Литература
1. Васильков Д. В., Кочина Т. Б. Моделирование контактных взаимодействий с учетом реологии в зоне резания при высокоскоростной обработке изделий из жаропрочных сплавов // Металлообработка. 2013. № 4 (76).
2. Шампайн Л. Ф., Гладвел И., Томпсон С. Решение обыкновенных дифференциальных уравнений с использованием МАТЬАБ: учеб. пособ. СПб.: Лань, 2009. 304 с.
3. Вейц В. Л., Мартыненко А. М. Автоколебания в механических кусочно-линейных системах / / Нелинейные колебания и переходные процессы в машинах. М.: Наука, 1972. С. 283-294.
4. Cю Д., Meйep A. Современная теория автоматического управления и ее применение: пер. с англ. M.: Машиностроение, 1972. 544 с.
5. Высокоскоростное точение керамикой и CBN от компании TaeguTec [электрон. ресурс]. Режим доступа: Ь"Ир://www.taegutec.com.ua/taegutec_204.html taegutec_204.html
УДК 621.91.01
Зависимость вида стружки от условий процесса резания при обработке пластичных материалов лезвийным инструментом
И. А. Маслеников
Исследован процесс стружкообразования при обработке металлов. Целью исследований являются выяснение причин и установление закономерностей образования различных видов стружки (элементной, суставчатой и сливной) при резании пластичных металлов лезвийным инструментом в зависимости от условий обработки. Разработан метод расчета, позволяющий прогнозировать вид стружки и оценить ее параметры. Даны оценки влияния на вид стружки свойств обрабатываемого материала и материала инструмента, износа инструмента и образования нароста. Исследования проводились с использованием методов подобия при резании материалов.
Ключевые слова: обработка резанием, стружкообразование, типы стружек.
Известно, что при резании пластичных материалов лезвийным инструментом возможно образование в зависимости от условий процесса резания нескольких типов стружки, основными из которых являются элементная, суставчатая и сливная. Процесс резания пластичных материалов имеет циклический характер, который обусловлен физическими процессами, происходящими во время срезания припуска. Эти процессы хорошо изучены и описаны в технической литературе, например в книге [1].
Процесс резания понимается как процесс пластического сдвига материала по поверхности, проходящей от вершины лезвия до точки, лежащей на свободной поверхности. С некоторым приближением эта поверхность заменяется плоскостью, которая называется плоскостью сдвигов, угол наклона плоскости относительно направления скорости резания называется углом сдвига. Угол наклона плоскости сдвига можно найти опытным путем, определив коэффициент поперечной усадки стружки, или
рассчитать аналитически, применив метод подобия, который позволяет надежно прогнозировать характеристики процесса резания и определять оптимальные режимы обработки резанием современных конструкционных материалов [2].
В современных условиях в авиационной, оборонной промышленности и в энергомашиностроении используются конструкционные материалы, которые относят к классу труднообрабатываемых материалов, таких как сложноле-гированные стали 30ХГСА, 40ХНМ, 12Х2Н4Х, жаропрочные сплавы на никелевой основе ХН77ТЮР, ХН70ВМТЮ, ХН51ВМТЮВКР, титановые сплавы ВТ1, ВТ3, ВТ5. Эти материалы при использовании традиционного твердосплавного инструмента могут быть обработаны на малых скоростях резания, что обусловливает низкую производительность механической обработки. Производительность обработки может быть резко увеличена за счет использования режущих инструментов с новыми видами износостойких покрытий, режущей керамики и сверхтвердых материалов режущей части инструмента. Применение подобных режущих инструментов позволяет производить обработку на высокоскоростных режимах, которые ранее не встречались на практике.
Процесс стружкообразования при резании труднообрабатываемых материалов на высоких скоростях отличается от стружкообразования при обычных режимах. Так, изменяется характер стружки, проявляется цикличность, сливная стружка преобразуется в суставчатую. Эти явления изучаются, предлагаются разные модели процесса стружкообразования.
