INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
YARN TYPES, STRUCTURE AND THEIR CLASSIFICATION Gafurov Adkhamjon assistant
Namangan engineering and technology institute Rustamova Surayyo student
Namangan engineering and technology institute
Kurbonalieva Khurshidakhon student
Namangan engineering and technology institute https://doi.org/10.5281/zenodo.7298353 Abstract. Fundamentally discusses the principal requirements for both knitted and woven fabrics with regard to their end uses. Knitted and woven fabric properties are presented in relation to both fiber and yarn properties. Fiber types, classification, performance and end uses are introduced. A classification of yarn types with regard to their fiber content, structure, twist and method of manufacture, as well as a survey of their physical and mechanical properties, is given. The criteria for the choice offibers and yarns to suit fabric end uses and performance are outlined.
Keywords: fibers, yarns, fabric properties, requirements for knitted and woven fabric properties, criteria for choice offibers and yarns.
ВИДЫ ПРЯЖ, СТРУКТУРА И ИХ КЛАССИФИКАЦИЯ Аннотатция. Принципиально обсуждаются основные требования как к трикотажным, так и к тканым материалам в отношении их конечного использования. Свойства трикотажных и тканых тканей представлены в отношении свойств как волокна, так и пряжи. Представлены типы волокон, классификация, производительность и конечное использование. Дана классификация видов пряжи по составу волокна, структуре, крутке и способу изготовления, а также обзор их физико-механических свойств. Изложены критерии выбора волокон и пряжи в соответствии с конечным использованием ткани и ее характеристиками.
Ключевые слова: волокна, пряжа, свойства тканей, требования к свойствам трикотажных и тканых полотен, критерии выбора волокон и нитей.
INTRODUCTION
Several classifications have been introduced in the literature. However, most address only one or two aspects of the classification. The author has, therefore, introduced a classification of yarn types according to four categories which encompass almost all yarns available in the industry.
The four categories are:
1. Fiber type and content
2. Yarn structure
3. Yarn twist level
4. Method of manufacturing.
MATEREALS AND METHODS
Figure 1 shows the classification of yarn according to fiber type and content. In the textile industry, yarns are made of one or two types of fibers. These are:
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
❖ Staple fiber yarns, spun from short or long staple fibers. In this case, the yarns are spun from 100% homogeneous fibers or blends of two or more types of fibers. Blended yarns provide certain characteristics and properties which cannot be obtained when using only one type of fiber.
Fig-1.
Classification of yarns according to fiber type and content.
❖ Continuous filament yarns, which are mostly produced from man-made fibers. These yarns could also be of 100% homogeneous, bicomponent or bi-constituent filaments. Bicomponent continuous filament yarns are made by simultaneously extruding two molten filaments of different polymers which combine to form one continuous filament yarn. Figure 2 illustrates the formation of bicomponent filaments. Bi-constituent continuous filament yarns are made by having one polymer dispersed within another polymer before they are extruded into a yarn, as also shown in Fig..
❖ Combinations of staple fiber and continuous filament. Presently, there are yarns which are made by combining either staple fiber wrapped by continuous filament or staple fiber wrapped around a continuous filament in the core of the yarn. Core-spun yarn may be made with an elastomer core, such as Spandex, covered by another fiber to produce a stretch yarn. Core-spun yarns are used extensively in medical braces for knees, elbows and ankles. The staple fiber on the surface provides sheerness and comfort, especially when used in swimwear, active wear, underwear and hosiery.
Fig 2.
Formation of bicomponent and biconstituent fibers
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
Longitude and cross-section of matrix ifiber structure The black, area represents fibrils, of one fiber and the second fiber iis represented Iby the white.
RESULTS
Aside from the type of fibers converted into singles yarns, they can be classified according to their structural form as shown in Fig. 3. which also depicts their general appearances. The structural forms shown are:
• Single yarns
• Ply or multifold yarns
• Cabled or cord yarns
• Complex or core-spun yarns
• Fancy yarns, sometimes known as novelty yarns
• Modified continuous filament yarns.
• These are described in turn below. Singleyarns
Single yarns occur in one of the following forms:
• A number of staple fibers (short too long in length) are twisted together to form a spun yarn.
• A number of filaments laid together with a small amount of twist (producer twist).
• Single filament with or without twist (monofilament).
The structure of single yarns will be discussed and explains the fiber/yarn interaction that influences the yarn structure.
Fig-3.
Direction of twist and construction of plied and cord (cabled) yarn
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
Ply or multifold yarns
These yarns are produced by twisting together two or more single yarns. This type of yarn has different properties from a single yarn of the same count. It has higher strength, higher uniformity and better abrasion and gives better fabric appearance. Fabrics made of this yarn in the warp do not need a sizing (or slashing) process before weaving. This type of yarn has a balanced twist, achieved by ply twisting the two singles yarns in the direction opposite to their twist, and therefore does not tend to snarl or untwist during the knitting or weaving process, neither will it need steaming or conditioning prior to these processes. This is achieved by usually having the singles twist in the Z- direction and that of the ply in the S-direction. This yarn is more expensive than singles of the same count.
