Научная статья на тему 'Ядерные оболочки и периодический закон Д. И. Менделеева. Часть 2'

Ядерные оболочки и периодический закон Д. И. Менделеева. Часть 2 Текст научной статьи по специальности «Математика»

CC BY
112
57
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НЕЙТРОН / ПЕРИОДИЧЕСКИЙ ЗАКОН / ПРОТОН / ЭНЕРГИЯ СВЯЗИ / ЯДРО / BINDING ENERGY / PERIODIC TRENDS / PROTON / NEUTRON / NUCLEI

Аннотация научной статьи по математике, автор научной работы — Трунев Александр Петрович

На основе теории ядерных взаимодействий и данных по энергии связи нуклонов для всех известных нуклидов установлены параметры, характеризующие периодические закономерности в формировании ядерных оболочек

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

NUCLEI SHELLS AND PERIODIC TRENDS. PART 21A&amp

Parameters describing periodic trends in the formation of nuclear shells have been established based on the theory of nuclear interactions and data on the binding energy of nucleons for the set of known nuclides

Текст научной работы на тему «Ядерные оболочки и периодический закон Д. И. Менделеева. Часть 2»

УДК 531.9+539.12.01

ЯДЕРНЫЕ ОБОЛОЧКИ И ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И.МЕНДЕЛЕЕВА. ЧАСТЬ 2.

UDC 531.9+539.12.01

NUCLEI SHELLS AND PERIODIC TRENDS. PART 2.

Трунев Александр Петрович к.ф.-м.н., Ph.D.

Директор, A&E Trounev IT Consulting, Торонто, Канада

Alexander Trunev Cand.Phys.-Math.Sci., Ph.D.

Director, A&E Trounev IT Consulting, Toronto, Canada

На основе теории ядерных взаимодействий и данных по энергии связи нуклонов для всех известных нуклидов установлены параметры, характеризующие периодические закономерности в формировании ядерных оболочек

Parameters describing periodic trends in the formation of nuclear shells have been established based on the theory of nuclear interactions and data on the binding energy of nucleons for the set of known nuclides

Ключевые слова: НЕЙТРОН, ПЕРИОДИЧЕСКИМ ЗАКОН, ПРОТОН, ЭНЕРГИЯ СВЯЗИ, ЯДРО

Keywords: BINDING ENERGY, PERIODIC TRENDS, PROTON, NEUTRON, NUCLEI

Introduction

The periodic law discovered by Mendeleev in 1869, played a huge role in the development of ideas about the structure of matter. In one of the first formulations of this law states that "the properties of simple bodies, as well as the shape and properties of the compounds of the elements, and therefore the properties of which they form simple and complex bodies are in the periodic table according to their atomic weight" [1]. Using this law, Mendeleev created the periodic table of elements, which is predicted on the basis of new elements - gallium, scandium, germanium, astatine, polonium, technetium, rhenium, and francium.

Ivanenko [2-3], evidently, was one of the first who raised the issue of expansion of the periodic law to include the periodic patterns are observed in atomic nuclei and some exotic formations, such as exotic atoms. According to the theory of nuclear shells [4-5], periodic patterns in the nuclei are explained by analogy with the electron shells, the Pauli principle, which is applied separately for protons and neutrons fill the nuclear envelope. With this expansion of the periodic law of its original wording seems quite logical, since the properties of the nuclei depend not only on the number of protons but also on the number of neutrons.

Thus, the properties of nuclei and the properties of atoms of chemical elements due to the same type on the basis of quantum mechanics and the Pauli principle.

At present, the binding energy of the nucleon measured with high accuracy for almost all known nuclides. However, in contrast to the ionization energy of the atoms, the dependence of the binding energy of the number of nucleons does not contain any explicit reference to the existence of nuclear shells. However, attempts to establish the presence of known nuclear shells and the so-called magic numbers for the deviation from the standard binding energy trend of the Weiszacker’s semi-empirical model [6] and other models [7]. In the present work we investigated the dependence of the energy of the nucleons for all known nuclides with the use of Wolfram Mathematica 8 [8] and three models of the binding energy:

1) Semi-empirical model;

2) 5D model of nuclear interactions [9-11];

3) Information model [12].

The parameters of all models were determined locally for the isotopes of each element. Found that in all three cases, model parameters have a similar behavior depending on the number of protons, which indicates the presence of the internal structure of nuclei.

5D model description

You may notice that the periodic law in the original formulation of Mendeleev is local, as relates properties of simple substances with their atomic weight, which at the time when the law was formulated, was determined by weighing in the gravitational field of the earth. Such a correlation properties of substances and their gravitational properties are reasonable. To answer the question about the fundamental causes that lead to a law of periodicity in nature, consider a general model of atomic nuclei and atoms of matter [10-11]. In this model, the properties of matter are determined by the parameters of the metric tensor in 5-

dimensional space, which depend on a combination of charge and gravitational properties of the central core in the form [9]

k — 2gM3Ac2/Q4, e2 /k — 2gMA /c2 (1)

Here 7, c, Q - the gravitational constant, the speed of light and charge of the nucleus, respectively. About the nature of the charge will be assumed that the source is an electric charge, but it can be screened in various natural fields. The mechanisms of screening and related fields are discussed below. In the case of proton and electron parameters of the metric tensor (1) are presented in Table 1.

Table 1: The metric tensor parameters

k, 1/m e rmax, m rmin, m

e- 1,703163E-28 4,799488E-43 5,87E+27 2,81799E-15

p+ 1,054395E-18 1,618178E-36 9,48E+17 1,5347E-18

Note that the maximum scale rmax -1/ k in the case of an electron exceeds the size of the observable universe, while for protons this scale is about 100 light-years. The minimum is the scale rmm — e/ k - e /m°2 corresponds to the classical radius of a charged particle, which in the case of a proton and an electron is commensurate with the scale and the weak nuclear interactions.

