Научная статья на тему 'Задачи и модели формирования характеристик применения робототехнических комплексов ликвидации экстремальных ситуаций, возникающих в позиционном районе части запуска'

Задачи и модели формирования характеристик применения робототехнических комплексов ликвидации экстремальных ситуаций, возникающих в позиционном районе части запуска Текст научной статьи по специальности «Математика»

CC BY
101
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ / ОБЛАСТЬ ДЕЙСТВИЯ МАНИПУЛЯЦИОННОЙ ПОДСИСТЕМЫ / ВЕРОЯТНОСТЬ ЛИКВИДАЦИИ ОПАСНЫХ ФАКТОРОВ / КОЭФФИЦИЕНТ ПОКРЫТИЯ

Аннотация научной статьи по математике, автор научной работы — Минаков Евгений Петрович, Тарасов Анатолий Геннадьевич

Предлагается модель определения пространственно-временных характеристик применения робототехнических систем и комплексов ликвидации экстремальных ситуаций в позиционном районе части запуска в процессе подготовки и пуска ракет космического назначения, которая, в отличие от известных, позволяет на основе модельных пространственных характеристик экстремальных ситуаций определить способ применения и необходимое количество робототехнических систем, а также структуру робототехнического комплекса ликвидации экстремальных ситуаций. Анализ основных тенденций развития робототехнических систем и комплексов показывает, что магистральным направлением является использование их в различных экстремальных ситуациях, что, в частности, относится к проведению аварийно-спасательных работ и ликвидации последствий аварий и катастроф в позиционных районах частей запуска космических аппаратов. При этом следует констатировать, что в настоящее время практически (за исключением наземных робототехнических средств тушения пожаров) отсутствуют специализированные робототехнические системы, предназначенные для ликвидации экстремальных ситуаций и их последствий различных типов, что делает актуальным комплексное решение задачи обоснования их облика и требований к их тактико-техническим характеристикам, адаптивного синтеза составов и структур робототехнических комплексов, способов применения робототехнических систем в составе этих комплексов, которое базируется на корректной ее постановке, анализе основных сценариев применения робототехнических систем при ликвидации экстремальных ситуаций, математическом моделировании пространственно-временных характеристик этих ситуаций, обосновании подходов к решению указанных задач.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Минаков Евгений Петрович, Тарасов Анатолий Геннадьевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Задачи и модели формирования характеристик применения робототехнических комплексов ликвидации экстремальных ситуаций, возникающих в позиционном районе части запуска»

PROBLEMS AND MODELS OF MEASUREMENT THE CHARACTERISTICS OF ROBOTICS SYSTEM USE FOR EMERGENCY RECOVERY AT A MISSILE DEPLOYMENT AREA OF A SPACE-VEHICLE LAUNCHING UNIT

Minakov

Evgeniy Petrovich,

Ph.D., professor, professor at the Department of Controlling of Space Organizational and Technical Systems, Military Space Academy St. Petersburg, Russia, Ep.minakov12345@mail.ru

Tarasov

Anatoly Gennadevich,

Ph.D., doctoral student, Military space Academy named after A.F. Mozhaisky St. Petersburg, Russia, Atol-77@mail.ru

Keywords: space-time data; manipulating subsystem action area; probability of hazards liquidation; coverage coefficient.

U <t ai I-

oo

CÛ <t

The work presents a model for measurement of spatial-time data of robotics systems and robotics complexes use for emergency recovery at a missile deployment area of a space-vehicle launching unit in the process of outer space mis-sile preparation and launch. This model differs from any other known model and makes it possible to use pattern spatial data of emergencies for assignment of application method and estimation of required amount of robotics systems as well as a structure of robotics complexes for emergency recovery. The analysis of the main tendencies of robotics systems and robotics complexes development demonstrates that their use in emergency situations is the mainstream. Particularly, it refers to emergency recovery and large-scale accidents management at missile deployment areas of a space-vehicle launching unit. In addition to the above, it is necessary to state that now any specialized robotics systems for emergency recovery and emergency management (for different types of emergencies and its consequences) are practically non-existent (except for ground-based firefighting robotic equipment). This situation actualizes a complex solution for a problem of justification of robotics systems characteristics and requirements for their operational ad physical characteristics, of adaptive synthesis of robotics complexes compositions and structures, modes of application of robotics systems as a part of these robotics complexes. This complex solution should be based on a correct task statement, analysis of main scripts of robotics systems use for emergency recovery, mathematical modelling of space-time data of these emergency situations, justification of these problem solution approach.

