Научная статья на тему 'Замещение воздушного охлаждения конденсаторов паровых турбин контуром циркуляции на c 3H 8'

Замещение воздушного охлаждения конденсаторов паровых турбин контуром циркуляции на c 3H 8 Текст научной статьи по специальности «Прочие технологии»

CC BY
86
43
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОНДЕНСАТОР ПАРОВОЙ ТУРБИНЫ / ВОЗДУШНОЕ ОХЛАЖДЕНИЕ / СЖИЖЕННЫЙ ГАЗ C 3H 8

Аннотация научной статьи по прочим технологиям, автор научной работы — Гафуров А. М., Гафуров Н. М.

В статье рассматривается процесс охлаждения конденсаторов паровых турбин с помощью сжиженного пропана C 3H 8, охлаждаемого воздушными ресурсами окружающей среды в зимний период времени.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Замещение воздушного охлаждения конденсаторов паровых турбин контуром циркуляции на c 3H 8»

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №1/2016 ISSN 2410-6070

УДК 62-176.2

А.М. Гафуров

инженер кафедры «Котельные установки и парогенераторы» Казанский государственный энергетический университет

Н.М. Гафуров студент 3 курса факультета энергонасыщенных материалов и изделий (ФЭМИ) Казанский национальный исследовательский технологический университет

Г. Казань, Российская Федерация

ЗАМЕЩЕНИЕ ВОЗДУШНОГО ОХЛАЖДЕНИЯ КОНДЕНСАТОРОВ ПАРОВЫХ ТУРБИН

КОНТУРОМ ЦИРКУЛЯЦИИ НА C3H8

Аннотация

В статье рассматривается процесс охлаждения конденсаторов паровых турбин с помощью сжиженного пропана C3H8, охлаждаемого воздушными ресурсами окружающей среды в зимний период времени.

Ключевые слова

Конденсатор паровой турбины, воздушное охлаждение, сжиженный газ C3H8

В качестве охлаждающей жидкости для конденсаторов паровых турбин предлагается использовать низкокипящее рабочее тело - сжиженный пропан C3H8, циркулирующий в замкнутом контуре. При этом замкнутый контур циркуляции с низкокипящим рабочим газом C3H8 выполнен в виде контура теплового двигателя, работающего по органическому циклу Ренкина.

Замкнутый контур циркуляции теплового двигателя содержит последовательно соединенные конденсатный насос, конденсатор паровой турбины, турбодетандер и теплообменник-конденсатор аппарата воздушного охлаждения. Причем охлаждение низкокипящего рабочего газа C3H8 осуществляют наружным воздухом окружающей среды в зимний период времени [1, 2].

Весь процесс начинается со сжатия в конденсатном насосе теплового двигателя (процесс I-II, рис. 1, 2) сжиженного пропана C3H8, который направляют на нагрев и испарение в конденсатор паровой турбины, куда поступает отработавший в турбине пар. При этом отработавший пар (при давлении от 3 кПа до 7,5 кПа) конденсируется на поверхности конденсаторных трубок, внутри которых протекает сжиженный пропан C3H8. Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится на нагрев (процесс II-III) сжиженного пропана C3H8 до температуры насыщения. Температура кипения сжиженного пропана C3H8 сравнительна низка при температуре от 287,82 К (14,67°С) до 305,47 К (32,32°С) и давлении от 0,725 МПа до 1,142 МПа, поэтому в конденсаторе паровой турбины он быстро испаряется и переходит в газообразное состояние (процесс III-IV), после чего, имея температуру перегретого газа (процесс IV-V), его направляют на расширение в турбодетандер теплового двигателя.

В турбодетандере теплового двигателя не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада (процесс V-VI). Мощность турбодетандера теплового двигателя передается соединенному на одном валу электрогенератору. На выходе из турбодетандера теплового двигателя газообразный пропан C3H8, имеющий температуру перегретого газа от 291,3 К (18,15°С) до 280,71 К (7,56°С), направляют на сжижение в теплообменник-конденсатор аппарата воздушного охлаждения.

Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в теплообменнике-конденсаторе аппарата воздушного охлаждения (процесс VI-I), охлаждаемого наружным воздухом окружающей среды в зимний период времени в температурном диапазоне от 273,15 К до 223,15 К (от 0°С до -50°С).

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №1/2016 ISSN 2410-6070

После теплообменника-конденсатора аппарата воздушного охлаждения теплового двигателя в сжиженном состоянии пропан СзШ направляют для сжатия в конденсатный насос теплового двигателя. Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Рисунок 1 - Т^ диаграмма контура циркуляции на СзШ при давлении пара 3 кПа.

1,50 1,75 2,00

Энтропия, кДж/(кг К)

Рисунок 2 - Т^ диаграмма контура циркуляции на СзШ при давлении пара 7,5 кПа.

Список использованной литературы:

1. Гафуров А.М., Калимуллина Д.Д. Способ утилизации сбросной теплоты в конденсаторах паровых турбин, охлаждаемых воздушными ресурсами. // Инновационная наука. - 2015. - № 12-2 (12). - С. 29-31.

2. Гафуров А.М., Калимуллина Д.Д. Способ утилизации теплоты в конденсаторах паровых турбин, охлаждаемых водно-воздушными ресурсами. // Инновационная наука. - 2015. - № 12-2 (12). - С. 31-32.

© Гафуров А.М., Гафуров Н.М., 2016

i Надоели баннеры? Вы всегда можете отключить рекламу.