It is easy to see that the second parameter of the model (1) directly included in the formula for the Mendeleev’s periodic law [1]. Combining the parameters, we

find the nuclear charge in the form: Q — einc2/£^/2g. Consequently, the periodic law in its present formulation can also be expressed through the parameters of the metric tensor (1). The metric tensor can be expanded in the vicinity of a massive center of gravity in five-dimensional space in powers of the

dimensionless distance to the source, ~— kr, here r — Vx 2 + y2 +z 2 .

Consider the form of the metric tensor, which arises when holding the first three terms in the expansion of the metric in the case of central force field with the http://ej. kubagro.ru/2012/07/pdf/3 7.pdf

gravitational potential in the Newton’s form. This choice of metric is justified, primarily because of the specified building the superposition principle holds. Suppose x = ct’x2= x x3= y,x4= z, in this notation we have for the square of the interval in the 4-dimensional space:

ds2 — (1 + 2 j/c2)c2dt2 -(1 -2 j/c2)(dx2 + dy2 + dz2)

j — -M (2)

r

Assuming that e /k — 2gM /c2 we arrive at the expression of the interval depending on the parameters of the metric in the five-dimensional space:

ds2 — (1 -e2 /k)c2dt2 -(1 + £2 /k)(dx2 + dy2 + dz2) (3)

Further, we note that in this case the metric tensor in four dimensions is diagonal with components

gu — 1 -e2/ kr; g22 — g33 — g44 — -(1 +e2/ kr) (4)

We define the vector potential of the source associated with the center of

gravity in the form

g —e/^ g — gju (5)

Here u is a vector in three dimensional spaces, which we define below. Hence, we find the scalar and vector potential of electromagnetic field

Q Mc2 e . ...

je —- —---------------------------^, A — jeu (6)

r e kr

To describe the motion of matter in the light of its wave properties, we assume that the standard Hamilton-Jacobi equation in the relativistic mechanics and the Klein-Gordon equation in quantum mechanics arise as a consequence of the wave equation in five-dimensional space [9]. This equation can generally be written as:

1 3 (4-Ga1 — o (7)

Here Y - the wave function describing, according to (7), the scalar field in five-dimensional space; Gik - the contravariant metric tensor,

(8)

' 11 0 0 0 - g1 1

0 1 0 0 - g 2

Glk = h- 0 0 ^2 0 - g 3

0 0 0 1 - g 4

V- g - g2 - g 3 - g 1 J

1= (1 -£2/ kr)-1; 1 =-(1 + £2 / kr) -1

g1 =1gl, g2 =1 g 2 , g3 =1 gз, g4 =^2 g4

1 = 1 +1g12 +^2(g2 + g32 + g4 ); G = h /(ab3); h =

We further note that in the investigated metrics, depending only on the radial coordinate, is true the following relation

F m =v—U-GG mv)=-n—d U-GG mv) dxmK ’ dxm drK '

(9)

Taking into account the expressions (8) and (9), we write the wave equation

(7) as

(10)

c2 dt2 2 dp2 ~ dx1 dp dxM

Note that the last term in equation (10) is of the order h2k =k5r4 << 1. Consequently, this term can be dropped in the problems, the characteristic scale which is considerably less than the maximum scale in Table 1. Equation (10) is remarkable in that it does not contain any parameters that characterize the scalar field. The field acquires a mass and charge, not only electric, but also strong in the process of interaction with the central body, which is due only to the metric of 5dimensional space [9-11].

Consider the problem of the motion of matter around the charged center of gravity, which has an electrical charge and strong, for example, around the proton. In the process of solving this problem is necessary to define the inertial mass of

matter and energy ties. Since equation (10) is linear and homogeneous, this problem can be solved in general.

We introduce a polar coordinate system (r,f,z) with the z axis is directed along the vector potential (8), we put in equation (10)

Y = y(r)exp(ilf + ikzz -iwt -ikpp) (11)

Separating the variables, we find that the radial distribution of matter is described by the following equation (here we dropped, because of its smallness, the last term in equation (10)):

c2

( 1 l2 ^ y-|1 | yrr + -yr —2- y-kW - *kpy + 2g1c ~lokpy - 2gzkzkpy = 0 (12)

r2z V r r у

Consider the solutions (12) in the case when one can neglect the influence of gravity, i.e. 1 »-12 » 1but 1 = 1 + g2(1 -u2) *1. Under these conditions, equation

(16) reduces to

w

—-y—

r 2 ' z

v r r у

Уг + -yr —2У-kZy -^py+ 2g1c~lwkPy-2gZkzkPy = 0 (13)

In general, the solution of equation (13) can be represented in the form of a power series [10-11]

exp(-~) ^ ~ j

¥= ~ Z j (14)

r j=0

It is indicated r = r / rn. Substituting (14) in equation (13), we find

(a2 -12 + k)^ cjr j-2 +(2a -1 + Kgrn )^ j j-1 +

j=0 j=0

(1 - klrn + K2rl )Z cj~ j - Z jcj~ j-1 - 2aZ jcj~ j-2 + (15)

j=0 j=0 j=0

Z cjj(j- 1)r j-2=0

j=0

Ku = (1 - u 2) k 2pe2 / k 2 , K2 = k2 + (O2 / c2, kg = —2ekp(kzuz + o/c)/ k > 0.

Hence, equating coefficients of like powers, we obtain the equations relating the parameters of the model in the case of excited states

/72 k n +1 — 2a 1 12 , J 2 1 O f\

a = il —ku > =--------------, — — kz+ kr +— = 0 (16)

k rn C

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The second equation (16) holds only for values of the exponent, for which the inequality 2a < n +1 is true. Hence, we find an equation for determining the energy levels

4e2kl r wA2 2 2 Oo

— k2 + k2 + — = 0 (17)

p c

p

k (n +1 — 2a)

Equation (17) was used to model the binding energy of nucleons in the nucleus for the entire set of known nuclides [10-11]. In the model [10-11], the core consists of "pure" proton interacting with a scalar field. Part of the "pure" proton is screened by forming N neutrons, as a result there is an atom, consisting of the electron shell and nucleus with electric charge eZ, number of nucleons A = Z + N , mass excess ME = M — A , and the binding energy Eb = Z (me + mp ) + Nm n — (ME + A ■ mu), mu = m (12 C) /12 » 931 .494028 MeV

Note that we using the standard expression of the mass excess in atomic units. Since two types of charges - scalar and vector, appear in this problem the effect of screening manifests itself not only with respect to the scalar charge (which leads to the formation of neutrons), but also in terms of the vector of the charge, which leads to the formation of the nucleons.