The statenment of the problem

The mathematical statement of the problem is shaped as a direct and an inverse problem [1-6].

The direct problem is the following one: if a direction of model characteristics of ith emergency situations (ES) a. = (a®, a.(2), ..., afw>) and operational and technical characteristics of robotics systems (RS) w. = (w.(1), a.(2), ..., a. are known it is necessary to estimate means of use and a required number of RS as well as robotics complexes (RC) structure for emergency recovery with specified probability:

As elements of a direction of model ES characteristics at a missile deployment area (MDA) of space-vehicle launching units can be used the following ones:

a) spatial attitude of an epicenter which could be time-variant (line, motion path, trace of ES epicenter) and is set in a certain system of coordinates;

b) speed of epicenter displacement which could be

time-variant (e.g., V(t) = (Vx(t), V(t), V(t), t»;

c) spatial characteristic and dimensions which could be time-variant (e.g., the ES front surface (line) R(t) = <r.(t), r.(t), rk(t), t) ).

The inverse problem is the following one: if a direction of model characteristics of ith ES a. = (a(1), a(2), ..., a(ki)) and means of RS use are known it is necessary to estimate operational

Scripts of emergency situ;

and technical characteristics of RS w. = (w(1), a(2), ..., aJ

j j i j

and a required number of RC as well as RC structure for emergency recovery with specified probability:

Scripts of emergency situation initiation

When ES at MDA of a space-vehicle launching unit is started, a particular type of ES script occurs. These types are different in terms of ES influence to people and environment (as presented in the table 1):

- Segregated spillage of propellant constituents (PC) or accidental release of PC;

- Fire as a consequence of combined spillage of propel-lant constituents (PC);

- Explosion of elements at start, in flight of space-vehicle (SV), and in the process of hard landing of faulted vehicle.

For necessary actions in the sphere of emergency recovery, it is necessary to develop models, that make possible a-priori estimation of spatial areas of hazards expansion, that could cripple people and environment.

Mathematical models for measurement

of space-time data of emergency situations

If ES occurs at a launching stand, a fire circle will not be wider than 300 meters from launching device. If CV has made a hard landing6 and propellant container has de-

Table 1

on caused by SV crashing

Script number Script type Possible consequences of ES

1 Explosion of SV and fire on it at a missile site (MS) 1.1. Damage of fire- and explosion hazardous objects of a space launcher complex

1.2. Chemical comtamination of the Earth surface, surface layer of the atmosphere, and ground water

1,3. Injury of crewmembers preparing a SV at a MS

2 Hard landing of SV at a missile deployment area of a space-vehicle launching unit 2.1. Technogenic fire at the area of SVhard landing

2,2. Chemical comtamination of the area of SV hard landing

2.3, Damage of industrial and accomodation units at the area of a SV hard landing

2.4. People injury

3 Faulted PC spillage 3.1. Technogenic fire at the area of PC spillage

3.2. Chemical comtamination of the Earth surface, surface layer of the atmosphere, and ground water

4 Fire at fuel filling station units 4.1. Damage of fire- and explosion hazardous objects of a space launcher complex

4.2. Chemical contamination of the Earth surface, surface layer of the atmosphere, and ground water

4.3. Injury of crewmembers preparing a SV at a MS

pressurized, a cloud of PC originates. Weight of this cloud is calculated using the following formula [7, 8]:

(1)

M, = M +M +Mh,

cl gab

where Md means weight of PC in an initial cloud; means weight of PC which transforms into an initial cloud as a gas at the moment of super quick boiling of PC;

Ma means weight of PC which transforms into an initial cloud as an aerosol;

Mb means weight of PC which transforms into an initial cloud as a gas in the process of spillage boiling.

