URAL MATHEMATICAL JOURNAL, Vol. 9, No. 1, 2023, pp. 4-17
DOI: 10.15826/umj.2023.1.001
ZAGREB INDICES OF A NEW SUM OF GRAPHS
Liju Alex
Department of Mathematics, Bishop Chulaprambil Memorial College(B.C.M),
Kottayam - 686001, India
Marthoma College, Thiruvalla, Pathanamthitta - 689103, India
Indulal Gopalapillai
Department of Mathematics, St.Aloysius College, Edathua, Alappuzha - 689573, India
Abstract: The first and second Zagreb indices, since its inception have been subjected to extensive research in the physio-chemical analysis of compounds. In [5], Hanyuan Deng et al. computed the first and second Zagreb indices of four new operations on a graph defined by M. Eliasi, B. Taeri [6]. Motivated by [6], in this paper we define a new operation on graphs and compute the first and second Zagreb indices of the resultant graph. We illustrate the results with some examples.
Keywords: First Zagreb index Mi(G), Second Zagreb index M2(G), F* sum.
1. Introduction
A graph without loops and also without parallel edges is called a simple graph and if all the pairs of vertices of the graph are connected by a path then it is said to be connected. Throughout our discussion, we consider only connected simple graphs. The degree-based structural descriptors have been a subject of detailed study since their induction from the first degree-based topological index in 1972 by I. Gutman, N. Trinajstic [11]. Later, in 1975 I. Gutman, B. Ruscic, N. Trinajstic, C.F. Wilcox [12] defined another degree based index in connection with studying physical properties of chemical compounds. At first, both these indices were named as Zagreb group indices [3], but later I. Gutman named them as first and second Zagreb indices. The first Zagreb index M1(G) is defined as the sum of squares of degrees of all the vertices and the second Zagreb index M2(G) is defined as the sum of product of degrees of end vertices of all the edges. That is,
M1 (G) = ^ dG(u)2, M2(G) = ^ dc(u)dG(v).
ueV(G) uveE(G)
Various physical applications of these indices can be found in [8-10, 13, 19, 20]. A more unified and general approach on degree based indices of graphs were considered by X. Li, H. Zhao in [17, 18] which lead in defining generalized Zagreb index as
Ma (G)= £ dG (U)a.
«ev (G)
Various particular cases for this generalized Zagreb index were considered separately, one among them is the Forgotten index F(G) (when a = 3) defined in 1972 [11] but resurged in 2015 through the works of B. Furtula, I. Gutman [7]. For more works on topological indices, see [2, 15, 17, 18, 21]. The degree based topological indices of graph operations have been a subject of detailed study recently [1, 5]. In [16], M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi computed the first and second Zagreb indices of graph operations such as cartesian product, composition, join, disjunction and symmetric difference of graphs. In [6], M. Eliasi, B. Taeri defined four new operations of graphs related to subdivisions and computed the Wiener index. Motivated by [6], in this paper we define a new sum related to the four subdivison graphs and compute the first and second Zagreb indices of the new sum. We also find the Zagreb indices of some chemical structures and some classes of bridge graphs using the expressions obtained. We refer to this new sum as F* sums of graphs.
2. F* sums of graphs
Let Gi, G2 be two graphs with vertex set V, V2 and edge set E1, E2 respectively. The four subdivision graphs S(G1), R(G1), Q(G1), T(G1) are defined as follows in [4]:
1. S(G1) is the graph obtained from G1 by replacing each edge ej of G1 with a vertex and making the new vertex adjacent to the corresponding end vertices of ej for each ej € E1. That is, S(G1) is a graph with vertex set V(S(G1)) = V (J V* where V* is the collection of new vertices and the edge set
E(S(G1)) = {(v,h), (u,h) : e = vu € € V**}.
2. R(G1) is the graph obtained from G1 by replacing each edge ej of G1 with a vertex and making new vertex adjacent to the corresponding end vertices of ej for each ej € E1 also keeping every edge in G1 as well. That is, R(G1) is a graph with vertex set V(R(G1)) = V1 U V* where V* is the collection of new vertices and edge set
E(R(G1)) = {(v,h), (u,h) : e = vu € € V*} U E.
3. Q(G1) is the graph obtained from G1 by replacing each edge ej of G1 with a vertex and making new vertex adjacent to the corresponding end vertices of ej for each ej € E1 along with edges joining vertex in the ith copy of V* to the vertex in the jth copy of V* whenever ej adjacent to ej in G 1. That is, Q(G 1) is a graph with vertex set V(Q(G 1)) = V (J V* where V* is the collection of new vertices and edge set
E(Q(G{)) = {(v, h), (u, h) : e = vu € € V^} U E* = {(uj,ui) : ej adjacent to ej in E1,uj ,uj € V*},
where uj,uj- are the vertices corresponding to the edges ej,ej- € E1.