It should be noted that the original metric in the five-dimensional space defined by the metric tensor, which depends only on the parameters of the central

body, i.e. of the total charge and total mass of the nucleons. Different shells can be formed depending on the combination of the charge and mass of the nucleus:

1) Nucleon shell, in which all charges are screened, therefore^/k == A2e2 / AmpC2 = Ae2 /mpC2;

2) Neutron shell, in which we have e/k = Ne 2 / mpc 2;

3) Proton shell, in which e/ k = Ze 2 / mpc 2.

Using the electron mass and Planck's constant, we define the dimensionless parameters of the model in the form

a=£l, s=<ik4,p=, E =

hC (mec)2’ mec’ mec

bX =

tX = ___________4 x (^me / mp )________________________

nl (n + 1 — 2^112 — (1 — u2)SX 2(ame / mp )2 ) (18)

Here X = A, N, Z in the case of the nucleon, neutron and proton shells, respectively.

Solving equation (17) with respect to energy, we find

„X — SbX,Pu ± ¿V— (SbX,Pu)2 + (SbX + 1)(S — P1 + SbXP1 uJ)

En = ^ (19)

Note that the parameter in the energy equation (19) can be both real and complex values, which correspond to states with finite lifetime. Given that for most nuclides the decay time is large enough quantity; it can be assumed that the imaginary part of the right-hand side of equation (19) is a small value, which corresponds to a small value of the radicand. Hence we find that for these states the following relation between the parameters

S (SbX +1)

p 2 =

1 + SbX (1 — u2)

Substituting in the momentum equation (19), we have

о3/2т X ,

T?X = S b„lU

Enl =

J(Sb'X +1)(1 + SbX (1 - «'))

(21)

Hence, we find the dependence of the binding energy per nucleon in the ground state

S3/2bnuX2 /A

, „ -__________________________________'0

J0a

Ex / A =

7(Sb0 X2 +1)(1 + Sb0 X 2(1 - u2))

(22)

It is indicated b0 = (2ame/mp0 — 2a))2. Thus, we have established a link the energy of the state parameters with the interaction parameter. Note that the energy of ground state (22) depends on the magnitude of the vector charge, which appears in equations (5) - (6). In [11] have shown that this shows the difference between the interaction of nucleons in nuclei, where the parameter u ^ 0 , and the interaction between electrons and atomic nuclei, in which u = 0 .

Equation (22) allows us to describe the dependence of the binding energy of the number of nucleons for all nuclides. The computational model is constructed as follows. Suppose that, based on equation (22) was able to accurately determine the binding energy of one of the isotopes of an element. Without loss of generality we can assume that this is isotope, which contains the minimum number of neutrons. Then the binding energy of all other isotopes of element is defined by E(N, Z) = Ei (Nmm, Z) , EN (N, Z) EN (Nmm, Z)

■ + -

A Z + Nmin Z + N Z + Nmm

(23)

Model (23) contains the arbitrary choice of the interaction parameterSb 0. Further, without loss of generality we assume that Sb 0 = 1, therefore a momentum scale in the fifth dimension appearing in equations (11) - (17) is established. Computation of the binding energy of nucleons

We consider three models of the binding energy of nucleons. Standard Weiszacker semi-empirical model has the form [13]:

Eb = avA — asA2/3 — acZ 2A~1/3 — aA (N — Z )2 A~1 + a5A~3/4 (24)

The first term on the right side of (24) describes the increase in binding energy due to the increase in the volume of the system, the second term is due to the contribution of surface energy, the third term describes the contribution of the electric charge of protons, the fourth term due to the contribution of the Fermi energy of nucleons, and finally, the fifth term describes the pairing energy. Since the model (24) depends on five parameters, and model (23), only three, we fix two parameters in equation (24). First, we assume as = I7 23 that is consistent with

the known data [6]. Second, we assume a5 = 0 that due to the specifics of the problem, in which the model parameters are defined locally for a given value of the nuclear charge, and in this case there is no sufficient data to determine this parameter. Consequently, it is necessary to determine the three parameters of the

model av, ac, a a , depending on the number of protons Z.

5D model of the binding energy (23) depends on three parameters. For a given number of protons can be represented as

bN2 / A

Eb / A = a +

V( N2 +1)(1 + k (gN )2)

(25)

+1)(1 + t

The problem is to find the values of model parameters (25) a, b, g , depending on the number of protons Z.

The information model is based on the binding energy changes in terms of energy of a thermodynamic system

dE = TdS — PdV

We can assume that in the case of core contributions of pressure and volume is described by the first term on the right side of equation (24), and entropy of the system varies with the number of neutrons, like the entropy of a discrete set [12], thus

Eb / A = a + b^N / A)(- ln(N / A) + &) (26)

Note that in the system Mathematica 8 [8] has built a database of isotopes IsotopeData [], and the procedure for finding the parameters of linear and nonlinear models - Fit, FindFit, NonlinearModelFit. The coefficients of the three models (24)

- (26) were calculated in the system [8] for the isotopes of chemical elements (Appendix B shows an example for the model (24)). Model (25) is rigid, so in the calculation of its parameters is introduced numerical coefficient k, which provides the convergence of the solution (see example below in Appendix section). Model (26) can be used without change, but in some cases, a sign in front of the logarithm should be replaced with the opposite sign on the initial iteration. Three models can be compared with experimental data (the corresponding code shows in the Appendix). Results comparing the three models are shown in Figure 1 for isotopes of O, F, Fe, Ni, Pt, Au curves of different colors - green, red and blue for models (24), (25), (26), respectively.