The surface area of spillage Sspil at an open terrain in case of free spreading is calculated using the following formula:

(2)

where MPC means weight of PC within a SV by the time of accident;

pPC means PC density.

Radius of initial cloud of PC R , at the moment of deto-

cl

nation of CV fuel containers is calculated using the following formula [7]:

Rd ^(Шс1/4лры)

flight, i. e. within a radius of 30 km from launch complex. When this crucial flight period is over, the altitude becomes high enough and fuel remains become insignificant.

On a base of power plant characteristics, it is possible to calculate a PC consumption rate. Taking it as permanent, it is possible to calculate weight of PC Mpc in the process of SV flight for different periods of ES initiation. Data for PC weight for the most crucial flight period (0^40 sec) are presented in the table 2.

If ES does not include PC fire, then oxygen, which is used as an oxidizing material (O), quickly vapors out making a "white cloud". Kerosine, which is used as a fuel (F), will partly transform into a gaseous and aerosol state as a result of detonation and make an initial cloud; the rest of it will make a contamination plume on the Earth surface. For the case investigated, we used data that are presented in the table 3.

More common ES includes PC fire, and it is more complicated modelling task. It is necessary to make a model of PC spillage with consequent fire and formation a cloud, which includes toxic combustion gases. In this case, it is necessary to estimate a blasting effect and dynamics of deleterious substances expansion.

To calculate a radius of blasting effect, that has been formed as a result of fuel-air mixture (FAM) explosion, it is possible to use an approximation equation [7]

(3)

where pu means PC density in an initial cloud at the start time.

Radius of secondary cloud of PC Rcl2, that is generated as a result of vaporization of PC from the spillage, is calculated using the following formula [7]:

pv

(5)

where K coefficient should be found in reference data, W stays for explosive yield, that is calculated as

0,4Mgqs $A{MC1 ~Ma -Mb)qg

W = -

(6)

Roll =0>56 JS~i

.(4)

Case 1. Building a model of an ES area, that is possible in the preparation and launch of space-vehicle "Soyuz-2".

If emergency situation occurs in the process of preparation and launch of SV, the results of influence to people and environment depend on the amount of fuel which remains in a fuel container of SV, and therefore on its flying time. Accordingly with statistics and technical data, the most dramatic consequences (explosion, hard landing, fire) are possible for the period of the first 25-40 seconds of

4,05-10" 4,05-10

where Mg means FAM weight;

qg means gas efficiency, that should be found in reference data or calculated using the following equation [7]:

qg = 44£ (7)

where fi means reference value of an adjustment factor for the most widespread explosive materials.

For the case of ES at the first stage of SV "Soyuz-2" flight the following data values were calculated: radius of blasting effect for an area of total building fracture R1 (^=3,8), for an area of heavy damage R2 (K=5,6), and for

Table 2

PC weight characteristics for the first period of SV flight

Flight duration, sec PC weight in lateral blocks, kg PC weight in a central block, kg PC weight in the 3rd submissile, kg Total PC weight, kg О weight, kg F weight, kg

0 39162 90160 23204 270012 191941 78071

10 35911 87228 23204 254076 180612 73463

20 32660 84296 23204 238140 169284 68856

30 29409 81364 23204 222203 157956 64248

40 26158 78432 23204 206267 146627 59640

Table 3

Spatial characteristics in emergency situation without PC fire at the first stage of SV flight

Flight duration, sec Fuel weight, kg M Mf, kg M-Mu kg Ms, kg Mb, kg Ma, kg Rci, m *£¡pii, m2 flci2, m

0 78071 30606 47465 30606 16860 61211 6 52 4

10 73463 28799 44664 28799 15865 57599 6 50 4

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20 68856 26993 41863 26993 14870 53986 5 48 4

30 64248 25187 39061 25187 13875 50373 5 46 4

40 59640 23380 36260 23380 12879 46761 5 43 4

Table 4

Target values for radii of blasting effect in a case of ES initiation at the first stage of SV flight for different damage areas

Flight duration, sec Ms, kg W, M J R\, m Ri, m Ri, m

0 253152,29 129979,95 192,47 283,64 486,24

10 238211,17 122308,50 188,61 277,94 476,48

20 223270,06 114637,05 184,57 272,00 466,29

30 208328,94 106965,60 180,36 265,79 455,64

40 193387,83 99294,15 175,93 259,27 444,47

an area of medium damage R3 (K=9,6); the data are presented in the table 4.