Cabled or cord yarns
This yarn is obtained by twisting together a multiple (i.e. multifold) of yarns. This type of yarn is mostly used in the tire industry and is designated as tire cord. It is manufactured to exhibit specific properties. Another example of the end use of this type of yarn is as a sewing thread. The performance of this yarn in the examples cited could not be obtained by any other yarn type, since the major properties provided are its strength, tensile modulus and elongation.
Complex or core-spun yarns
These yarns are made with a central core of one fiber around which is wrapped or twisted an exterior layer of another fiber. Core-spun yarns may be made with elastomer core, such as Spandex, covered by another fiber to produce a stretch yarn. Other core-spun yarns include sewing thread made with a polyester core and cotton cover, suitable for high speed industrial sewing processes in which 100% polyester thread could melt due to the high temperature that the sewing needle may reach.
Fancy or novelty yarns
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
These yarns are mainly of decorative interest. They are made by introducing special forms of irregularities or hairiness into either spun or continuous filament yarns. Many different yarns of this type are available in the industry, such as boucle yarns, flake or seed yarns, nub yarns, slub yarns, spiral or corkscrew, and chenille yarns. DISCUSSION
Modified continuous filament yarns
Continuous filament yarns are made from straight filaments which are smooth and slippery to the touch. They lack the bulk, comfort and tactile hand of yarns spun from staple fibers. Producers of continuous filament yarns tried to simulate the effects obtained by staple fiber yarns. First, they modified the luster of the filament from bright to semi-bright to dull. Second, they modified the structure of the filament by adding bulk and stretch, by various texturing processes. These processes are primarily to increase bulk for comfort, resilience and hand or to provide stretch to the yarn.
CONCLUSION
From the topics presented in this chapter and throughout other chapters, the following conclusions could be outlined:
1. The scientific, engineering and technological advances that have been applied in the different phases of the textile industry, have highlighted the way to a greater understanding of the different interactions between fiber and machine, fiber and yarn, and yarn and fabric.
2. There is an endless variety of yarns that can be created by using different fibers, by twisting fibers more or less tightly, and by combining two or more individual yarns to form a more innovative product.
3. The potential for variation in fabric structure is enormous, resulting in an endless variety of textile structures that are produced to suit the different end uses and provide the utmost performance.
4. Those involved in testing and quality control, assessment and evaluation are provided with standard test methods which provide them with the information they need and/or the specifications for the products' end use and performance.
REFERENCES
1. Behery HM (1968), Study of theory of fiber migration - need for more fundamental approach and further studies, Text. Res. J., 38, 321
2. Collier BJ and Tortora PG (2001), Understanding Textiles, sixth edition, Upper Saddle river, NJ, Prentice Hall
3. Demir A and Behery HM (1997), Synthetic Filament Yarn: Texturing Technology, Upper Saddle river, NJ, Prentice-Hall
4. Hearle JWS and Merchant VB (1962), Interchange of position among the components of a seven-ply structure: mechanism of migration, J. Text. Inst., 53, T537
5. Lu, R., Yu, Y., Adkhamjon, G. et al. Bio-inspired cotton fabric with superhydrophobicity for high-efficiency self-cleaning and oil/water separation. Cellulose 27, 7283-7296 (2020). https://doi.org/10.1007/s10570-020-03281-9
6. Эркинов Зокиржон Эркинбой Угли, Гафуров Адхамжон Бахромжон Угли, Эргашев Маъмуржон Максуд Угли Определение и анализ свойств крученой нити, выработанной из разноструктурной одиночной пряжи // Universum: технические
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
науки. 2018. №6 (51). URL: https://cyberleninka.m/artide/n/opredeleme-i-analiz-svoystv-kruchenoy-niti-vyrabotannoy-iz-raznostrukturnoy-odinochnoy-pryazhi (дата обращения: 03.10.2022).
7. Adkhamjon, G. DURABLE CELLULOSE AEROGELS FOR HIGH SEPARATION OF OIL
AND WATER. Analysis of changes in fiber properties in processes opening, cleaning and carding. ACADEMICIA: An International Multidisciplinary Research Journal. Year : 2021, Volume : 11, Issue : 4. First page : ( 96) Last page : ( 104). Article DOI : 10.5958/22497137.2021.01043.0
8. Sodikov Muhamad Rashid*, Omonov Muhammad Turdialiogli*, Turdialievich Tojimirzaev
Sanjar*, Bahromjonogli Gofurov Adkhamjon.
9. Erkinov, Z., Abduvaliyev, D., Izatillya, M., & Qorabayev, S. (2020). Theoretical studies on
the definition of the law of motion and the equilibrium provision of the ball regulating the uniform distribution of the torque along the yarn. ACADEMICIA: An International Multidisciplinary Research Journal, 10(11), 2338-2347.