4. T(G 1) is the graph obtained from G 1 by replacing each edge ej of G 1 with a vertex and making new vertex adjacent to the corresponding end vertices of ej for each ej € E along with edges joining vertex in the ith copy of V/ to the vertex in the jth copy of V/ whenever ej adjacent to ej in G 1 and keeping every edge of G 1 as well. That is, T(G 1) is a graph with vertex set V(T(G 1)) = V11J V/ where V/ is the collection of new vertices and edge set
E(T(G 1)) = {(v, h), (u, h) : e = vu € E1, h € V*} U E*, E* = {(uj,uj) : ej adjacent to ej in E1,uj,uj- € V/} U E1,
where uj,uj- are the vertices corresponding to the edges ej,ej- € E1.
In each of these new subdivision graphs the vertices V1 can be termed as black vertices and the vertices V* can be termed as white vertices. In [6], M. Eliasi, B. Taeri defined four new sums called F sums with the operation cartesian product on black vertices on copies of subdivison graphs. Motivated by this we define a sum on copies of white vertices related to the cartesian product. Let F be any one of the symbols S, R, Q,T, then the F* sum of two graphs G1 and G2 is denoted by G1 *f G2, is a graph with the vertex set V(G1 G2) = V(F(G1)) x V2 and the edge set
E(Gi G2) = {(a,b)(c,d) : a = c € V* and bd € E2 or ac € E(F(Gi)) and b = d € V2}.
Fig. 1 is an example with G1 = P4, G2 = P6.
/MVK
/vv\
/tvtvts
AAA
/ V V
/ V V
/ V V \
/ V V \
/ V V \
(a.)
(b.)
(c.)
(d)
Figure 1. (a) P4 Pe, (b) P4 Pe, (c) P4 *q Pe, (d) P4 *t Pe.
3. Zagreb index of F* sum
In this section we compute the first and second Zagreb indices of F* sums of graphs. Theorem 1. Let G1 and G2 be two connected graphs, then
(a) Mi(Gi *s G2) = |V2|Mi(Gi) + |Ei|Mi(G2) + 4|Ei| (2|E2| + |V21),
(b) M2(Gi *s G2) = 2|Ei|Mi(G2) + |Ei|M2(G2) + 4|Ei| (2|E21 + |V2|).
Proof. From the definition of first Zagreb index, we have
Mi (Gi G2) = Y1 (d(Gi*sG2)(a, b))2
(a,b)£V (Gi*s G2)
= Y1 (d(Gi*sG2)(u,v)+ d(Gi*sG2) (x,y))
(u,v)(x,y)eE(G 1 *s G2)
= Y1 Y1 (d(Gi *sG2)(u,v)+ d(Gi *sG2)(u,y)) ueVj* vy€E2
+ ^ Y1 (d(Gi*sG2)(u,v) + d(Gi*sG2)(x,v^ . veV2 uxeE(S(Gi)
Now we separately find the values of the each parts in the sum. Firstly we consider the sum in which u € V/ and vy € E2
Y1 Y1 (d(G 1 *s G2)(u,v)+ d(G 1 *sG2}(u,y)) «eV* vyeE
= E [dS(G i )(u)+ dG2 (v) + (dS(Gi )(u)+ dG2 (y))]
«eV-,* vyeE2
= E X) [2dS(Gi)(u)+ dG2 (v)+ dG2 (y)] uev* vyeE2
= ^ [4|E2| + M1 (G2)] =4|E1 ||E2| + |E1 |M 1 (G2). uev,*
Now for each edge ux € E(S(G 1)), v € V2
E E (d(Gi*s G2)(u,v)+ d(Gi*s G2)(x,v)) veV2 uxeE(S(Gi))
= E E [dS(Gi)(u) + (dG2 (v)+ dS(Gi) (x))] veV2 «xeE(S(Gi) uevi.xevi*
= ^ (2|E1 |dG2(v) + M1 (G 1) +4|E11) = 4|E11|E21 + |V>|M1 (G 1) +4|E||V>|.
veV2
From the expressions we obtain
M1 (G 1 *s G2) =|Vi|M1 (G 1) + |E1 |M1 (G2) + 4|E11 (2|E2| + |V>|).
Next consider
M2(G1 G2) = ^ (dGi*SG2(u,v)dGi*SG2 (x,y))
(u,v)(x,y)eE(Gi*s G2)
= E (dGi*sG2 (u,v)dGi*sG2 (u,y»+£ Y^ (dGi*sG2 (u,v)dGi*sG2 (x,v))
ueV* vyeE2 veV2 «xeE(S(Gi)
= [dS(Gi)(u)+ dG2 (v)] [dS(Gi)(u)+ dG2 (y)]
uev* vyeE2
+ E X) [dS(Gi) (u) (dG2 (v) + dS(Gi) (x))] veV2 uxeE(S(Gi)), uevi.xev*
= E E [4 + 2(dG2 (v)+ dG2 (y))+ dG2 (v)dG2 (y)]^^(2(|E |) dG2 (v)+4|E |)
«eV* vyeE2 vev2
= 4|E1 ||E2| + 2|E1 |M1 (G2) + |E1 |M2(G2) + 4|E| (|E2| + |V>|).