Models of measurement of characteristics of robotics systems use for emergency recovery at a missile deployment area of a space-vehicle launching unit

As a result of modelling the processes of SV preparation and launch some vagnolues were calculated. These values are the following ones: a-priori values of an initial cloud radius R , at the moment of detonation of a CV fuel

cl

containers, of a secondary cloud radius Rd2 that originates in the process of PC vaporization from a spillage, of blasting effect radii for an area of total building fracture R1, for an area of heavy damage R and for an area of medium damage R that will be labeled as ES radius R . Such an approach assumes that ES area has a regular shape, i. e., round shape in the plane and sphere shape in the dimensional space; surface area and cubic content of these shapes should be calculated on the base of RES.

However, an ES area in the process of expansion usually makes a non-regular shape (fig. 1), and it has sense to approximate it by using geometric figures that are determined by operational characteristics of RS for emergency recovery.

Operational characteristics of RS (RC) are considered as designed capacities of RS (RC) related to its ability to perform certain operations (control over environment, horizontal and vertical mobility, ability to use for manipulations water or foam, etc.).

A parameter of operational characteristics of RS (RC) is considered as a quantitative or qualitative value of RS (RC) capacity to perform designed operations (resolution

ability of control facilities, range (radius) of sensor unit action, propelling plant movement speed, radius of manipulator unit action, etc.).

An effect of RS (RC) effect on ES is considered as a result of such an influence of operational characteristics of RS (RC) upon an ES characteristic that minimize its level or eliminates it.

An assumption: if an operational characteristic of RS (RC) accords with an ES characteristic, it necessarily makes an effect on this characteristic.

It is suggested in the paper to apply a geometric approach to the measurement of characteristics of RC for

Fig. 1. Presentation of space-time data of ES with geo reference to a missile deployment area (MDA) of a space-vehicle launching unit

ПУБЛИКАЦИИ НА АНГЛИЙСКОМ ЯЗЫКЕ

emergency recovery. The core of the approach is the following. An ES area, which represents a non-regular geometric shape, should be approximated by geometric shapes with parameters which are determined by RS characteristics, i.e. action area of manipulating subsystem (fig. 2). It also makes necessary to produce a complete cover of an ES area and the minimum difference between an approximating area and an ES area - SA- SES ^ min.

The probability value of ES liquidation should be calculated as a product of probability of hazardous factors liquidation by RC in an action area of manipulating subsystem (AAMS) and an ES surface obscuration ratio:

(8)

where KV means ES surface obscuration ratio of AAMS of RC;

VRSj means AAMS of jth RC; VES means an ES area;

PRC means probability of hazardous factors liquidation by RC.

F'rc = П Рщ ■

7=1

(9)

Probability of overlapping areas of hazardous factors liquidation by RC for overlapping areas of jth RS and kth RS is calculated as

Prc = 1-(1- Prs)(1- Prs)

(10)

Then probability of emergency recovery will be calculated using the following formula:

PRC =

vr0AAMS fi n , v T* AAAMS n n p к . Zf RS, П RSj + Z * RS, о - о - ) )

y=l 7=1 7=1_

(11)

where VRSj means non-overlapping AAMS of RS;

VRj means overlapping AAMS of RS;

PRS means probability of hazardous factors liquidation by RS.

Let us determine means of use and required number of existing robotics systems (table 5).

It should be taken into account for determination of means of RS use, that AAMS of RS forms a semi sphere with radius Rwdr, equivalent to of special water dispenser range. To produce a complete cover of an ES area it is necessary to calculate maximum width of RS action L with provision for distance to hazardous factor focus Rd (fig. 3) and angle of rotation a that should be used for rotation of manipulating subsystem (MS) for providing the maximum width of RS action.