Разработка математической модели
Для математического описания процесса стружкообразования использованы разные подходы к трактовке явлений, сопровождающих процесс резания. Так, известна модель Альбрехта, по которой анализируется циклическое стружкообразование. В этой модели учитывается тот факт, что поверхность сдвигов в действительности не является плоскостью, а потому угол сдвига величина переменная. Предполагается, что по этой причине скорости течения слоев материала по толщине
срезаемого слоя различаются и это приводит к формированию разных толщин стружки [1]. На стружке периодически образуется выступ, т. е. стружка имеет суставчатый характер. В модели рассматривается наименьший и наибольший углы сдвига, которым соответствуют положения граничных плоскостей сдвига, заменяющих реальную поверхность сдвига. Эта модель основывалась на изучении процесса резания с помощью скоростной киносъемки и проверялась при точении конструкционных материалов широкого применения. Идея о изменяющемся положении плоскости сдвига поддерживается в модели, описанной в работе [3], где автор, проведя металлографические исследования корней стружки и измерив распределение микротвердости, предложил модель с колеблющейся плоскостью сдвига, в дальнейшем упростив ее, заменив моделью с перемещающимися плоскостями сдвига. Предполагается по упрощенной схеме, что в материале стружки происходят сдвиговые деформации два раза: в основной плоскости сдвига при стружкообра-зовании и в дополнительной плоскости сдвига, которая возникает при прохождении материала стружки застойной зоны на передней поверхности инструмента. Это, по мнению автора, является причиной изменения толщины стружки и возникновения на ее поверхности выступов. Предлагается и другой подход при исследовании цикличности стружкообразова-ния, заключающийся в том, что при резании упругая технологическая система работает как пружина, накапливает энергию, затем после достижения определенного уровня деформации происходит сдвиг материала, система разгружается [4]. Поэтому авторы идеи рассматривают зону резания как генератор колебаний, который может работать на разных частотах и образовывать разные типы стружек. Такой подход дал авторам возможность применить интересное математическое сопровождение и получить удовлетворительные совпадения расчетных значений с опытными.
Целью публикуемой работы являются исследование процесса стружкообразования, определение причин образования различных типов стружек, нахождение зависимости вида стружки от параметров процесса. При исследованиях использовались основные положения теории резания металлов и методы
Рис. 1. Модель процесса резания с одной плоскостью сдвига:
Y — передний угол; а — главный задний угол; а — толщина срезаемого слоя; j — угол сдвигов
подобия при резании материалов. При разработке модели процесса сделан ряд упрощений и допущений: рассматривается процесс ортогонального резания, при резании на передней поверхности инструмента отсутствует нарост, напряжение в плоскости сдвига распределено равномерно.
Рассматривается модель процесса резания с одной плоскостью сдвига (рис. 1).
Для определения относительной деформации сдвига процесс стружкообразования представляется как процесс скольжения блоков материала. Для этой схемы соотношение между скоростями можно определить по формулам (рис. 2):
vc = v sin j / cos (j - y); vs = v cos y / cos (j - y),
где v — скорость главного движения; vc — скорость движения стружки; vs — скорость перемещения материала по поверхности сдвига; j — угол сдвига; y — передний угол инструмента.
Относительная деформация сдвига
Ys = vs / v sin j.
Из геометрических построений относительный сдвиг можно определить, как отношение отрезков треугольника ABC (рис 1):
js = AD / CD = cos y / sin j cos (j - y),
где CD — толщина блока материала, перемещающегося по плоскости скалывания при
движении инструмента на расстоянии AC, при этом перемещение блока по плоскости скалывания равно отрезку AB. Очевидно, что для образования при резании злементной стружки блок материала должен переместиться вдоль плоскости скалывания на расстояние BE, а инструмент при этом должен пройти путь, равный отрезку EF.
Работа пластического деформирования при образовании элементной стружки
A = PsvsT = tpabvT cos y / sin j cos (j - y),
с другой стороны
A = PsSl = tpa2b / sin2 j,
где Ps — сила сопротивления сдвиговым деформациям; vs — скорость перемещения материала по плоскости сдвига; T — время перемещения по плоскости сдвига; Sl — расстояние, на котором произошел сдвиг; тр — сопротивление обрабатываемого материала пластическому сдвигу; a — толщина срезаемого слоя; b — ширина срезаемого слоя.
Приравниваем эти два выражения, после преобразований получаем
vT = a cos (j - Y) / sin j cos Y.