Thus,
M2(G 1 G2) = 2|E1 |M1 (G2) + |E 1 |M2(G2) + 4|E11 (2|E21 + |V21).
□
Theorem 2. Let G1 and G2 be two connected graphs, then
(a) M1(G1 *r G2) = 4|V> |M1(G1) + EM^) + 4|E1|(2|E21 + | V21),
(b) M2(G1 *r G2) = 4M1(G1 )(1 + |E21) + M2(G2)(4|V21 + |E^) + 2|E1|M1(G2) + 4|E1||E2|.
Proof. We have
M1(G1 G2) = (d(Gi*RG2)(a, b))2
(a,b)€V (Gi*R G2)
= E (d(Gi*flG2) (u,v)+ d(Gi *flG2)(x,y))
(u,v)(x,y)eE(Gi G2)
= E E (d(Gi *R G2)(u,v)+d(Gi *r G2)(u,y«^ E (d(Gi*flG2)(u,v)+d(Gi *flG2)(x,v)) . «eV* vyeE2 veV2 «xeE(R(Gi)
Now we separately find the values of each part in the sum. First we consider the sum in which u € V! and vy € E2
E E (d(Gi *R G2)(u,v)+ d(Gi G2 )(u,y)) «eV* vyeE2
^ ^ [(dR(Gi)(u) + dG2 (v)) + (dR(Gi)(u)+ dG2 (y))] «eV* vyeE2
= E E [4 + dG2(v) + dG2(y)]= E [4|E21 + M1 (G2)]=4|E1||E21 + EM^).
«eV* vyeE2 «eV*
Now for each edge ux € E(R(G1)), v € V2
E E (d(Gi *SG2)(u,v)+ d(Gi *sG2) (x,v)) veV2 «xeE(R(Gi))
= E E (d(Gi *sG2)(u,v)+ d(Gi *SG2 )(x,v)) veV2 «xeE(R(Gi)), «,xeVi
+ E E (d(Gi*sG2)(u,v) + d(Gi *SG2) (x,v)) . veV2 «xeE(R(Gi)), «eVi,xeVi*
Now we calculate the each sum separately
E E (d(Gi *RG2)(u,v)+ d(Gi*RG2)(x,v)) veV2 «xeE(R(Gi)), «,xeVi
= E E (dR(Gi) (u) + dR(Gi) (x)) veV2 «xeE(R(Gi)), «,xeVi*
= E E 2(dGi (u)+ dGi (x)) =2|V2 |M1(G1).
veV2 «xeE(R(Gi)), «,xeVi
By considering the case where ux € E(R(G1)), u € Vi, x € V*
(d(Gi *RG2)(u,v)+d(Gi *rG2) (x,v))=E dR(Gi )(u) + (dG2(v) +2)
veV2 uxeE(R(Gi)), veV2 ux€E(R(Gi)),
uevi*,xevi* ueVi.xeV!
= E E 2dGi (u) + dG2 (v) + 2 = 2|V2|Mi(Gi) + 4|Ei|(|E2| + |Vi|).
veV2 ux€E(R(G i)),
uevi.xev;*
Thus we obtain
Mi(Gi *RG2) = 4|V>|Mi(Gi) + |Ei|Mi(G2) + 4|^i|(2|E3| + |V>|).
Similarly,
M2(Gi G2) = ^ (dGi*rG2(u,v)dGi*rG2(x,y))
(u,v)(x,y)eE(G i *rG2)
= E X) (dGi*RG2 (u,v)dG i*RG2 (u,y))^ ^ (d(Gi*RG2 (u,v)d(Gi *RG2 (x,v)) . ueVj* vyeE2 veV2 ux€E(R(G i)
Now we find the sums separately
(dGi *RG2 (u,v)dGi *RG2 (u,y))^ ^ [(dR(G i )(u)+ dG2 (v)) (dR(Gi) (u) + dG2 (^))] ueVj* vyeE2 ueV]* vy€E2
= E E [dR(G i )(u)2 + dR(G i )(u)(dG2 (v)+ dG2 (y))+ dG2 (v)dG2 (y)] ueVj* vyeE2
= E E [4 + 2(dG2(v) + dG2(y))+ dG2(v)dG2(y)] = 4|Ei||E2| + 2|Ei|Mi(G2) + |Ei|M2(G2). uev/ vyeE2
Also,
E E (dG i*RG2 (u,v)dGi*RG2 (x,v)) = E E (dG i*RG2 (u,v)dGi*RG2 (x,v)) veV2 ux€E(R(G i)) veV2 ux€E(R(G i)),
u,x€Vi
+ E E (dG i*rG2 (u,v)dGi *RG2 (x,v)) . veV2 ux€E(R(G i)),
ueVi.xev;* Finding the sums separately, we get
E E (dGi*RG2 (u,v)dG i*RG2 (x,v)) = E E (dR(G i)(u)dR(Gi)(x)) veV2 ux€E(R(G i)) veV2 ux€E(R(G i))
u,x€Vi u,x€Vi
^ ^ 4dGl (u)dGl (x) =4|V2|M2(G2).