Parameters of the three models, calculated for the number of protons from 4 to 94 are summarized in Table 2.

-1 i I i i i i I i i i i I i i i i I i i 4 i 1 i 1 1—1—I i—i—i—i—|—iiii= i i i i i i i i i i i i i i i i i i i i i i j i j, i i i i i i i i i i i i

Pt ^4 7.90 ■ Au '

/ > 7.S5 /

■ / > ■ /

/ s f

§ 7. B0 ■ / -

: / : /

: / 7.75 / ;

£ ■ ■ . . .1 7.70 LJ — I il.. I . . i I .iii _i i i i . . . . i l:

90 95 100 105 110 115 120

JV

90 95 100 105 110 115 120 125

N

Figure 1: Comparison of three models for the isotopes O, F, Fe, Ni, Pt, Au: the green lines - Weiszacker’s model (24), red lines - 5D model (25), blue lines -an information model.

Table 2: The calculated parameters of models (24) (25) and (26).

Z a b g al b1 g1 av ac aA

4 -3.62481 27.327 0.0422609 -20.4234 51.3442 0.355978 14.7091 -0.449354 15.4203

5 -2.52089 23.6371 0.0247448 -14.204 39.0915 0.361751 13.8749 -0.548336 12.7719

6 -2.68681 25.3876 0.0165681 -19.5433 50.4696 0.366144 14.4986 -0.1836 14.5216

7 -3.85908 28.2342 0.0114133 -26.5208 63.2546 0.378508 14.8815 0.262532 16.6353

8 -3.79443 28.7792 0.0086387 -29.0956 68.485 0.382158 15.1319 0.377706 17.331

9 -4.02073 29.1897 0.0067492 -31.347 72.4102 0.38568 15.0451 0.461668 17.8339

10 -3.90832 29.5351 0.0055812 -32.327 74.7037 0.384548 15.066 0.447392 18.1195

11 -4.34471 30.6186 0.0045588 -34.9852 79.4571 0.387794 15.1316 0.538501 18.9135

12 -4.75363 32.0398 0.0037947 -34.9742 79.891 0.386432 15.2473 0.556375 19.3312

13 -4.49257 31.4826 0.0032596 -34.4678 78.9237 0.387226 15.0955 0.520236 19.0377

14 -4.86299 32.9161 0.0028544 -33.7932 78.1938 0.38417 15.1093 0.489994 19.3225

15 -4.92823 32.9845 0.0024462 -34.6704 79.514 0.38844 15.1402 0.532441 19.4656

16 -4.57793 32.2025 0.0021184 -34.6231 79.3658 0.391189 15.1662 0.53731 19.208

17 -4.4887 31.7784 0.0018284 -34.6721 79.0368 0.396352 15.1746 0.568718 19.024

18 -4.20688 31.1873 0.0016155 -34.0293 77.7887 0.398887 15.1715 0.559632 18.6967

19 -4.56505 32.023 0.0014452 -35.2885 79.9604 0.400381 15.1961 0.58579 19.1674

20 -4.64648 32.4197 0.0013115 -35.6665 80.765 0.400448 15.2171 0.580203 19.3655

21 -5.26814 33.8858 0.00119 -38.196 85.348 0.400375 15.2774 0.617602 20.2984

22 -5.67551 35.0752 0.0010958 -40.1961 89.2201 0.398872 15.3419 0.628125 21.0693

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

23 -6.05237 35.9337 0.0009984 -41.5921 91.6283 0.400196 15.3843 0.651503 21.5696

24 -6.11985 36.2127 0.0009177 -41.99 92.3902 0.400701 15.4094 0.648387 21.7216

25 -6.24784 36.4664 0.0008418 -42.4793 93.1508 0.401959 15.4076 0.653399 21.8633

26 -6.28165 36.6336 0.0007779 -41.7491 91.9181 0.401584 15.3744 0.633746 21.7385

27 -5.91711 35.5786 0.0007103 -40.9674 90.2611 0.403841 15.3089 0.622372 21.2347

28 -5.78781 35.2243 0.0006501 -39.7398 87.903 0.405936 15.3041 0.614025 20.8196

29 -4.99568 33.1639 0.0006016 -39.4301 87.1016 0.408116 15.1827 0.590204 20.1834

30 -4.57451 32.0833 0.0005569 -38.1885 84.7455 0.409463 15.0929 0.566158 19.6017

31 -4.63175 32.0402 0.0005134 -38.5366 85.1258 0.411775 15.099 0.577839 19.6222

32 -4.63363 32.0235 0.0004795 -38.6924 85.3594 0.412437 15.0928 0.575169 19.6399

33 -4.89913 32.5176 0.0004462 -39.7378 87.0587 0.413959 15.1314 0.593458 19.9647

34 -4.92286 32.5903 0.0004204 -42.1626 91.2954 0.415514 15.2229 0.61443 20.4833

35 -5.32932 33.4376 0.0003932 -43.7459 93.9747 0.416771 15.2993 0.639397 21.0178

36 -5.73261 34.4072 0.0003708 -45.5038 97.1115 0.417121 15.4002 0.659816 21.6395

37 -6.02828 35.0052 0.0003487 -46.3959 98.5568 0.418232 15.4387 0.673052 21.9657

38 -6.30199 35.6495 0.0003294 -47.6848 100.826 0.418783 15.5158 0.686486 22.3972

39 -5.99714 34.8385 0.0003117 -47.4196 100.218 0.419675 15.4344 0.670048 22.0897

40 -5.80949 34.4269 0.0002976 -46.5407 98.6955 0.419209 15.3424 0.644418 21.7953

41 -5.29964 33.138 0.0002831 -45.367 96.4927 0.41975 15.1905 0.61341 21.1702

42 -5.18736 32.8917 0.0002706 -44.7795 95.4757 0.419392 15.1213 0.594908 20.9812

43 -4.72927 31.7071 0.0002573 -43.0526 92.2911 0.419885 14.9618 0.56367 20.276

44 -4.68112 31.5894 0.0002456 -42.7163 91.6774 0.420027 14.925 0.553454 20.1688

45 -4.30091 30.5779 0.0002333 -40.9962 88.4722 0.420954 14.787 0.528102 19.5122

46 -3.98847 29.8081 0.0002226 -39.6453 86.0108 0.421472 14.688 0.506142 19.0082