Width of approximating rectangle will be calculated using the following equation:

1 = 2,/*,

WDR

-R

(12)

Length of approximating rectangle will be calculated using the following equation:

b = rwdr - rd-

(13)

Angle of MS rotation will be calculated using the following equation

Rd

a = arccos(-

-)

(14)

Fig. 2. Approximation of an emergency situation area by "cubes" or "parallelepipeds"

It should be fixed for precise calculation of emergency recovery that overlapping action areas of neighbor RS manipulating subsystem are formed as a result of complete cover of an ES area. Probability of hazardous factors liquidation by RC for non-overlapping areas is calculated as a product of probabilities of hazardous factors liquidation by RC involved:

rwdr

Target values of approximating rectangles dimensions for analyzed RS with fire defense that gives an opportunity to operate at the distance of 10-15 meters from fire focus are presented in the table 6.

For calculation of a minimum required number of RS as a part of RC NRS it is necessary to calculate a minimum excessive number of "layers" which are parallel to the main subspace O X Y (horizontal layers) that is determined by

c cs cs cs v J ' J

the equation

(15)

--------- 1 1 1 N. i X 1 \ 1 \ 1 \ 1 1/2 \

^——^^_ —— Rwdr '

Fig. 3. Calculation of approximating figure which is adaptive for RS characteristics

Table 5

Operational and physical characteristics or firefighting RS

Characteristics Yel'-10 Kedr Luf-60 Uran-14

Gross tare weight, t 22 16 2,12 14

Dry weight, t 16,4 1,9

Range of special water dispenser (water), m 90 60 60 50

Range of special water dispenser (foam), m 70 35

Rate of water injection pump, 1/min 4000 4000 2000

Rate of special water dispenser, 1/min 3600 400

Movement speed, km/h 5 15 5 12

Remote control via radiochannel at an open terrain,m 1000 2000

where Z , Z . mean maximum and minimum coordi-

max mm

nate positions of an ES area along the axis Zcs; A means action altitude of RS MS. A number of series for total influence zones of RC MS along the axis Ycs for every ith layer is calculated using the following formula:

(16)

where Y , Y mean maximum and minimum coordi-

max' mm

nate positions of an ES area along the axis Ycs.

A number of series for total influence zones of RC MS along the axisX is calculated using the following formula:

(17)

where X , X . mean maximum and minimum co-

zymax7 zymin

ordinate positions of an ES area for zy series.

Total number of RS, which produce total influence zones of RC MS, can be calculated using the following formula:

MM^i Nrs = Z TMîyxj i=1 7=1

(18)

Case 2. It is necessary to calculate the minimum required number of RS as a part of RC for an ES area that shaped as a round with radius RES = 300 m that is corresponding to ES of SV explosion at start position. In order to manage the emergency situation we will use firefighting RS, which are presented in the table 5.

Calculating the minimum required number of RS we will assume that the minimum excessive number of "layers" which are parallel to the main subspace O X Y (hor-

c r cs cs cs v

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

izontal layers) is equivalent to Mz = 1.

Target values, which are calculated on the base of RS characteristics (table 6) h formulas (16) - (18), are presented in the table 7.

This number of RS is necessary when every RS will cover only one approximating rectangle. Whereby the maximum value of the coefficient of an ES area complete cover will be equivalent to KV = 1. However, from the practical point of view it is impossible to arrange simultaneous exposure for the whole ES area because we can reach the ES epicenter only after hazardous factors liquidation at the edge of ES zone. Therefore, RS should produce a zone of impact that has width L in the limits from X . to X . This RS appli-

zy mm zy max r r

cation approach means that a minimum required number of RS will be equal to M . (table 7), and the coefficient of

