Научная статья на тему 'Effect of magnetic storms on the temperature characteristics of digestive glycosidases in roach fingerlings'

Effect of magnetic storms on the temperature characteristics of digestive glycosidases in roach fingerlings Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
141
31
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РЫБЫ / ПЛОТВА / ПИЩЕВАРИТЕЛЬНЫЕ ГЛИКОЗИДАЗЫ / АМИЛОЛИТИЧЕСКАЯ АКТИВНОСТЬ / МАЛЬТАЗА / МАГНИТНАЯ БУРЯ / FISH / ROACH / DIGESTIVE GLYCOSIDASES / AMYLOLYTIC ACTIVITY / MALTASE / GEOMAGNETIC STORM

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Filippov Andrey Andreevich, Krylov Vyacheslav Vladimirovich, Golovanova Irina Leonidovna

The aftereffects of a typical geomagnetic storm (the duration 24 h, in the frequency range 0-5 Hz) on the activity of glycosidase (maltase, amylolytic activity) in the intestine of a 4-month juvenile roach Rutilus rutilus (L.) have been studied. Embryos were exposed to geomagnetic storm 72 h later after fertilization. The amylolytic activity was determined by Nelson method and the maltase activity by the glucose-oxidase method. The level of glycosidase activity in juvenile roach under the impact of geomagnetic storm was significantly lower than that in controls. Temperature characteristics of glycosidase in fish of the experimental and the control groups are similar. Temperature optimum of amylolytic activity was observed at 40 ºC, the temperature optimum of maltase was found at 60 ºC. The E act values of maltase at the temperature 0-30 °C are similar in both groups of yearlings. The E act values of amylolytic activity at feeding temperature 10-20 °C were significantly lower (the efficiency of the process is higher) than at lower temperatures in both groups of yearlings.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биотехнологиям в медицине , автор научной работы — Filippov Andrey Andreevich, Krylov Vyacheslav Vladimirovich, Golovanova Irina Leonidovna

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Effect of magnetic storms on the temperature characteristics of digestive glycosidases in roach fingerlings»

UDC 597.554.3-154.31

A. A. Filippov, V. V. Krylov, I. L. Golovanova

EFFECT OF MAGNETIC STORMS ON THE TEMPERATURE CHARACTERISTICS OF DIGESTIVE GLYCOSIDASES IN ROACH FINGERLINGS1

Abstract. The aftereffects of a typical geomagnetic storm (the duration 24 h, in the frequency range 0-5 Hz) on the activity of glycosidase (maltase, amylolytic activity) in the intestine of a 4-month juvenile roach Rutilus rutilus (L.) have been studied. Embryos were exposed to geomagnetic storm 72 h later after fertilization. The amylolytic activity was determined by Nelson method and the maltase activity by the glucose-oxidase method. The level of glycosidase activity in juvenile roach under the impact of geomagnetic storm was significantly lower than that in controls. Temperature characteristics of glycosidase in fish of the experimental and the control groups are similar. Temperature optimum of amylolytic activity was observed at 40 °C, the temperature optimum of maltase was found at 60 °C. The Eact values of maltase at the temperature 0-30 °C are similar in both groups of yearlings. The Eact values of amylolytic activity at feeding temperature 10-20 °C were significantly lower (the efficiency of the process is higher) than at lower temperatures in both groups of yearlings.

Key words: fish, roach, digestive glycosidases, amylolytic activity, maltase, geomagnetic storm. Introduction

The geomagnetic storm (GMS) is a disturbance of the geomagnetic field, associated with an interaction of the perturbed flow of the solar wind and the Earth's magnetosphere. The geomagnetic storm is different in intensity and the overall picture. The intensity of geomagnetic fluctuations during GMS does not often exceed 1 % of the intensity of the geomagnetic field. However, such a weak impact can cause significant biological responses [1]. Aftereffects of a real GMS reproduced in experimental conditions, on the early stages of roach development manifested as an increase in the mitotic activity in prelarvae cells [2], the decrease in size-weight characteristics and in vertebral phenotypes diversity in juveniles [3]. Multidirectional changes in the activity of glycosidase (enzyme hydrolyzing carbohydrate) were previously found in the gut of juvenile roach subjected to the effect of low-frequency magnetic field during its embryogenesis [4, 5]. At the same time, there is no information about the aftereffect of the magnetic storm on the digestive function of fish.