47 -3.01173 27.3123 0.0002095 -36.5769 80.3064 0.423684 14.4568 0.463584 17.6412

48 -2.82675 26.8101 0.0001988 -35.6621 78.5572 0.425169 14.4103 0.454071 17.2941

49 -2.64241 26.2272 0.0001878 -34.8193 76.8483 0.427347 14.3553 0.447902 16.9268

50 -2.75243 26.3929 0.0001774 -35.0131 77.0089 0.429706 14.4058 0.458403 16.982

51 -3.10147 27.0323 0.0001675 -36.9114 80.0647 0.432777 14.5294 0.489927 17.5059

52 -4.1087 29.2927 0.0001595 -40.8443 86.8587 0.434208 14.8168 0.548111 18.9091

53 -4.88685 30.9368 0.0001512 -44.1034 92.3213 0.436673 15.0542 0.599221 19.986

54 -5.77758 32.9822 0.0001456 -47.6512 98.5393 0.436678 15.2876 0.642985 21.2657

55 -6.49219 34.5295 0.0001395 -50.793 103.932 0.437431 15.4808 0.68223 22.3091

56 -6.55646 34.6463 0.0001344 -50.8494 103.993 0.437599 15.4654 0.677452 22.3435

57 -6.71471 34.8831 0.0001287 -51.7677 105.403 0.439024 15.5096 0.688154 22.5647

58 -6.77462 34.9917 0.0001243 -51.8113 105.447 0.43912 15.4913 0.682866 22.5949

59 -6.61779 34.5162 0.0001194 -50.9097 103.723 0.439992 15.4053 0.669129 22.2552

60 -6.64243 34.5196 0.0001151 -51.3111 104.33 0.440713 15.414 0.669337 22.3221

61 -6.5384 34.155 0.0001105 -50.6191 102.949 0.441853 15.3515 0.660245 22.0511

62 -6.571 34.1944 0.0001069 -50.5155 102.727 0.442029 15.3256 0.654196 22.0297

63 -6.54571 34.0061 0.0001026 -50.1268 101.863 0.44335 15.2915 0.650338 21.8645

64 -6.60085 34.0906 9.923E-05 -51.0797 103.449 0.443885 15.3239 0.654754 22.0742

65 -6.50471 33.7317 9.524E-05 -50.3913 102.047 0.445361 15.272 0.647954 21.799

66 -6.38636 33.4135 9.218E-05 -49.6857 100.758 0.445726 15.2046 0.635322 21.5537

67 -6.25463 32.9776 8.857E-05 -48.8482 99.1038 0.447197 15.1396 0.626537 21.2265

68 -5.86922 32.0605 8.596E-05 -47.5027 96.7233 0.447365 15.0027 0.602623 20.6984

69 -5.54572 31.1761 8.249E-05 -45.8781 93.681 0.449166 14.8826 0.585267 20.0847

70 -5.1355 30.2033 8.013E-05 -44.3569 91.0016 0.449317 14.7324 0.560059 19.5073

71 -5.13124 30.0637 7.707E-05 -44.2486 90.6327 0.450782 14.7158 0.559955 19.4139

72 -5.1398 30.0561 7.505E-05 -44.8237 91.6306 0.45047 14.7088 0.558424 19.5368

73 -5.08636 29.7848 7.199E-05 -44.3017 90.492 0.452533 14.6794 0.556499 19.3111

74 -5.15849 29.8641 6.949E-05 -44.7317 91.095 0.4538 14.7085 0.56144 19.3941

75 -5.18135 29.7528 6.652E-05 -44.5443 90.5021 0.456279 14.7143 0.56513 19.2703

76 -4.81392 28.8112 6.396E-05 -42.837 87.3653 0.458217 14.5937 0.546876 18.628

77 -4.739 28.4772 6.119E-05 -42.4773 86.4801 0.46079 14.5782 0.547303 18.4114

78 -4.3432 27.458 5.861E-05 -40.8502 83.4595 0.463247 14.4649 0.530748 17.7622

79 -4.11711 26.7572 5.566E-05 -40.1393 81.9009 0.46695 14.4327 0.528879 17.367

80 -5.44848 29.7541 5.483E-05 -45.8294 91.7441 0.465145 14.85 0.591188 19.3432

81 -6.3089 31.5529 5.29E-05 -50.0175 98.6963 0.466802 15.1852 0.643356 20.6374

82 -7.35854 33.897 5.192E-05 -54.2297 105.945 0.465925 15.4981 0.688685 22.1181

83 -10.6838 41.2669 5.081E-05 -69.5929 132.156 0.465622 16.6923 0.86676 27.1828

84 -12.0013 44.1892 4.977E-05 -75.7497 142.678 0.465302 17.1429 0.930859 29.2048

85 -14.341 49.3045 4.842E-05 -87.2432 162.142 0.465986 18.0281 1.06011 32.8569

86 -13.1541 46.6637 4.754E-05 -57.8229 112.377 0.461763 17.588 0.991697 31.3175

87 -12.0067 44.0411 4.647E-05 -10.9011 33.4322 0.416778 17.1993 0.933971 29.8626

88 -10.7392 41.227 4.573E-05 -33.0918 70.7649 0.449922 16.6866 0.857065 28.0244

89 -9.3985 38.2087 4.493E-05 -0.240897 15.592 0.333918 16.162 0.781219 26.1047

90 -7.66393 34.3582 4.437E-05 1.39374 12.7593 0.305706 15.468 0.680812 23.5375

91 -6.60717 31.912 4.33E-05 1.25935 12.7706 0.319387 15.048 0.622713 21.8927

92 -5.29195 28.9599 4.261E-05 4.6173 7.29986 0.171406 14.5418 0.55151 19.9757

93 -10.3571 39.5927 3.857E-05 5.70092 5.94733 0.0177703 16.745 0.867284 27.4873

94 -10.6928 40.2478 3.754E-05 6.13997 5.31963 -0.0623392 16.8843 0.884977 27.9953

The Appendix provides the text of programs to calculate and plot the model parameters on the number of protons - Fig. 2-4. The parameters of all three models

vary with the number of protons. Since the 5D model is rigid, it uses the aboveintroduced coefficient k, which provides the convergence of solutions depending on the number of protons in the form k = 0.9592/Z2209. Shown in Fig. 3 parameter g is calculated with respect to this factor.