Table 6

Target values of approximating rectangles for fire fighting RS

RS type Rvivr, m Rà, m L, m B,v a, grad

Yel'-10 90 15 177,5 75,00 80,44671

Kedr 60 15 116,2 45,00 75,56079

Luf-60 60 15 116,2 45,00 75,56079

Uran-14 50 15 95,4 35,00 72,57919

Table 7

Target values of a minimum excessive number of firefighting rs

RS type L, m В,; m Rr.s, ni ïzimax " ^zimin Mvfi. ■¿ëzyjmax " ^zyjmin Mzyxj Nk

Yel'-10 177,5 75,00 300 600 4 600 9 36

Kedr 116,2 45,00 300 600 6 600 14 84

Luf-бО 116,2 45,00 300 600 6 600 14 84

Uran-14 95,4 35,00 300 600 7 600 18 126

an ES area complete cover will depend on parameters of hazardous factors expansion (wind speed, deleterious substances concentration, etc.). In this case, we should find a solution for an inverse problem, i. e. making requirements for operational characteristics of RS that should provide with continuous action for ES characteristics on the interval |X — X . | for the required time period.

I zy max zy mm' ^ c

Some difficulties could occur in the process of an inverse problem solution (making requirements for characteristics of RS for emergency recovery at a missile deployment area of a space-vehicle launching unit). These difficulties are the following:

1) Some requirements for RS characteristics can be formulated theoretically but cannot be fulfilled practically;

2) Practical estimation of ES characteristics is not always possible because of the following fact: some changes in the situation cannot be correctly defined and estimated because of their stochasticity, unpredictability and novelty.

To solve these problems it is necessary to develop adaptive RC, which are designed for liquidation of a-priori determined characteristics of ES and can reconfigure for liquidation of unforeseen characteristics of ES.

Conclusions

The results of mathematical modeling of space-time ES areas, which could occur in the process of preparation and launch of space-vehicle, are presented in the paper. Considerable amount of chemically active and fire-hazardous substances, which are used in the process of preparation and launch of SV, can produce large-scaled (in terms of its spatial characteristics) accidents. Suggested approach to RS use for emergency recovery can increase their self-regulation; use of the required number of RS will provide with in-time emergency recovery. Efficiency of RS use can be increased by means of its operation modeling and not by means of simple change of functional equipment as it happens now (firefighting RS are designed on the base of military equipment). For the reason of complexity of precise a-priori determination of ES characteristics it is suggested to develop RS samples that are suitable for algorithmic and structural reconfiguration for liquidation of unforeseen characteristics of ES.

References

1. Tarasov A.G. Prospects of creation of robotic tools and systems training and startup space rockets. H&ES Re-

search. 2014. Vol.6. No. 6. Pp. 72-75. (In Russian).

2. Tarasov A G. Sistemnyj podhod k sovershenstvo-vaniju funkcionirovanija avtomatizirovannoj sistemy podgotovki i puska raket kosmicheskogo naznachenija [A systematic approach to the functioning of automated system preparation and launch of space rocket]. Trudy voen-no-kosmicheskoi akademii imeni A.F. Mozhaiskogo. 2014. No. 645. Pp. 204-209. (In Russian).

3. Minakov E.P., Tarasov A.G. Robotic systems of automated control systems preparation and launching of a space rocket and indicators of efficiency of their application. Industrial automation and controllers. 2015. no. 6. pp. 19-24. (In Russian).

4. Minakov E.P., Tarasov A.G., Borovskoi E.P. The development of the structure of automated control system for preparation and launch of space rocets to automate processes of removing emergency situations. H&ES Research.2015.Vol.7.No.6.Pp. 16-21.(In Russian).

5. Tarasov A.G., Doroghko I.V. Logically-parametric approach to survivability simulation of automated systems preparation and launching of space rockets in case of emergency. H&ES Research. 2015. Vol.7. No. 3. Pp. 38-44. (In Russian).

6. Tarasov A.G., Samsonov F.A., Tsvetkov A.Y. Struktura avtomatizirovannoj sistemy podgotovki i puska raket kosmicheskogo naznachenija s primeneniem robototehnicheskih sredstv [The structure of the automated system preparation and launch of space rocket with the use of robotic tools]. Trudy voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo. 2015. No. 646. Pp. 180-185. (In Russian).