The goal of the present work is to study the prolonged effects of GMS exposure during embryogenesis upon activities and temperature characteristics of intestinal glycosidase in roach fingerlings.

Materials and methods of research

The fertilized eggs obtained from the parental roach Rutilus rutilus (L.) (8 females and 6 males) caught in May 2012 at the Rybinsk Reservoir spawning grounds were used for the experiments. The eggs were fertilized by a dry method and then were placed in 2 crystallizers filled with the river water. The water was renewed twice a day. The geomagnetic storm (happened on 30-31 October 2003 and recorded at the latitude of the experiments) was reproduced in the experimental setup that allows compensating fluctuations of the geomagnetic field in the working volume and creating user-defined three-component magnetic fields. The crystallizer with embryos was placed in the working volume of the experimental unit 72 h later after fertilization. The geomagnetic storm was reproduced in the unit for 24 hours in the frequency range of 0-5 Hz. Fish in the control group were developed under the natural geomagnetic field. Groups of 500 larvae from control and experimental variants were placed in ponds with natural forage for 4 months after resorption of yolk sac. Roach mortality in the ponds was insignificant and did not depend on the experimental exposure.

Twenty fish specimens from both the control and experimental groups were used for the biochemical analysis. Fish were killed by the excision of the spinal cord, slit open immediately and the intestine was removed and placed on ice. The intestinal chime was deleted. The activity of glycosidase (maltase, amylolytic activity) was determined in the total homogenates (including medial intestine of 20 specimens in each group) prepared on Ringer's solution for cold-blooded animals (110 mM NaCl, 1.9 mM KCl, 13 mM CaCl2). The amylolytic activity (a characteristic of the total activity of enzymes

1This work was supported by the Russian Foundation for Basic Research, project no. 14-4-31170-mol_a.

capable hydrolyzing of starch, namely, a-amylase EC 3.2.1.1, glucoamylase EC 3.2.1.3, and maltase EC 3.2.1.20) were assessed by analyzing hexose accumulation according to the modified method of Nelson [6]. The activity of maltase was assayed by the glucoseoxidase method using the Fotoglyukoza (LLC Impakt, Russia) clinical biochemistry kit. The incubation of homogenates and substrates (1.8 % solution of starch or of 50 mM maltose) was carried out at the temperature of 0-70 °C and pH 7.4 during 20-30 min. Enzymatic activity was determined in five replicates at each point with the background (glucose content in the original homogenate) taken into account and expressed in micromoles of the reaction product formed per 1 min of incubation per 1 g wet tissue weight (^mol/(g-min)). The activation energy (Eact) was calculated using a graphical method of Arrhenius. The results are presented as mean values and errors of the mean (M ± m). The significance of the differences was assessed by one-way analysis of variances (ANOVA, LSD-test) atp < 0.05.

Results and discussion

The body weight of the fingerlings of the control group is 6.0 ± 0.2 g, body length - 7.1 ± 0.1 cm. The fish body weight of the experimental group is 25 %, length - 9 % lower compared to the control (p < 0.05) and is 4.5 ± 0.1 g and 6.4 ± 0.1 cm, respectively. In most cases, the glycosidase activity in fish of the control group was significantly higher than in the experimental group in all range of the incubation temperature, p < 0.05. At the standard temperature of 20 °C the amylolytic activity in roach of the experimental group was by 22 % lower than in the fish of the control group and was 29.6 ± 0.7 and 38.1 ± 1.1 ^mol/(g-min), respectively. The maltase activity in fish after exposure to GMS was 26 % lower than in control - 10.9 ± 0.1 and 14.8 ± 0.3 ^mol/(g-min). The patterns of curves of temperature dependence of glycosidase in roach of the control and the experimental groups were exceptionally close (Fig.). The temperature optimum of starch hydrolysis in yearlings of the both groups was 40 °C, the maximum level of the amylolytic activity was 122.1 ± 2.4 and 99.2 ± 4.3 ^mol/(g-min), respectively. The relative enzyme activity was 4-6 %, 15-16 and 30-31 % of the maximum at 0, 10 and 20 °C in the both groups of fish. The temperature optimum of a-amylase in the adult roach from the Rybinsk reservoir was observed at 40 °C, the optimum of the amylolytic activity was found at the temperature of 50 °C [7]. The discrepancy between our and previous results may be due to differences in the spectrum of nutrition as well as different quantitative ratio of pancreatic (a-amylase) and membrane (glucoamylase and maltase) enzymes hydrolyzing starch in juveniles and adults of the same species.