Analyzing the data given in Table 2 and Fig. 2-4, we can conclude that there is no universal model that describes the entire set of nuclides. From the data presented in Fig. 1, it follows that all three models describe equally well the binding energy of the isotopes of individual elements. In this sense, the model of Weiszacker cannot be regarded as a universal model, even with the term describing the pairing energy.

Figure2: The dependence of Weiszacker model parameters on the number of protons, the lower figures show the value of standard deviation RSquared and maximum absolute prediction error of the binding energy - MaxError.

Note the similarity in the behavior of parameters of three models: the parameters reach extreme values at the same or similar values of Z - Table 3. These results indicate the presence of nuclear structure, but the point of extremes do not coincide with the magic numbers of protons - 2, 8, 20, 28, 50, 82, as defined in the standard nuclear shell model [3-6]. A similar result was obtained in [11], in which the local parameters 5D model depending on the number of neutrons have been calculated. As it turned out, the number of neutrons corresponding to the extreme values of the parameters of the model 5D, close to the magic numbers, but nowhere with them do not match.

Figure 3: The dependence of the parameters of the 5D model on the number of protons.

In this regard, we note in Table 3 and Fig. 2-4 three points that fall on the elements Z = 31,32,85 - Ga (Gallium), Ge (germanium), At (astatine). Gallium and germanium were predicted by Mendeleev in 1870 and discovered in 1875 and 1885, respectively. Astatine predicted by Mendeleev was artificially synthesized only in 1940. Note three extreme coinciding with the Z = 26, 79, 92 - Fe (iron), Au (gold) and U (uranium). There is no doubt that the iron is clearly identified in nature and has long been used in human practice. The role of gold and uranium in human history cannot be overestimated. It is also interesting that only in the 5D model, the binding energy of one of the extremes have the element with proton number Z = 26 - iron.

Figure 4: The dependence of the parameters of the information model on the number of protons.

Table 3: Extreme values of the model parameters

Z a b a1 b1 av aA

5 -2.52089 23.6371 -14.204 39.0915 13.8749 12.7719

18 -4.20688 31.1873 -34.0293 77.7887 15.1715 18.6967

25 -42.4793 93.1508 15.4076 21.8633

26 -6.28165 36.6336

31 -4.63175 -38.5366 85.1258 19.6222

32 32.0235 15.0928

38 -6.30199 35.6495 -47.6848 100.826 15.5158 22.3972

49 -2.64241 26.2272 -34.8193 76.8483 14.3553 16.9268

58 -6.77462 34.9917 -51.8113 105.447 15.4913 22.5949

79 -4.11711 26.7572 -40.1393 81.9009 14.4327 17.367

85 -14.341 49.3045 -87.2432 162.142 18.0281 32.8569

92 -5.29195 28.9599 4.6173 7.29986 14.5418 19.9757

We can assume that there is a version of the periodic table, in which periods are associated with the trend shown in Fig. 2-4 and in Table 2. These results suggest that the periodic properties of the nuclei of atomic elements depend on the number of protons (charge), in line with the modern formulation of the periodic law [14]. It has been previously established [11] that the periodic properties of nuclei depend on the number of neutrons, which is reflected in the original formulation of Mendeleev's periodic law. The Appendix gives the texts of programs to calculate the model parameters depending on the number of neutrons - Fig. 5-6.

Figure 5: The dependence of Weiszacker model parameters on the number of neutrons, the lower figures show the value of standard deviation and maximum absolute prediction error of the binding energy.

Model (24) used in this case without change and 5D model takes the form

bZ2 / A

E / A = a + -

(27)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

V(Z2 +1)(1 + k ( gZ )2)

Since the 5D model is rigid, it uses a numerical coefficient k, which provides the convergence of solutions depending on the number of neutrons in the form

k = 0.0025 - 0.0003ln N

Figure 6: The dependence of the parameters of the 5D model on the number of neutrons.

The data presented in Fig. 5 that the Weiszacker model parameters depend on the number of neutrons, and these dependencies are not monotonic, which indicates the presence of nuclear structure. Thus, we have shown that the binding energy of all known nuclides can be described approximately with the same accuracy by any of three models (24)-(26). This means that the nucleus can be regarded as a charged liquid drop (Weiszacker model), and as a set of shielded "clean" protons in the five-dimensional space [10-11], and as a statistical (information) system [12].

Note that the droplet model of the nucleus had a large development in the 3050s of last century. On the other hand, 5D model is theoretically justified by Kaluza [15], Einstein [16-19], Pauli and Einstein [20], Rumer [21], Dzhunushaliev [22], and in our papers [9-11] as well. The information model of the nucleus also has a

great potential in terms of its expansion, taking into account the spin angular momentum and other quantum numbers, as well as quantum chaos [6-7, 23-24].

The author expresses his gratitude to Professor VD Dzhunushaliev and Professor EV Lutsenko for useful discussions.

References

1. Менделеев Д. И., Периодический закон. Основные статьи. — М.: Изд-во АН СССР, 1958, с. 111.

2. Iwanenko, D.D. The neutron hypothesis// Nature, 129, 1932, 798.

3. Иваненко Д.Д., Периодическая система химических элементов и атомное ядро //

Д. И. Менделеев. Жизнь и труды, АН СССР, М., 1957, с. 66-100.