10. Эркинов Зокиржон Эркинбой Угли, Абдувалиев Давлатали Мухаммаджон Угли, Изатиллаев Музаффархон Муссохон Угли, Пирманова ^ундуз Иззатиллаевна Исследование равномерного распределения крутки и показателя качества пряжи, выработанной на новом крутильном устройстве // Universum: технические науки. 2020. №6-2 (75). URL: https://cyberleninka.ru/article/n/issledovanie-ravnomernogo-raspredeleniya-krutki-i-pokazatelya-kachestva-pryazhi-vyrabotannoy-na-novom-krutilnom-ustroystve (дата обращения: 28.09.2022).
11. А.Б.Комаров, Н.А.Коробов. Алгоритмы идентификации пороков по изображению ткани // Современные наукоемкие технологии и перспективые материалы текстильной и лёгкой промышленности (Прогресс-2002): Тез.докл. межд. научн. -техн. конф. Иваново2002 г.
12. Musohon, I. M., Shuxratjonovich, R. B., Avaz, J. G., & Baxromjon, B. M. (2021). Tools to determine the tension of selected yarns on knitting machines by experiment. Зб1рник наукових праць А'ОГОЕ
13. А.П.Полякова, Б.М.Примаченко. "Исследование влияния переплетения на процесс формирование ткани и ткацком станке" И. Изв Вузов "Технология текстильной промышленности" №1. 2003 г.
14. Сокова Г.Г.Обзор современных методик автоматизированного проектирования ткацких переплетений. //Технология текстильной промышленности,2014 №6.
15. НазароваМ.В. Разработка автоматизированных методов проектирования технологических процессов изготовления тканей заданного строения. Автореферат диссертации на соискание ученой степени доктора технических наук. -М.: 2011
16. Korabayev Sh.A; Matismailov S.L; Miraxmedov A.G; Shaxobiddinova D.E (2021) Characteristics of yarn spinned on different spinning machines. section xvii. technologies de l'industrie légère et le travail du bois. 5 février 2021 • Paris, République française. Pages 3739.
17. РАХИМХОДЖАЕВ, С., РАСУЛОВ, Х., ИЗАТИЛЛАЕВ, М., & АДХАМЖОНОВ, Ш. (2019). АНАЛИТИЧЕСКИЕ ИССЛЕДОВАНИЯ НАТЯЖЕНИЯ НИТЕЙ ОСНОВЫ ЗА ЦИКЛ РАБОТЫ СТАНКА. In Современные тенденции развития образования, науки и технологий (pp. 325-329).
INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337
18. Izatillayev, M.M; Korabayev, Sh.A (2020) "Experimental studies of shirt tissue structure", The American Journal of Applied sciences: Vol. 2 : Iss. 11. Available at: https://usajournalshub.com/index.php/tajas/article/view/1353
19. Korabayev Sh.A; Matismailov S.L; Yuldashev A.T., Atanbayev D.D. (2020) "Study Of Fiber Movement Outside The Crater Of Pnevmomechanical Spinning Machine", Solid State Technology. Vol. 63 : Iss. 6. Pages 3460-3466. Available at: http://www.solidstatetechnology.us/index.php/JSST/article/view/3473
20. Korabayev Sh.A; Mardonov B.M; Matismailov S.L; Meliboyev U.X "Determination of the Law of Motion of the Yarn in the Spin Intensifier", Engineering, 2019, 11, 300-306. Available at: https://www.scirp.org/journal/paperinformation.aspx?paperid=92784
21. Korabayev Sh.A; Matismailov S.L; Salohiddinov J.Z (2018) "Investigation of the impact of the rotation frequency of the discretizing drum on the physical and mechanical properties of," Central Asian Problems of Modern Science and Education: Vol. 3 : Iss. 4, Article 9. Available at: https://uzjournals.edu.uz/capmse/vol3/iss4/9
22. Izatillayev, M.M; Korabayev, Sh.A (2020) "Experimental studies of shirt tissue structure", The American Journal of Applied sciences: Vol. 2 : Iss. 11 https://usajournalshub.com/index.php/tajas/article/view/1353
23. Yuldashev A.T., Matismailov S.L., Korabayev Sh.A., Aripova Sh.R., Matmuratova K.R. Investigation of Influence ofa New Twist Intensifier on the Properties of the Twisted Yarn. Turkish Journal of Computer and Mathematics Education Vol.12 No. 5 (2021), 1943-1949. https://doi.org/10.17762/turcomat.v12i5.2275
24. Axmedovich, A., Fakhritdinovna, V. Z., & Fakhritdinovna, M. S. (2021). Influence of the Geometric Dimensions of the Measuring Chamber on the Tone of the Wool Fiber on the Acoustic Device. Annals of the Romanian Society for Cell Biology, 25(6), 10158-10165.
25. Fakhritdinovna, Valieva Zulfiya, OchilovTulkinAshurovich AkhmedovAkmalAxmedovich, and KorabayevSherzodAhmadjonovich UbaydullayevaDiloraXamidovna. "Possibility to Use Acoustic Device Pam-1 to Determine Quality Characteristics of Wool Fiber." Annals of the Romanian Society for Cell Biology 25.6 (2021): 10166-10173.