The incubation temperature, °C

a b

Effect of the incubation temperature on the activity of glycosidases: a - amylolytic activity, ^mol/(g-min); b - maltase activity, ^mol/(g-min), in the intestine of the roach of the control and the experimental (under a magnetic storm) groups

The maximum of maltase activity recorded at 60 °C is 122.1 ± 2.4 and 99.2 ± 4.3 ^mol/(g-min) in fish of the control and the experimental groups, respectively. The zone of the maximal activity of maltase (40-70 °C) is much larger than that of the amylolytic activity. The relative activity of maltase in fish of the control group (23, 29 and 43 %) was slightly higher than that of the experimental group (15, 21 and 28 % of maximum) at 0, 10 and 20 °C, respectively. It should be noted that the temperature stability of maltase at low and especially postmaximal temperatures is higher. So, at 70 °C it was amounted to 86-87 % of the maximum, while the relative activity of enzymes hydrolyzing starch was only 5-8 %. These data agree well with those obtained previously for carp fish species [7-9]. The comparison of the values of Eact of the amylolytic activity in roach fingerlings in the vital temperature range from 0 to 30 °C showed no significant differences between fish of the control and the experimental groups (Tabl.).

The activation energy of intestinal glycosidases in roach fingerlings of the control and the experimental (under a magnetic storm) groups

The activation energy, kcal/mol Breakpoint, °C

before breakpoint after breakpoint

Amylolitic activity

Control 15.9 10.6 10

GMS 20.1 12.4 10

Maltase activity

Control 5.49 no

GMS 5.42 no

The breakpoint of the Arrhenius plot was identified at 10 °C, while the values Eact in the temperature range 10-30 °C were 1.5-1.6 times lower (higher process efficiency) than at lower temperatures. In the adult roach the breakpoint of the Arrhenius plot was recorded at 20 °C and the values Eact were, 12 and 7.9 kcal/mol, respectively [7]. The values Eact of maltase in the temperature range 0-30 °C in fish of the experimental and the control groups were equal, the breakpoint of the Arrhenius plot was absent. These results corresponded to the data, which were previously obtained in the study of the thermal characteristics of maltase in roach [9].

Conclusion

The results demonstrate a low level of the glycosidase activities (amylolytic activity and maltase) in the intestine of the juvenile roach exposed to GMS (24 h duration, in the frequency range 0-5 Hz) 72 h later after fertilization. Temperature characteristics of glycosidase in fish of the experimental and the control groups are similar. The temperature optimum of amylolytic activity is recorded at 40 °C, and the temperature optimum of maltase is observed at 60 °C. The Eact values of amylolytic activity at the temperature of feeding 10-30 °C are lower (the efficiency of process is higher) than at lower temperatures. The Eact values of maltase in the temperature range 0-30 °C in fish of the experimental and the control groups are equal.

REFERENCES

1. Krylov V. V., Zotov O. D., Klain B. I. et al. An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plant and animals. J. Atmospheric and Solar-Terrestrial Physics, 2014, vol. 110-111, pp. 28-36.

2. Talikina M. G., Krylov V. V., Iziumov Iu. G., Chebotareva Iu. V. Vliianie tipichnoi magnitnoi buri na mitoz zarodyshevykh kletok i razmerno-massovye pokazateli predlichinok plotvy (Rutilus rutilus L.) [The efect of a typical magnetic storm on mitosis in the embryo cells and the length and weight of roach (Rutilus rutilus L.) prolarvae]. Biologiia vnutrennikh vod, 2013, vol. 6, no. 1, pp. 48-52.

3. Krylov V. V., Chebotareva Iu. V., Iziumov Iu. G., Zolotov O. D., Osipova E. A. V. Deistvie tipichnoi magnitnoi buri na rannii ontogenez plotvy Rutilus rutilus (L.) [Effects of an induced magnetic storm on the early ontogenesis of roach Rutilus rutilus (L.)]. Biologiia vnutrennikh vod, 2010, vol. 3, no. 4, pp. 356-359.