4. Гейзенберг В. Замечания к теории атомного ядра// УФН (1), 1936.

5. Maria Goeppert-Mayer. On Closed Shells in Nuclei/ DOE Technical Report, Phys. Rev. Vol. 74; 1948. II DOE Technical Report, Phys. Rev. Vol. 75; 1949

6. P Leboeuf. Regularity and chaos in the nuclear masses/ Lect. Notes Phys. 652, Springer, Berlin Heidelberg 2005, p.245, J. M. Arias and M. Lozano (Eds.).

7. Jorge G. Hirsch, Alejandro Frank, Jose Barea, Piet Van Isacker, Victor Velazquez. Bounds on the presence of quantum chaos in nuclear masses//Eur. Phys. J. A 25S1 (2005) 75-78

8. Wolfram Mathematica 8// http://www.wolfram.com/mathematica/

9. Трунев А.П. Фундаментальные взаимодействия в теории Калуцы-Клейна// Научный журнал КубГАУ - Краснодар: КубГАУ, 2011. - №07(71). С. 502 - 527. - Режим доступа: http:// ej. kubagro.ru/2011/07/pdf/39.pdf

10. A. P. Trunev. The structure of atomic nuclei in Kaluza-Klein theory // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №02(76). С. 862 - 881. - Режим доступа:

http://ej. kubagro.ru/2012/02/pdf/70.pdf

11. Трунев А.П. Ядерные оболочки и периодический закон Д.И. Менделеева// Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №05(79). С. 414 - 439. - Режим доступа: http://ej.kubagro.ru/2012/05/pdf/29.pdf

12. Луценко Е.В. Количественная оценка уровня системности на основе меры информации К. Шеннона (конструирование коэффициента эмерджентности Шеннона) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №05(79). С. 249 -304. - Режим доступа: http://ej.kubagro.ru/2012/05/pdf/18.pdf

13. Marselo Alonso, Edward J. Finn. Fundamental University Physics. III Quantum and Statistical Physics. - Addison-Wesley Publishing Company, 1975.

14. A. Van den Broek. The Number of Possible Elements and Mendeléffs “Cubic” Periodic System// Nature 87 (2177), 1911.

15. Kaluza, Theodor. Zum Unitatsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 1921: 966-972.

16. Альберт Эйнштейн. К теории связи гравитации и электричества Калуцы II. (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966)

17. Альберт Эйнштейн, В. Баргман, П. Бергман. О пятимерном представлении гравитации и электричества (см. Альберт Эйнштейн. Собрание научных трудов. Т.

2. - М., Наука, 1966 статья 121).

18. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966, статья 122.

19. A. Einstein, P. Bergmann. Generalization of Kaluza’s Theory of Electricity// Ann. Math., ser. 2, 1938, 39, 683-701 (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. -М., Наука, 1966)

20. Einstein A., Pau1i W.— Ann of Phys., 1943, v. 44, p. 131. (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966, статья 123).

21. Ю. Б. Румер. Исследования по 5-оптике. - М., Гостехиздат,1956. 152 с.

22. V. Dzhunushaliev. Wormhole solutions in 5D Kaluza-Klein theory as string-like objects// arXiv:gr-qc/0405017v1

23. Vladimir Zelevinsky. Quantum Chaos and nuclear structure// Physica E, 9, 450-455, 2001.

24. Alexander P. Trunev. Binding energy bifurcation and chaos in atomic nuclei//

Политематический сетевой электронный научный журнал Кубанского

государственного аграрного университета (Научный журнал КубГАУ)

[Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №05(79). С. 403 - 413. -Режим доступа: http://ej.kubagro.ru/2012/05/pdf/28.pdf, 0,688 у.п.л.

Appendix

Source code for calculating the Weiszacker model parameters in Table 2:

Do[ model = av - 17.23*(Z + x)A(-1/3) + ac*(Z*Z)*(Z + x)A(-4/3) + aA*((x - Z)A2)*(Z + x)A(-2);

Eb = Table[IsotopeData[#, prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@ IsotopeData[Z]; nlm = FindFit[Eb, model, {{ av, 15.5}, {ac, -.628528}, {aA, -22.03}}, x]; Print[Z, nlm], {Z, 1, 118}]

Source code for the comparison of three models - Fig. 1:

Z = 78; k = 0.000049;

Eb = Table[IsotopeData[#, prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@ IsotopeData[Z]; nlm = NonlinearModelFit[Eb, a + b*(x*x/(Z*1. + x))*((xA2 + 1)*(1 + k*(g*x)A2))A(-.5) , {a, b, g}, x]; nlm1 = NonlinearModelFit[Eb, av - 17.23*(Z + x)A(-1/3) - ac*(Z*Z)*(Z + x)A(-4/3) - aA*((x - Z)A2)*(Z + x)A(-2) , {av, ac, aA}, x]; nlm2 = NonlinearModelFit[Eb, a2 + b2*(x/(Z*1. + x))*(-Log[x/(Z*1. + x)] + g2) , {a2, b2, g2}, x];

Show[ListPlot[Eb], Plot[{nlm[x], nlm1[x], nlm2[x]}, {x, 1., 180.}, PlotStyle -> {Red, Green, Blue}], Frame -> True,

FrameLabel -> {N, "Eb/A, MeV"}]

Source code for calculating the Weiszacker model parameters depending on the number of protons (Fig. 2):

par = {0.}; para = {0.}; parc = {0.}; RSq = {1.}; MaxEr = {0.};

Do[ Eb = DeleteCases[Table[IsotopeData[#,prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@

IsotopeData[Z], {_, Missing["Unknown"]}];

nlm = NonlinearModelFit[Eb, av - 17.23*(Z + x)A(-1/3) - ac*(Z*Z)*(Z + x)A(-4/3) - aA*((x - Z)A2)*(Z + x)A(-2) , {av, ac, aA}, x];

RSq = {RSq, nlm["RSquared"]} // Flatten;