В левой части равенства произведение vT представляет собой расстояние, которое должен пройти инструмент для образования элементной стружки.
Частота образования элементов
T-1 = v sin j cos y / a cos (j - y). (1)
Рис. 2. Соотношение между скоростями: V — скорость главного движения; ис — скорость движения стружки; vs — скорость перемещения материала по поверхности сдвига; ф — угол сдвига; у — передний угол инструмента
Цикличность стружкообразования W = T-1.
Цикличность стружкообразования зависит от скорости резания v, переднего угла инструмента у и угла сдвига j. Чтобы воспользоваться этой формулой, необходимо задаться углом Y и скоростью v. Угол сдвига можно определить по формуле, предложенной С. С. Силиным [2, 5]:
В = mPen / FkD (1 - sin Y)q,
где B = tg j; Pe, F и D — безразмерные критерии подобия: Ре = va / ai — критерий Пекле, характеризующий степень влияния режимов обработки по сравнении с теплофизически-ми свойствами обрабатываемого материала; F = IpPe / y — критерий, отражающий влияние геометрии инструмента и отношения теплопро-водностей инструментального и обрабатываемого материалов; D = a / b — критерий, характеризующий геометрию сечения среза.
Для определения этих критериев использованы параметры: v — скорость резания; 1р и l — коэффициенты теплопроводности инструментального и обрабатываемого материала; ai = l / cp — коэффициент температуропроводности обрабатываемого материала; cp — удельная объемная теплоемкость обрабатываемого материала; в — угол заострения; e — угол при вершине резца в плане. Показатели степени в формуле для определения угла сдвига выбирают по таблицам [2, 5].
Элементная стружка образуется при обработке на низких скоростях резания, которые не часто применяются в современных процессах механической обработки конструкционных материалов. Применение твердосплавного инструмента позволяет проводить обработку с увеличенной скоростью резания. В этих условиях процесс стружкообразования несколько изменяется. Блоки материала, перемещающиеся по плоскости сдвига, будут сдвигаться только на определенное расстояние, как это видно на рис. 1: при перемещении инструмента на расстояние AC слой материала с толщиной, равной отрезку CD, передвинется на расстояние AB, на наружной стороне стружки образуются зубцы, свидетельствующие
о циклическом характере стружкообразования.
При образовании суставчатой и сливной стружек блоки материала успевают передвинуться только на некоторую часть толщины срезаемого слоя, потому в формулу (1) необходимо ввести изменения:
Г-1 = v sin j cos y / ka cos (j - y), (2)
где 1 > k > 0.
Можно предположить, что при образовании элементной стружки k ~ 1 , а при k < 1 ожидается появление суставчатой или сливной стружек.
Из практики металлообработки известно, что при высоких скоростях резания пластичных материалов образуется сливная стружка, когда инструмент успевает пройти расстояние ¿i = AC, деформируя материал на толщине, равной ak, сдвигая материал по плоскости сдвига. Чем больше скорость резания, тем меньше расстояние ¿i и меньше толщина слоя деформируемого материала ak. Этот слой не может быть бесконечно малым, его величина зависит от радиуса скругления режущей кромки инструмента. Процесс резания пластичных материалов может быть осуществлен, когда выполняется условие
ak > 0,5р1,
где Р1 — радиус скругления режущей кромки инструмента [2].
Между минимальной толщиной деформированного слоя ak и расстоянием ¿i существует зависимость
¿i = ak / sin j [cos j + sin j tg (j - y)],
с другой стороны, это расстояние можно выразить через скорость резания и время сдвига блока материала: ¿i = vT. Приравнивая левые части этих выражений, после преобразований получим формулу для определения частоты цикла сливного стружкообразования:
T-1 = 2 v sin j [cos j + sin j tg (j - y)] / Р1. (3)
Величина выступа блока материала на обратной стороне стружки определяется из
ШШШМБОТКА
геометрических соображений (рис. 1): GE = = AB, обозначим высоту выступа H, тогда Н = GE, после подстановки получим:
Н = vT [cos j + sin j tg (j - у)]. (4)
Исследование процесса
стружкообразования
при различных скоростях резания
Зависимость цикличности стружкообразования от скорости резания исследуется на примере токарной обработки стали 45 резцами с режущей частью из сплава Т15К6. Расчеты выполнены при следующих данных: тр = 485 МПа, ср = 5,02 • 106 Дж / (м3 • °С), а1 = = 8 • 10-6 (м2 / с), 1 = 40,2 Дж / (мс • °С), 1р = = 27,2 Дж / (мс • °С), у = 10 °, главный задний угол а = 10°, главный угол в плане 45°, вспомогательный угол в плане 15°, радиус при вершине резца г = 1 мм, подача 8 = 0,2 мм / об, глубина резанияе £ = 2 мм, радиус скругления режущей кромки р1 = 0,02 мм, толщина срезаемого слоя а = 0,141 мм, ширина срезаемого слоя Ь = 2,88 мм. Задан ряд значений скоростей резания, для которых определены для заданных параметров обработки значения угла сдвига ф.