v€V2 MxeE(R(G 1))
Now,
E E (dG 1 *rG2 (u,v)dGi *RG2 (x,v)) = E E dR(Gi )(uKdG2 (v) + dR(Gi )(x))
' 1*rG21 *
veV2 uxeE(R(G 1)) veV2 «xeE(ß(G 1))
Y, E 4dG1 (u) + 2dG 1 (u)dG2 (v) =4Mi(Gi) + 4|E2|Mi(Gi).
»I
v€V2 MxeE(R(G 1)) «ev^xevj*
Now collecting all the previous terms, we get
M2(G1 *r G2) = 4M1(G1)(1 + |E2|) + M2(G2)(4|V2| + |E1|) + 2|E1 |M1(G2) + 4|E1||E21.
Theorem 3. Let Gi and G2 be two connected graphs, then
(a) Mi(Gi *q G2) = (|V21 + 2|E2|)Mi(Gi) + |Ei|Mi(G2) + 2|V>|M2(Gi)
+ |V2|F (Gi) + 2|E2|(2|E(Q(Gi ))| + 3|Ei|),
(b) M2(Gi G2) = |E2|M2(Gi) + |Ei|M2(G2) + M2(Gi)M2(G2) + 2|E2|Mi(Gi)
+ \ [|^2|M4(Gi) + (2\E2\ + |F2|F(GI))]
□
+ |V2 ^ Y1 rij (ui )dGi (uj)+ Y1 (uj)2 Y1 (ui ^ '
ui,uj Uj €Vi «¿€Vi ,UiUj €Ei
where rjj denotes the number of neighbouring common vertices adjacent to both uj and uj. P r o o f. We have
M1 (G1 g2) = Y1 (d(Gi*QG2)(a,b^2
(a,b)eV (Gi*s G2)
= E (d(Gi*QG2)(u,v) + d(Gi*QG2)(x,y))
(«,v)(x,y)eE(Gi*QG2)
^ E (d(Gi*QG2)(u,v) + d(Gi *QG2)(u,y)) «eV* vyeE2
+ E E (d(Gi*QG2)(u,v) + d(Gi*QG2)(x,v^ . veV2 «xeE(Q(Gi))
First we consider the sum in which u € V/ and vy € E2
E E (d(Gi*QG2)(u,v) + d(Gi *QG2)(u,y)) «eV* vye®2
^ ^ [(dQ(Gi)(u)+ dG2 (v)) + (dQ(Gi)(u)+ dG2 (y))] «eV* vye®2
^ ^ [2dQ(Gi)(u) + dG2 (v)+ dG2 (y)] «eV* vye®2
= ^ 2|E2|(dGi(p)+ dGi(i))+E M1(G2)=2|E2|M1(G1) + |E1|M1(G2).
e=pqeEi «eVj_*
For each edge ux € E(Q(G1)) and the vertex v € V2
Y1 Y1 (d(Gi*QG2)(u,v) + d(Gi*QG2)(x,v)) veV2 «xeE(Q(Gi))
= E E (d(Gi *QG2)(u,v)+ d(Gi*QG2)(x,v)) veV2 «xeE(Q(Gi)), «eVi,xeV*
+ E E (d(Gi*QG2)(u,v) + d(Gi*QG2)(x,v^ . veV2 «xeE(Q(Gi)), «,xeV*
Now we separately find both the sums. First,
E E (d(Gi*QG2)(u,v) + d(Gi *QG2)(x,v)) veV2 MxeE(Q(Gi)) u€Vi,x€V1*
= E E dQ(Gi)(u) + (dG2 (v) + dQ(Gi)(x)) = E E dGi (u) + dG2 (v) + dQ(Gi)(x)
veV2 wxeE(Q(Gi)) veV2 m£€E(Q(G i))
ueVi.xeV]* ueVi.xeV]*
= J] Mi(Gi) + 2|Ei|dG2(v)+2^ ^ (dGi(ui) + dGi(v*))
veV2 veV2 e=«ivieE(G i)
«¿, ViSVi
= |V2|Mi(Gi) + 4|Ei||E2| + 2| V2 |Mi(Gi). The second part of the sum is the following
E E (d(G i *QG2)(u,v) + d(G i *QG2)(x,v)) veV2 MxeE(Q(G i)),
= E E (dQ(G i)(u) + dG2 (v) + dQ(G i)(x) + dG2 (v)) veV2 «xeE(Q(G i)),
= E ( E 2dG2 (v)) + E ( E (dQ(Gi)(u) + dQ(G i)(x))) veV2 «xeE(Q(Gi)), veV2 M£€E(Q(G i)),
= E( E 2dG2 (v)) + E ( E (dG i (ui )+ dG i (uj )+ dG i (uj )+ dG i (ufc ))) v€V2 M£€E(Q(Gi)), v€V2 «¿«j «fcSEi
u.xeVj*
= 4(|E(Q(Gi ))|-2|Ei|)|E2| + |V2^2 £ C^ K)dGi (u)+ £ (dG (j - 1) £ dG (ui))
uj eVi uj eVi «¿eVi,
«¿«j eE i
*)3—dG 1 (uj)2)^ ^ iU
uj eVi «¿eVi,
«¿uj eE i
4(|E(Q(Gi))|-2|Ei|)|E2MV>| E (dGi(u)3-dGi(u)2)+ £ (dGi(u) - 1) £ dGi(u)
= 4(|E(Q(Gi))| - 2|EiQ|E2| + |V2KF(Gi) + 2M2(Gi) - 2Mi(Gi)).