MaxEr = {MaxEr, Last[Sort[nlm["MeanPredictionErrors"]]]} // Flatten;

para = {para, av /. nlm["BestFitParameters"]} // Flatten;

parc = {parc, ac /. nlm["BestFitParameters"]} // Flatten;

par = {par, aA /. nlm["BestFitParameters"]} // Flatten, {Z, 2, 112}]

ListPlot[par, Filling -> Axis, AxesLabel -> {Z, aA},

ImageSize -> {200, 200}] ListPlot[para, Filling -> Axis,

AxesLabel -> {Z, av}, ImageSize -> {200, 200}] ListPlot[parc,

Filling -> Axis, AxesLabel -> {Z, ac}, ImageSize -> {200, 200}]

ListPlot[RSq, Filling -> Axis, AxesLabel -> {Z, "RSquared"},

ImageSize -> {300, 300}, DataRange -> Automatic] ListPlot[MaxEr,

Filling -> Axis, AxesLabel -> {Z, "MaxError"},

ImageSize -> {300, 300}, DataRange -> Automatic]

Source code for calculating the Weiszacker model parameters depending on the number of neutrons (Fig. 5):

par = {.0}; para = {.0}; parc = {.0};

Do[model = av - 17.23*(nn + x)A(-1/3) - ac*(x*x)*(nn + x)A(-4/3) -aA*((x - nn)A2)*(x + nn)A(-2) ;

Eb = Drop[

Cases[DeleteCases[

Table[{a - z, z, IsotopeData[{z, a}, "BindingEnergy"]}, {z, 1,

118}, {a,

IsotopeData[#, "MassNumber"] & /@ IsotopeData[z]}], {_,

Missing["Unknown"]}] // Flatten[#, 1] &, {nn, _, _}],

None, {1}];

nlm = FindFit[Eb, model, {{ av, 15.5}, {ac, 0.628528}, {aA, 22.03}}, x]; para = {para, av /. nlm} // Flatten; parc = {parc, ac /. nlm} // Flatten; par = {par, aA /. nlm} // Flatten, {nn, 2, 175}]

ListPlot[par, Filling -> Axis, AxesLabel -> {N, aA}]

ListPlot[para, Filling -> Axis, AxesLabel -> {N, av}]

ListPlot[parc, Filling -> Axis, AxesLabel -> {N, ac}]

Source code for calculating the dependence of 5D model parameters on the number of protons (Fig. 3):

par = {0.}; para = {0.}; parc = {0.}; RSq = {1.}; MaxEr = {0.};

Do[ Eb = DeleteCases[Table[IsotopeData[#, prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@

IsotopeData[Z], {_, Missing["Unknown"]}]; nlm = NonlinearModelFit[Eb, a + b*(x*x/(Z*1. + x))*((xA2 +1)*(1 + (0.9592/ZA2.209)*(g*x)A2))A(-.5), {a, b, g}, x]; para = {para, -a /. nlm["BestFitParameters"]} // Flatten;

RSq = {RSq, nlm["RSquared"]} // Flatten;

MaxEr = {MaxEr, Last[Sort[nlm["MeanPredictionErrors"]]]} // Flatten;

parc = {parc, b /. nlm["BestFitParameters"]} // Flatten;

par = {par, gA2 /. nlm["BestFitParameters"]} // Flatten, {Z, 2, 110}]

ListPlot[par, Filling -> Axis, AxesLabel -> {Z, "g"}, ImageSize -> {200, 200}, PlotRange -> {0.8, 1.2}] ListPlot[para,

Filling -> Axis, AxesLabel -> {Z, "a"}, ImageSize -> {200, 200}] ListPlot[parc, Filling -> Axis,

AxesLabel -> {Z, "b"}, ImageSize -> {200, 200}]

ListPlot[RSq, Filling -> Axis, AxesLabel -> {Z, "RSquared"}, ImageSize -> {200, 200}, DataRange -> Automatic] ListPlot[MaxEr,

Filling -> Axis, AxesLabel -> {Z, "MaxError"},

ImageSize -> {200, 200}, DataRange -> Automatic]

Source code for calculating the dependence of 5D model parameters on the number of neutrons (Fig. 6):

par = {0.};para = {0.};parc = {0.};RSq = {0.};MaxEr = {0.};

Do[ Eb = Drop[ Cases[DeleteCases[

Table[{a - z, z, IsotopeData[{z, a}, "BindingEnergy"]}, {z, 1,118}, {a, IsotopeData[#, "MassNumber"] & /@ IsotopeData[z]}], {_,Missing["Unknown"]}] // Flatten[#, 1] &, {nn, _, _}], None, {1}];

nlm = NonlinearModelFit[Eb, a + b*(x* x/(nn*1. + x))*((xA2 + 1)*(1 + (0.0025 - 0.0003*Log[nn])*(g*x)A2))A(-.5), {a, b, g}, x]; para = {para, -a /. nlm["BestFitParameters"]} // Flatten;

RSq = {RSq, nlm["RSquared"]} // Flatten;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

MaxEr = {MaxEr, Last[Sort[nlm["MeanPredictionErrors"]]]} // Flatten;

parc = {parc, b /. nlm["BestFitParameters"]} // Flatten;

par = {par, g /. nlm["BestFitParameters"]} // Flatten, {nn, 2, 102}]

ListPlot[par, Filling -> Axis, AxesLabel -> {N, "g"},

ImageSize -> {200, 200}] ListPlot[para, Filling -> Axis,

AxesLabel -> {N, "a"}, ImageSize -> {200, 200}] ListPlot[parc,

Filling -> Axis, AxesLabel -> {N, "b"}, ImageSize -> {200, 200}]

ListPlot[RSq, Filling -> Axis, AxesLabel -> {N, "RSquared"},

ImageSize -> {200, 200}, DataRange -> Automatic] ListPlot[MaxEr,

Filling -> Axis, AxesLabel -> {N, "MaxError"},

ImageSize -> {200, 200}, DataRange -> Automatic]

i Надоели баннеры? Вы всегда можете отключить рекламу.