоях канала разуплотнение слоя породы на всей длине перфорационного канала. Материал дополнительного тела может быть выбран, например, в соответствии с рекомендациями по патенту РФ № 2287667, плотность этого материала менее плотности материала облицовки.

На рис. 2 представлены последовательные этапы результатов вычислительного эксперимента по заносу вещества кумулятивной струей в перфорационный канал, созданный этой же кумулятивной струей. В кумулятивном заряде используется основная облицовка, выполненная из меди и дополнительное тело -облицовка из вещества, которое необходимо занести в перфорируемый объем.

Техническим результатом предлагаемого метода является увеличение продуктивности скважин за счет существенного прироста входного отверстия в обсадной колонне, перфорационного канала и поверхности фильтрации в окружающем канал продуктивном пласте на всю глубину канала, а так же разуплотнение стенок перфорационного канала.

35.4 мкс

Рис. 2. Последовательные этапы результатов вычислительного эксперимента по заносу вещества кумулятивной струей в перфорационный канал

Работоспособность и эффективность метода оценивалась по известной методике определения характеристик канала, образуемого при действии устройства с кумулятивным зарядом с химически активным дополнительным телом и инертным дополнительным телом, в комбинированной мишени, имитирующей скважинные условия. Было получено, что заряд с дополнительным химически активным телом имеет диаметр перфорационного канала на всем протяжении канала больше на 20-25% и длину канала на на 10-15%, по сравнению с кумулятивным зарядом с инертным дополнительным телом.

Работа частично поддержана грантом РФФИ 15-03-00691.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент РФ №2119045, МПК Е21В43/117

2. Патент РФ № 2138623, МПК Е21В43/11, Е21В43/117

3. Н. Г. Григорян и др. Прострелочные и взрывные работы в скважинах. - М.: Недра, 1972 г., с. 81-84

4. Патент РФ № 2412338, МПК Е43/117, F42B1/02. Способ и устройство (варианты) формирования высокоскоростных кумулятивных струй для перфорации скважин с глубокими незапестованными каналами и с большим диаметром / Минин В.Ф., Минин И.В., Минин О.В.; заявл. 07.12.2009; опубл. 20.02.2011, Бюл. №5. - 46 с.

5. Минин В.Ф., Минин И.В., Минин О.В. Физика гиперкумуляции и комбинированных кумулятивных зарядов. Новосибирск: ООО «Новополиграфцентр», 2013 - 272 с.

© О. В. Минин, В. Ф. Минин, И. В. Минин, 2015

i Надоели баннеры? Вы всегда можете отключить рекламу.