Here UiUj is the edge corresponding to the vertex u and Ujuk is the edge corresponding to the vertex x.
Thus we obtain
Mi(Gi *q G2) = (|V2| + 2|E|)Mi(Gi) + |Ei|Mi(G2) + 2|V2|M2(Gi) +|V>|F (Gi) +2|E2|(2|E(Q(Gi ))| + 3|Ei|).
Similarly,
M2(Gi G2) = Y1 (d(G i*QG2)(u,v)d(Gi*QG2)(x,y))
(«,v)(x,y)€E(G i *qg2)
= E E (d(G i*QG2)(u,v)d(Gi*QG2)(u,y^^E E (d(G i*QG2)(u,v)d(Gi*QG2)(x,v)) . «eV* vy€E2 v€ V2 «x€E(Q(G i)
Now we separately find the values of each part in the sum
Y1 Y1 (d(Gi *QG2)(u,v)d(Gi *Q G2)(u,y^^ E [(dQ(Gi )(u)+dG2 (v)) (dQ(Gi )(u)+dG2 (y))] «eV* vye®2 «eV* vyeE
= E Y1 [dQ(Gi) (u)2 + dQ(Gi) (u) (dG2 (v) + dG2 (y)) + dG2 (v)dG2
: E E (dGi (uj)+ dGi (uj))2 + ^ E (dGi (uj)+ dGi (uj))(dG2 (v)+ dG2 (y)) vye®2 «¿«jeEi «¿«jeEi vyeE
+ E E dG2 (v)dG2 (y) «¿«j eEi vye®2
^ ^ (dGi (uj)2 + dGi (uj)2 + 2dGi (uj)dGi (uj)) + M2(G1 )M2(G2) + |E1 |M2(G2)
vye®2 «¿«j eEi
= |E2|F (G1) + 2|E2|M2 (G1) + M2(G1)M2 (G2 ) + |E1|M2(G2 ).
Now,
(d(Gi*QG2)(u,v)d(Gi*QG2)(x,v^^E E (d(Gi*QG2)(u,v)d(Gi*QG2)(xv)) veV2 «xeE(Q(Gi)) veV2 «xeE(Q(Gi)),
«eVi,xeV*
+ E E (d(Gi*QG2)(u,v)d(Gi*qG2)(x,v^ . veV2 «xeE(Q(Gi)), «,xeVi*
Now we find each sum separately
E E (d(Gi*QG2) (u,v)d(Gi *QG2 ) (x,v))=E E dQ(Gi )(u) (dQ(Gi)(x) + dG2(v)) veV2 «xeE(Q(Gi)), veV2 «xeE(Q(Gi)),
«eVi, xeV* «eVi,xeVi*
= E E dQ(Gi)(u)dQ(Gi)(x) + dG2 (v)dQ(Gi)(u) veV2 «xeE(Q(Gi)), «eVi,xeV*
= E E dGi (u)dQ(Gi)(x) + E E dGi (u)dG2(v) veV2 «xeE(Q(Gi)), veV2 «xeE(Q(Gi)),
«eVi.xeV-i* «eVi,xeVi*
= |V2|(F (G1) + 2M2(G1)) + 2|E2|M1(G1).