4. Golovanova I. L., Iziumov Iu. G., Chebotareva Iu. V., Talikina M. G. Otdalennye posledstviia raz-del'nogo i sochetannogo vliianiia khlorofosa i peremennogo elektromagnitnogo polia v period embriogeneza na effektivnost' gidroliza uglevodov u segoletkov plotvy [Long-term effects of separate and combined effect of

chlorophos and alternating electromagnetic field during embryogenesis on the efficiency of hydrolysis of carbohydrates in roach fingerlings]. Toksikologicheskii vestnik, 2006, no. 5, pp. 34-38.

5. Golovanova I. L., Filippov A. A., Krylov V. V., Chebotareva Iu. V., Iziumov Iu. G. Deistvie magnitnogo polia i medi na aktivnost' gidroliticheskikh fermentov u segoletok plotvy Rutilus rutilus [Effect of a magnetic field and copper upon activity of hydrolytic enzymes in roach (Rutilus rutilus) underyearlings]. Voprosy ik-htiologii, 2013, vol. 53, no. 3, pp. 225-230.

6. Ugolev A. M., Iezuitova N. N. Opredelenie aktivnosti invertazy i drugikh disakharidaz [Determination of the activity of invertase and other disaccharidases. Issledovanie pishchevaritel'nogo apparata u cheloveka [Study of the Digestive Tract of Humans]. Leningrad, Nauka, Publ., 1969, pp. 192-196.

7. Ugolev A. M., Kuz'mina A. M. Pishchevaritel'nye protsessy i adaptatsii u ryb [Digestive processes and adaptation in fish]. Saint Petersburg, Gidrometeoizdat, 1993. 238 p.

8. Korostelev S. G., Nevalennyi A. N. Vliianie temperatury na pishchevaritel'no-transportnuiu funktsiiu kishechnika karpovykh ryb [Influence of the temperature on food transporting function of the carp intestine]. Voprosy ikhtiologii, 2005, vol. 45, no. 2, pp. 225-235.

9. Kuz'mina V. V. Temperaturnye adaptatsii fermentov, osushchestvliaiushchikh membrannoe pishchevarenie u presnovodnykh kostistykh ryb [Temperature adaptations of enzymes participating in membrane-linked digestion in freshwater teleost]. Zhurnal obshchei biologii, 1985, vol. 46, no. 6, pp. 824-837.

The article is submitted to the editors 12.04.2014

INFORMATION ABOUT THE AUTHORS

Filippov Andrey Andreevich - Russia, 152741, Yaroslavl region, Borok; I. D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences; Candidate of Biology; Senior Research Scientist of the Laboratory of Fish Ecology; andron @ibiw.yaroslavl.ru.

Krylov Vyacheslav Vladimirovich - Russia, 152741, Yaroslavl region, Borok; I. D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Candidate of Biology; Researcher of the Laboratory of Population Biology and Genetics; kryloff@ibiw.yaroslavl.ru.

Golovanova Irina Leonidovna - Russia, 152741, Yaroslavl region, Borok; I. D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Doctor of Biology, Senior Research Scientist; Major Research Scientist of the Laboratory of Fish Ecology; golovanova5353@mail.ru.

А. А. Филиппов, В. В. Крылов, И. Л. Голованова

ВЛИЯНИЕ МАГНИТНОЙ БУРИ НА ТЕМПЕРАТУРНЫЕ ХАРАКТЕРИСТИКИ ПИЩЕВАРИТЕЛЬНЫХ ГЛИКОЗИДАЗ У СЕГОЛЕТОК ПЛОТВЫ

Изучены отдаленные последствия действия типичной магнитной бури (продолжительностью 24 часа, в диапазоне частот 0-5 Гц) на активность гликозидаз в кишечнике 4-месячной молоди плотвы Rutilus гыШш (Ъ.). Экспозиции в магнитной буре подвергались эмбрионы спустя 72 часа после оплодотворения. Для определения активности мальтазы и амилолитической активности использованы глюкозооксидазный метод и модифицированный метод Нельсона. Уровень активности гликозидаз (мальтаза и амилолитическая активность) у сеголеток плотвы, подвергнутых действию магнитной бури, достоверно ниже, чем в контроле. Температурные характеристики гликозидаз у рыб опытной и контрольной групп близки. Температурный оптимум амилолитической активности отмечен при температуре 40 °С, температурный оптимум мальтазы - при температуре 60 °С. Значения Ешт мальтазы в диапазоне значений температуры 0-30 °С у рыб опытной и контрольной групп равны. Значения Е^ амилолитической активности при температуре питания 10-20 °С достоверно ниже (эффективность процесса выше), чем при более низкой температуре у сеголеток обеих групп.