При расчетах использованы данные из примеров, рассмотренных в работе [2], результаты сведены в табл. 1.
Результаты расчетов отражены на рис. 3, где ось абсцисс — скорость резания V, а ось
W, кГц 200
150
100
50
J
0
1
2
3
v, м/с
Рис. 3. Зависимость частоты стружкообразования от скорости резания при точении конструкционной стали 45 острозаточенным резцом из сплава Т15К6, у = 10 главный задний угол а = 10 главный угол в плане 45°, вспомогательный угол в плане 15°, радиус при вершине резца г = 1 мм, подача в = 0,2 мм/об, глубина резания ^ = 2 мм, радиус скругления режущей кромки Р1 = 0,02 мм
ординат — частота стружкообразования Ж, которая числено определяет цикличность. Видно, что частота стружкообразования, когда формируется сливная стружка, почти пропорциональна скорости резания, а в зоне формирования элементной стружки частота стружкообра-зования на два порядка ниже. Высота выступа на стружке при формировании сливной стружки остается примерно одинаковой, соразмерной с радиусом скругления режущей кромки
Таблица 1
Углы сдвига и характеристики цикличности стружкообразования для разных скоростей резания при точении конструкционной стали
Скорость резания v, м/с B Угол сдвига j, Pe Цикличность при k = 1, КГц Цикличность при k < 0,1, КГц Высота выступа на стружке H, мм Тип стружки
0,062 0,477 26 1,1 0,20 - 0,32 Э
0,123 0,606 31 2,2 0,47 - 0,28 Э
0,237 0,754 37 4,3 1,12 - 0,24 Э, Сус
0,493 0,562 30 8,6 1,83 25,8 0,28 (0,020)* Сус, С
0,950 0,502 27 16,7 - 44,4 0,02 С
1,90 0,532 28 33,5 - 92,4 0,02 С
3,93 * Ожидаемая 0,573 высота выст 30 упа при образо 70,0 вании сливн [ой стружки 206 0,020 С
П р и м е ч а н и е. В таблице применены обозначения типов стружки: Э — элементная, Сус — суставчатая, С — сливная.
инструмента. При формировании элементной стружки говорить о выступе не приходится, расчетная величина представляет собой толщину образовавшейся стружки, которая уменьшается с увеличением скорости.
Проверка расчетным путем влияния изменения переднего угла инструмента показала, что характер стружкообразования изменяется, но незначительно, закономерности зависимости от скорости резания остаются те же.
Проведенные исследования показали, что при точении конструкционной стали основным параметром, определяющим уровень цикличности, является скорость резания, влияние переднего угла резца на цикличность проявляется в меньшей степени.
Цикличность стружкообразования была определена для острозаточенного резца в условиях точения без нароста. В реальных условиях происходит утрата остроты режущей кромки в результате износа, что приводит к увеличению радиуса скругления режущей кромки. Увеличение радиуса режущей кромки пропорционально уменьшает уровень цикличности стружкообразования.
Наростообразование, при котором лезвие инструмента обволакивается налипшим материалом, также оказывает значительное влияние на процесс стружкообразование. При этом радиус скругления искусственной режущей кромки возрастает в разы. В технической литературе приводятся факты, когда из-за нароста реальный радиус скругления достигал больших значений, во много раз превышающих радиус скругления, который был задан при исследованиях. В реальных условиях ожидается снижение частоты стружкообразования.