The second part is
E (dQ(Gi)(u)+ dG2 (v)) (dQ(Gi)(x)+ dG2 (v)) ) veV2 ^ «xeE(Q(Gi)), '
E E (dQ(Gi) (u)dQ(Gi) (x) + dG2 (v) (dQ(Gi)(u)+ dQ(Gi)(x)) + dG2 (v) veV2 «xeE(Q(Gi)),
= E ( Y1 (dGi (uj) + dGi (uj)) (dGi (uj) + dGi (ufc)) j veV2 ^ «¿«jeEi, '
«j «fceEi
+ E dG2(v)( £ (dGi(uj)+dGi(uj)+dGi(uj)+dGi(ufc))) +(|E(Q(G1 ))|-2|E1|)M1(G2)
veV2 «¿«j eEi,
«j «k eEi
«eV* vyeE2
«,xeV*
«,xeV *
= l^i Y1 CdGl («)dGi (uj)2+ Y1 rij(u*)dGi (ujH^ (dGi (uj) 1)dGi (ujdGi (ui)j Uj eVi «¿¡«j eVi Uj eVi «¿eVi,
«¿«j eEi
+2|E2£ G^(«.)dGi(Uj)+ £ (dGi(Uj)-1) £ dGi(ui)V(lE(Q(Gi))| - 2|E1|)M1 (G2)
^ ujeVi ujeVi «¿eVi, '
«¿«j eEi
= 1^21 Q E (dGi(t/j)4 - dGl(Uj)3) + E riidGi(t/.i)dGi(t/.J)J
«j eVi «¿,«5 eVi
+|V>|( ^ dGi (Uj )2 ^ dGi (U) - 2M2(GiA
«j eVi «¿eVi, '
«¿«j eEi
+2|E2^ £ (dGi(Uj)3-dGi(Uj)2)+ £ (dGi(Uj)-l) £ dGi(Ui)V(|E(Q(Gi))|-2|Ei|)Mi(G2)
^«j eVi «j eVi «¿eVi, '
«¿«j eEi
HV2|Qm4(Gi)-±F(Gi)+ £ ^g^/^g^O+J] ^GiK')2 E dGl(ui)-2M2(G1)]
«¿¡«j eVi «j eVi «¿eVi,
«¿«j eEi
+2|E2| (F(Gi) + 2M2(Gi) - 2Mi(Gi)) + (|E(Q(Gi))| - 2|Ei|)Mi(G2).
Here UiUj is the edge corresponding to the vertex u and Ujuk is the edge corresponding to the vertex x, rj denotes the number of common vertices adjacent to both u and Uj. Thus we obtain
M2(Gi G2) = |E2|M2(Gi) + |Ei|M2(G2) + M2(Gi)M2(G2) + 2|#2|Mi(Gi)
[|^2|M4(Gi) + (2\E2\ + |Va|F(Gi))]
+ ^ rij dGi (ui )dGi (uj)+ ^ dGi (uj )2 ^ dGi (uiH .
nV v J ~r "G^ "J )2 ^ uGi \
SVl Uj SVL UiSVi,
«¿Mj SEi
□
Theorem 4. Let Gi and G2 be two connected graphs, then
(a) Mi (Gi *t G2) = 2|E2|Mi(Gi) + |Ei|Mi(G2) + 2|V2|M2(Gi)
+ |V2|F(Gi) + 4(|E(T(Gi))| - 3|Ei|)|E2|,
(b) M2(Gi *T G2) = 5|E2|M2(Gi) + (41V21 + |Ei|)M2(G2) + M2(Gi)M2(G2) - 2|E|Mi(Gi)
+ (|S(T(Gi))| - 3|Si|)MI(G2) + i [|F2|M4(GI) + (2|F2| + |F2|)F(Gi)]
+ Y1 rij dGi (ui)dGi (uj)+ Y1 dGi (uj)2 Y1 dGi (uiH .
«¿,Mj sVl Uj SVL Ui€Vi,UiUj SEi
where rj denotes the number of common vertices adjacent to both u^uj.
Proof. We prove this theorem using Theorem 2 and Theorem 3. When u € V* and vy € E2
E E (d(Gi *TG2)(u,v)+ d(Gi*TG2)(u,y^ = E E (d(Gi*QG2)(u,v) + d(Gi*QG2) (u, y^ • USV1* vySE2 USV* vySE2
From Theorem 3
E E (d(Gi*TG2)(u,v)+ d(Gi*TG2)(u,y^ =2|E2|Mi(Gi) + |Ei|Mi(G2).
«eV* vyeE2
Also
E E (d(Gi*T G2 )(u,v) + d(Gi*TG2)(x,v)) veV2 «xeE(T(Gi))
= E E (d(Gi*T G2)(u,v)+ d(Gi*TG2)(x,v)) veV2 «xeE(T(G i)),
«evi,xev1*
+ E E (d(Gi*TG2)(u,v) + d(Gi *T G2)(x,v)) veV2 «xeE(T(G i)), u.xeVj*
+ E E (d(G i*TG2)(u,v)+ d(G i*TG2)(x,v)) . veV2 «xeE(T(G i)), Vi
Also from Theorem 2 and Theorem 3
E E (d(G i *t G2 )(u,v) + d(Gi *TG2)(x,v)) veV2 «xeE(T(G i))
= 4(|E(T(Gi))| - 3|Ei|)|E2| + |V2| (F(Gi) + 2M2(Gi) - 2Mi(Gi)) + 2|V2|Mi(Gi).