Ключевые слова: рыбы, плотва, пищеварительные гликозидазы, амилолитическая активность, мальтаза, магнитная буря.

СПИСОК ЛИТЕРАТУРЫ

1. Krylov V. V. An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plant and animals / V. V. Krylov, O. D. Zotov, B. I. Klain et al. // J. Atmospheric and Solar-Terrestrial Physics. 2014. Vol. 110-111. P. 28-36.

2. Таликина М. Г. Влияние типичной магнитной бури на митоз зародышевых клеток и размерномассовые показатели предличинок плотвы (Rutilus rutilus L.) / М. Г. Таликина, В. В. Крылов, Ю. Г. Изю-мов, Ю. В. Чеботарева // Биология внутренних вод. 2013. № 1. С. 56-60.

3. Крылов В. В. Действие типичной магнитной бури на ранний онтогенез плотвы Rutilus rutilus (L.) /

В. В. Крылов, Ю. В. Чеботарева, Ю. Г. Изюмов, О. Д. Золотов, Е. А. Осипова // Биология внутренних вод. 2010. № 4. С. 67-70.

4. Голованова И. Л. Отдаленные последствия раздельного и сочетанного влияния хлорофоса и переменного электромагнитного поля в период эмбриогенеза на эффективность гидролиза углеводов у сеголетков плотвы / И. Л. Голованова, Ю. Г. Изюмов, Ю. В. Чеботарева, М. Г. Таликина // Токсикол. вестн. 2006. № 5. С. 34-38.

5. Голованова И. Л. Действие магнитного поля и меди на активность гидролитических ферментов у сеголеток плотвы Rutilus rutilus / И. Л. Голованова, А. А.Филиппов, В. В. Крылов, Ю. В. Чеботарева, Ю. Г. Изюмов // Вопр. ихтиологии. 2013. Т. 53, № 2. С. 227-232.

6. Уголев А. М. Определение активности инвертазы и других дисахаридаз / А. М. Уголев, Н. Н. Ие-зуитова // Исследование пищеварительного аппарата у человека. Л.: Наука, 1969. С. 192-196.

7. Уголев А. М. Пищеварительные процессы и адаптации у рыб / А. М. Уголев, В. В. Кузьмина. СПб.: Гидрометеоиздат, 1993. 238 с.

8. Коростелёв С. В. Влияние температуры на пищеварительно-транспортную функцию кишечника карповых рыб / С. В. Коростелёв, А. Н. Невалённый // Вопр. ихтиологии. 2005. Т. 45, № 2. С. 225-235.

9. Кузьмина В. В. Температурные адаптации ферментов, осуществляющих мембранное пищеварение у пресноводных костистых рыб / В. В. Кузьмина / Журн. общей биологии. 1985. Т. 46, № 6. С. 824-837.

Статья поступила в редакцию 12.04.2014

ИНФОРМАЦИЯ ОБ АВТОРАХ

Филиппов Андрей Андреевич - Россия, 152742, Ярославская обл., пос. Борок; Институт биологии внутренних вод им. И. Д. Папанина Российской академии наук, канд. биол. наук; старший научный сотрудник лаборатории экологии рыб; andron@ibiw.yaroslavl.ru.

Крылов Вячеслав Владимирович - Россия, 152742, Ярославская обл., пос. Борок; Институт биологии внутренних вод им. И. Д. Папанина Российской академии наук; канд. биол. наук; научный сотрудник лаборатории популяционной биологии и генетики; kryloff @ibiw.yaroslavl.ru.

Голованова Ирина Леонидовна - Россия, 152742, Ярославская обл., пос. Борок; Институт биологии внутренних вод им. И. Д. Папанина Российской академии наук; д-р биол. наук, старший научный сотрудник; главный научный сотрудник лаборатории экологии рыб; golovanova5353@mail.ru.

i Надоели баннеры? Вы всегда можете отключить рекламу.