Для углеродистых сталей зона образования нароста находится в диапазоне скоростей 10-60 м/мин, для стали 45 найдена зависимость образования нароста в зависимости от скорости резания и подачи Sv < 10, радиус нароста также зависит от режимов обработки и может быть определен по эмпирической формуле гн = = 0,105а°'^°'2 [6]. С помощью этих зависимостей определены показатели цикличности с учетом возможного образования нароста во время обработки. Результаты расчетов показаны в табл. 2.
Результаты сопоставимы с данными, полученными Альбрехтом при точении стали на близких режимах обработки: подача S = 0,19 мм/об,
Таблица 2
Характеристики цикличности стружкообразования для разных скоростей резания при точении конструкционной углеродистой стали с учетом нароста
Скорость резания v, м/с Угол сдвига j, о Радиус нароста, м•10-3 Угол сдвига j, о Цикличность при k < 0,1 КГц
0,062 26 Нет 26 0,20
0,123 31 Нет 31 0,47
0,237 37 0,07 37 4,6
0,493 30 0,08 30 6,6
0,950 27 0,09 27 9,9
скорость резания v = 0,6 ^ 2,5 м/с, частота стружкообразования менялась в пределах W = 1 - 15 КГц [1].
Влияние теплофизических характеристик пары материал детали — материал инструмента
Теплофизические характеристики материалов обрабатываемой детали и режущего инструмента являются важнейшими факторами, определяющими процесс стружкообразования. Влияние вида материала на характер струж-кообразования рассматривается при точении титанового сплава ВТ3 резцами с режущей частью, оснащенной твердым сплавом ВК8. Геометрические параметры резца и режимы обработки остаются такие же, как в первом примере, изменяются теплофизические характеристики материала детали и режущей части резца: 1p = 58,5 Дж / (м • с • °С), удельная объемная теплоемкость обрабатываемого материала cp = = 2,74 • 106 Дж / (м3 • °С), l = 13,45 Дж / (м • с • °С), а1 = 4,9 • 10-6 м2 / с. Для этих исходных данных F = 11,1293; D = 0,05, 1 - sin у = 0,825. Результаты расчетов сведены в табл. 3.
Исследование показало, что при точении титанового сплава на тех же режимах, что были использованы при точении конструкционной углеродистой стали, процесс стружкообразо-вания сильно изменился: изменилась цикличность, частота стружкообразования уменьшилась, выступ на обратной стороне стружки тоже имеет другую высоту (рис. 4).
Для определения характера стружки необходим был более глубокий анализ термического состояния зоны стружкообразования.
ЕТАПЛООБРАБОТК]
Таблица 3
Углы сдвига и характеристики цикличности стружкообразования для разных скоростей резания при точении титанового сплава
Скорость резания V, м/с Критерий Пекле Ре В Угол сдвига <Р, Температура, °С Pev Распределение температуры по плоскости сдвига, °С к Цикличность, КГц Высота выступа стружки Н, мм Тип стружки
0,062 1,78 0,729 36,1 360 1,30 331 288 245 180 20 0,6 0,47 0,14 Э
0,123 3,54 1,016 45,44 258 3,6 245 219 181 134 20 0,2 1,88 0,08 С
0,237 6,82 0,935 43,08 280 6,4 274 252 232 173 20 0,6 2,25 0,04 С
0,493 14,19 0,715 35,60 366 10,2 262 348 322 256 20 0,8 2,78 0,19 Сус, С
0,950 27,34 0,483 25,76 543 13,2 540 526 490 435 20 0,9 3,33 0,29 Э
1,90 54,67 0,233 13,12 1124 12,74 1120 1090 1010 843 20 1 3,35 0,56 Э
Температура в районе вершины резца (точка В) теоретически может быть вычислена по формуле [2]:
0В = тр / (фВ),
где Тр = 718 МПа, ср — удельная объемная теплоемкость обрабатываемого материала, для сплава ВТ-3 ср = 2,74 • 106 Дж / (м3 • °С). Результаты расчетов по этой формуле вошли в табл. 3. Видно, что в зоне вершины резца температура достигает высокого уровня, достаточного, чтобы материал приобрел пластичность. Чем выше скорость резания, тем больше температура в зоне пластической деформации и большая вероятность, что материал находится в пластическом состоянии. Теория подобия позволяет определить закон распределения температуры,
вызванной пластической деформацией, вдоль плоскости сдвига от точки В до точки Е. Результаты расчетов представлены в табл. 3. По распределению температуры вдоль плоскости сдвига определяется предполагаемая граница пластического состояния материала на плоскости сдвига.