Thus,
Mi(Gi *T G2) = 2|E2|Mi(Gi) + |Ei|Mi(G2) + 2|V>|M2(Gi) +|V>|F(Gi) + 4(|E(T(Gi))| - 3|Ei|)|E2|. Similarly for M2, from Theorem 3
E E (d(G i *T G2)(u,v)d(G i *T G2)(u,y))
«ev* vyeE2
= |E2 |F (Gi) + |E2|M2 (Gi) + M2 (Gi )M2(G2) + |Ei|M2(G2). The second part of the sum is
E E (d(G i *T G2 )(u,v)d(Gi *T G2)(x,v^^ E (d(G i *TG2)(u,v)d(Gi *TG2)(x,v)) veV2 «xeE(T(G i)) veV2 «xeE(T(G i)),
«evi.xev*
+ E E (d(G i *TG2)(u,v)d(Gi *T G2)(x,v))
veV2 «xeE(T(G i)), w.xev*
+ E E (d(G i*TG2)(u,v)d(Gi*TG2)(x,v^ .
veV2 «xeE(T(G i)),«,xevi
From Theorem 2 and Theorem 3 we get
E E (d(G i *t G2) (u, v)d(G i *t G2) (x, v)) = |V2|(F(Gi) + 2M2(Gi)) +2|E2|Mi(Gi)
veV2 «xeE(T(G i))
(u •(u-) + V (u-)2 » f I /' ' I #1. * p — ,
«¿,«j eVi «j eVi «¿eVi
«¿«j eE i
+2|E2|(F(Gi) +2M2(Gi) - 2Mi(Gi)) + (|E(Q(Gi))| - 2|Ei|)Mi(G2) + 4|V2|M2(G2),
here fjj denotes the number of common vertices adjacent to both Uj,—-. Thus we obtain M2(GI *t G2) = 5|E2|M2(GI) + (4| V2| + |EI|)M2(G2) + M2(GI) M2(G2) - 2|E|Mi(Gi) + (|F(T(G1))| - 3|Si|)MI(G2) + i[|F2|M4(Gi) + (2\E2\ + \V2\)F(Gi)]
+ |V2|( Y1 rij(ui)dGi (uj)+ Y1 1 (-j)2 E 1 (Ui)J •
□
4. Applications with illustration
The above computational procedure can be used to find the respective indices for many classes of graphs very easily. As an illustration we provide the following.
Example 1. When G1 = Pn, G2 = Pm, n,m > 3, using the theorem, we easily obtain the following results
1. Mi(Pra *s P M2(P„ P
2. Mi(Pra *R P M2(P„ *r P
3. Mi(Pn *Q Pm M2(Pn Pm
4. Mi(Pn *T P
M2(Pn *T P
20mn - 22m - 14n + 14, 32mn - 40m - 24n + 38;
32mn - 40m - 14n + 14, 64mn - 48m + 24n - 80;
: 40mn - 64m - 22n + 30, 96mn - 184m + 18n + 134;
48mn - 82m - 22n + 30, 136mn - 258m - 86n + 146.
Let Tn,m denote the torus grid graph obtained from the cycle Cn and Cm. Using F* sums, we can compute the Zagreb indices of torus grid graph 72«,^ since 72«,^ = Cn Cm.
Example 2. When G1 = Cn, G2 = Cm, n, m > 3, using the theorem, we easily obtain the following results
1. Mi(Cra Cm = 20mn,
M2(Cn Pm = 32mn;
2. Mi(Cra Cm = 32mn,
M2(Cn Cm = 48mn;
3. Mi(cn Cm = 40mn,
M2(Cn Cm = 96mn;
4. Mi(Cra *T Cm = 52mn,
M2(Cn *T Cm = 136mn
We can also find the Zagreb indices of some chemical structures using the expressions of F* sums.
Example 3. Let n > 3 be an integer, then Zagreb indices of the the zigzag polyhex nanotube TUHC 6[2n, 2]
Mi(TUHC 6[2n, 2]) = 26n, M2(TUHC 6[2n, 2]) = 33n.
Since TUHC6[2n, 2] = Cra P2, then by Theorem 1.
Using F* sums, we can also find the Zagreb indices of some classes of bridge graphs. Let vi, v2,..., be vertices of graphs Gi, G2,..., Gn respectively. The bridge graph using vi, v2,..., is secured by joining the vertices vi of Gi to vi+i of Gi+i for i = 1,2,... n - 1 and it is denoted by B(Gi, G2,..., Gn; vi, v2,..., vn). If Gi = Gi+i = G and vi = vi+i = v for all i = 1,2,... n, then B (G, G, ...,G; v,v...,v) = Gn(G,v). Let Bn = Gn(P3, v) where the degree d(v) = 2 and Tn,3 = Gn(C3,v) [14] be two class of bridge graphs.