7. Shatov S.V. Raschet porazhajushhih faktorov i ih verojatnyh zon dejstvija pri vybrose zhidkoj fazy nesim-metrichnogo dimetilgidrazina [Calculation of amazing factors and their probable operative ranges at emission of the liquid phase asymmetrical dimethylhydrazine]. Trudy voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo. 2015. No. 648. Pp. 187-191. (In Russian).

8. Popov A.P., Fedoruk V.S., Barinov M.F., Myasnikov D.V. Osnovy modelirovamja i ocenki jeffektivnosti dejstvjj sil RSChS pri vedenii avarijno-spasatel'nyh i drugih neot-lozhnyh rabot [Fundamentals of modeling and evaluating the effectiveness of emergency prevention and response forces in the conduct of rescue and other emergency operations]. Khimki: AHP of EMERCOM of Russia, 2014. 61 p. (In Russian).

For citation:

Minakov E.P., Tarasov A.G. Problems and models of measurement the characteristics of robotics system use for emergency recovery at a missile deployment area of a space-vehicle launching unit. H&ES Research. 2016. Vol. 8. No. 3. Pp. 88-95.

ЗАДАЧИ И МОДЕЛИ ФОРМИРОВАНИЯ ХАРАКТЕРИСТИК ПРИМЕНЕНИЯ РОБОТОТЕХНИЧЕСКИХ КОМПЛЕКСОВ ЛИКВИДАЦИИ ЭКСТРЕМАЛЬНЫХ СИТУАЦИЙ, ВОЗНИКАЮЩИХ В ПОЗИЦИОННОМ РАЙОНЕ ЧАСТИ ЗАПУСКА

Минаков Евгений Петрович,

г.Санкт-Петербург, Россия, ep.minakov12345@mail.ru

Тарасов Анатолий Геннадьевич,

г.Санкт-Петербург, Россия, Atol-77@mail.ru

Аннотация

Предлагается модель определения пространственно-временных характеристик применения робототехниче-ских систем и комплексов ликвидации экстремальных ситуаций в позиционном районе части запуска в процессе подготовки и пуска ракет космического назначения, которая, в отличие от известных, позволяет на основе модельных пространственных характеристик экстремальных ситуаций определить способ применения и необходимое количество робототехнических систем, а также структуру робототехнического комплекса ликвидации экстремальных ситуаций. Анализ основных тенденций развития робототехнических систем и комплексов показывает, что магистральным направлением является использование их в различных экстремальных ситуациях, что, в частности, относится к проведению аварийно-спасательных работ и ликвидации последствий аварий и катастроф в позиционных районах частей запуска космических аппаратов. При

этом следует констатировать, что в настоящее время практически (за исключением наземных робототехнических средств тушения пожаров) отсутствуют специализированные робототехнические системы, предназначенные для ликвидации экстремальных ситуаций и их последствий различных типов, что делает актуальным комплексное решение задачи обоснования их облика и требований к их тактико-техническим характеристикам, адаптивного синтеза составов и структур робототехнических комплексов, способов применения робототехнических систем в составе этих комплексов, которое базируется на корректной ее постановке, анализе основных сценариев применения робототехнических систем при ликвидации экстремальных ситуаций, математическом моделировании пространственно-временных характеристик этих ситуаций, обосновании подходов к решению указанных задач.

Ключевые слова: пространственно-временные характеристики; область действия манипуляционной подсистемы; вероятность ликвидации опасных факторов; коэффициент покрытия.

Информация об авторах:

Минаков Е.П., д.т.н., профессор, профессор кафедры управления организационно-техническими системами космического назначения Военно-космической академии имени А.Ф.Можайского.

Тарасов А.Г., к.т.н., докторант кафедры автоматизированных систем подготовки и пуска ракет космического назначения Военно-космической академии имени А.Ф.Можайского.

Для цитирования:

Минаков Е.П., Тарасов А.Г. Задачи и модели формирования характеристик применения робототехнических комплексов ликвидации экстремальных ситуаций, возникающих в позиционном районе части запуска. Наукоемкие технологии в космических исследованиях Земли. 2016. Т. 8. № 3. С. 88-95.

www.h-es.ru

h&es research

95

i Надоели баннеры? Вы всегда можете отключить рекламу.