Предполагается, что, когда резец перемещается в пределах пластической зоны, движения блока материала по плоскости сдвига не происходит. Только когда передняя поверхность резца достигнет границы упругой зоны, блок материала начинает движение по плоскости сдвига. Граница расположения упругой зоны оценивается коэффициентом к, т. е. отношением толщины предполагаемой пластической зоны материала вблизи вершины инструмента к толщине срезаемого слоя. Значения
Рис. 4. Зависимость частоты стружкообразования от скорости резания при точении титанового сплава ВТ3 резцами с режущей частью, оснащенной твердым сплавом ВК8, у = 10 главный задний угол а = 10 главный угол в плане 45°, вспомогательный угол в плане 15°, радиус при вершине резца р = 1 мм, подача S = 0,2 мм/об, глубина резания t = 2 мм, радиус скругления режущей кромки р1 = 0,02 мм
коэффициента k для разных скоростей резания представлены в табл. 3. Как видно из табл. 3, с увеличением скорости резания значение коэффициента k растет, и при скорости резания v = 1,90 м/с коэффициент k = 1. Это означает, что материал по всей толщине срезаемого слоя находится в пластическом состоянии и при перемещении передней поверхности резца на расстояние EF завершится один цикл стружкообразования. Материал, разогретый до высокой температуры, сдвинется по поверхности сдвига на расстояние BE, образуя стружку непривычной формы. Стружка может иметь суставчатый или элементный характер. Обычно в этом диапазоне скоростей резания при обработке конструкционных сталей образуется сливная стружка.
При более высоких скоростях резания обработка титановых сплавов твердосплавным резцом уже невозможна, так как твердый сплав не работоспособен при таком тепловом режиме. Более высокие скорости резания могут быть применены, если режущий инструмент будет оснащен другим инструментальным материалом, например минеральной керамикой.
Выводы
1. Разработана универсальная методика теоретического анализа процесса стружкообразования для любой пары обрабатываемый материал — режущий инструмент.
2. Исследования показали, что стружко-образование при резании пластичных материалов имеет циклический характер, что подтверждается наличием выступов на наружной поверхности стружки.
3. Цикличность стружкообразования (частота сдвигов по поверхности сдвигов), зависит от многих факторов: скорости резания V, геометрических параметров режущей части инструмента и угла сдвига ф, параметров сечения срезаемого слоя. Наибольшее влияние на вид стружки оказывает изменение скорости резания.
4. Современные методы анализа процесса резания на основе теории подобия при резании материалов помогают определить угол сдвига ф с учетом теплофизических характеристик пары материал детали — материал инструмента, геометрии режущего инструмента и режимов резания, что позволяет прогнозировать характер стружкообразования, и вид стружки.
5. Радиус скругления режущей кромки резца оказывает заметное влияние на процесс стружкообразования. По мере износа резца радиус скругления увеличивается, что вызывает снижение частоты стружкообразования. Появление на резце нароста может снизить частоту стружкообразования в разы.
Литература
1. Армарего И. Дж. А., Браун Р. Х. Обработка металлов резанием. М.: Машиностроение, 1977. 325 с.
2. Силин С. С. Метод подобия при резании материалов. М.: Машиностроение. 1979. 152 с.
3. Праведников И. С. Исследование механизма образования циклической стружки / / Нефтегазовое дело. 2011. № 3. С. 283.
4. Волков Д. И., Проскуряков С. Л. Разработка модели процесса резания с учетом цикличности формирования стружки // Вестн. УГАТУ. 2011. Т. 15, № 3 (43). С. 72-78.
5. Расчет режимов резания: учебн. пособ./ В. Ф. Безъязычный, И. Н. Аверьянов, А. В. Кордюков. Рыбинск: РГТА, 2009. 185 с.
6. Грановский Г. И., Грановский В. Г. Резание металлов: учеб. М.: Высш. шк., 1985. 304 с.