Example 4. Let n > 2 be an integer, then Mi(Bra) = 18n - 14, M2(b„) = 24n - 28;
Mi(Tra>3) = 24n - 14, M2(T„,3) = 36n - 32.
Since Bn = P2 Pn and Tn,3 = P2 Pn and by Theorem 1 and Theorem 2.
5. Summary and Conclusion
The F sum of graphs was a new sum defined by M. Eliasi, B. Taeri in [6], a lot of research has been done on this to compute various topological indices of this F sum. In this paper we have defined a similar new operation and computed the first and second Zagreb index of this sum. Computing other topological indices on these sums is an area which researchers may find helpful.
Acknowledgements
The authors are highly indebted to the anonymous referees for their valuable comments and suggestions which led to an improved presentation of the results.
REFERENCES
1. Alex L., Indulal G. Some degree based topological indices of a generalised F sums of graphs. Electron. J. Math. Anal. Appl., 2021. Vol. 9, No. 1. P. 91-111.
2. Alex L., Indulal G. On the Wiener index of FH sums of graphs. J. Comput. Sci. Appl. Math., 2021. Vol. 3, No. 2. P. 37-57. DOI: 10.37418/jcsam.3.2.1
3. Balaban A. T., Motoc I., Bonchev D., Mekenyan O. Topological indices for structure-activity correlations. In: Topics Curr. Chem., vol 114: Steric Effects in Drug Design. Berlin, Heidelberg: Springer, 1983. P. 21-55. DOI: 10.1007/BFb0111212
4. Cvetkovic D.M., Doob M., Sachs H. Spectra of Graphs: Theory and Application. New York: Academic Press, 1980. 368 p.
5. Deng H., Sarala D., Ayyaswamy S. K., Balachandran S. The Zagreb indices of four operations on graphs. Appl. Math. Comput., 2016. Vol. 275. P. 422-431. DOI: 10.1016/j.amc.2015.11.058
6. Eliasi M., Taeri B. Four new sums of graphs and their Wiener indices. Discrete Appl. Math., 2009. Vol. 157, No. 4. P. 794-803. DOI: 10.1016/j.dam.2008.07.001
7. Furtula B., Gutman I. A forgotten topological index. J. Math. Chem., 2015. Vol. 53. P. 1184-1190. DOI: 10.1007/s10910-015-0480-z
8. Gutman I. On the origin of two degree-based topological indices. Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur, 2014, Vol. 146. P. 39-52.
9. Gutman I., Das K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004. Vol. 50. P. 83-92.
10. Gutman I., Milovanovic E., Milovanovic I. Beyond the Zagreb indices. AKCE Int. J. Graphs and Combinatorics, 2018. DOI: 10.1016/j.akcej.2018.05.002
11. Gutman I., Trinajstic N. Graph theory and molecular orbitals. Total ^-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, Vol. 17, No. 4. P. 535-538. DOI: 10.1016/0009-2614(72)85099-1
12. Gutman I., Ruscic B., N. Trinajstic, Wilcox C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys., 1975. Vol. 62, No. 9. P. 3399-3405.
13. Gutman I. An exceptional property of the first Zagreb index. MATCH Commun. Math. Comput. Chem., 2014. Vol. 72. P. 733-740.
14. Imran M., Akhter S., Iqbal Z. Edge Mostar index of chemical structures and nanostructures using graph operations. Int. J. Quantum Chem., 2020. Vol. 120, No. 15. Art. no. e26259. DOI: 10.1002/qua.26259
15. Indulal G., Alex L., Gutman I. On graphs preserving PI index upon edge removal. J. Math. Chem., 2021. Vol. 59. P. 1603-1609. DOI: 10.1007/s10910-021-01255-1
16. Khalifeh M.H., Yousefi-Azari H., Ashrafi A. R. The first and second Zagreb indices of some graph operations. Discrete Appl. Math, 2009. Vol. 157. P. 804-811. DOI: 10.1016/j.dam.2008.06.015
17. Li X., Zhao H. Trees with the first three smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem., 2004. Vol. 50. P. 57-62.
18. Li X., Zheng J. A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem., 2005. Vol. 54, P. 195-208.
19. Nikolic S., Kovacevic G., Milicevic A., Trinajstic N. The Zagreb indices 30 years after. Croat. Chem. Acta, 2003. Vol. 76, No. 2. P. 113-124.
20. Stevanovic D. Mathematical Properties of Zagreb Indices. Beograd: Akademska misao, 2014. (in Serbian)
21. Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947. Vol. 69. P. 1720. DOI: 10.1021/ja01193a005