Научная статья на тему 'WATER RESERVOIR DESIGN USING DIGITAL ELEVATION MODELS'

WATER RESERVOIR DESIGN USING DIGITAL ELEVATION MODELS Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
84
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GIS and RS / DEM / water reservoir / storage volume / surface area / ГИС и ДЗ / ЦМР / водоем / объем хранилища / площадь поверхности

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Bakiev M.R., Khasanov Kh

In this research work, the surface area and storage volume for each contour were analyzed simultaneously with the definition of the area and volume of the reservoir from a digital model of the projected Shurbulak reservoir (recommended to construction in the Republic of Karakalpakstan), obtained using remote sensing using one of the programs of the Geographic Information System Global Mapper. In order to calculate the maximum water capacity of the reservoir, the relief was studied in-depth, covered with dams where necessary and several surface areas were analyzed using dams of different contours. And for maximum water collection, dam crosses-section was constructed at 3 locations (No1, No2 and No3 dams) of the relief, and the area where these dam crosses-sections were combined with contour 124 was accepted as the most optimal option. The analysis showed that the maximum water collection will be possible when the mark is 122.5m above sea level, above which 4 dams will have to be built. When the mark is 122.5 m, the area will be 321.24 sq. km. the volume will exceed 3.6 billion cubic meters. These results obtained by the proposed method correspond to the results obtained using the geodetic tablet of UzGIP.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

В данной статье были анализированы площадь и объем по каждому контуру одновременно с определением площади и объема водохранилища с цифровой модели проектируемого Шурбулакского водохранилища, полученного с помощью ДЗ с использованием одной из программ Геоинформационной системы Global Mapper. Чтобы рассчитать максимальную водоемкость водохранилища, рельеф был глубоко изучен, при необходимости перекрыт дамбами, и несколько участков поверхности были проанализированы с использованием плотин разного контура. А для максимального водозабора в 3 точках рельефа (плотины №1, №2 и №3) были построены створ плотин, и участок совмещения этих створов плотин с контуром 124 был принят как наиболее оптимальный вариант. Анализ показал, что максимальный сбор воды будет возможен при отметке 122,5 м над уровнем моря, выше которой необходимо будет построить четвертую плотину. При отметке 122,5 м площадь составит 321,24 кв. км. объём превысит 3,6 миллиарда кубометров. Эти результаты, полученные по предлагаемой методике, соответствуют результатам, полученным с помощью геодезического планшета УзГИП.

Текст научной работы на тему «WATER RESERVOIR DESIGN USING DIGITAL ELEVATION MODELS»

UDK: 528.931:004.9 Bakiev M.R., Khasanov Kh.

WATER RESERVOIR DESIGN USING DIGITAL ELEVATION MODELS

Bakiev M.R. - Doctor of technical sciences, professor; Khasanov Kh. - assistent (Tashkent Institute of Irrigation and Agricultural Mechanization Engineers)

In this research work, the surface area and storage volume for each contour were analyzed simultaneously with the definition of the area and volume of the reservoir from a digital model of the projected Shurbulak reservoir (recommended to construction in the Republic of Karakalpakstan), obtained using remote sensing using one of the programs of the Geographic Information System - Global Mapper. In order to calculate the maximum water capacity of the reservoir, the relief was studied in-depth, covered with dams where necessary and several surface areas were analyzed using dams of different contours. And for maximum water collection, dam crosses-section was constructed at 3 locations (No1, No2 and No3 dams) of the relief, and the area where these dam crosses-sections were combined with contour 124 was accepted as the most optimal option. The analysis showed that the maximum water collection will be possible when the mark is 122.5m above sea level, above which 4 dams will have to be built. When the mark is 122.5 m, the area will be 321.24 sq. km. the volume will exceed 3.6 billion cubic meters. These results obtained by the proposed method correspond to the results obtained using the geodetic tablet of UzGIP.

Key words: GIS and RS, DEM, water reservoir, storage volume, surface area.

В данной статье были анализированы площадь и объем по каждому контуру одновременно с определением площади и объема водохранилища с цифровой модели проектируемого Шурбулакского водохранилища, полученного с помощью ДЗ с использованием одной из программ Геоинформационной системы - Global Mapper. Чтобы рассчитать максимальную водоемкость водохранилища, рельеф был глубоко изучен, при необходимости перекрыт дамбами, и несколько участков поверхности были проанализированы с использованием плотин разного контура. А для максимального водозабора в 3 точках рельефа (плотины №1, №2 и №3) были построены створ плотин, и участок совмещения этих створов плотин с контуром 124 был принят как наиболее оптимальный вариант. Анализ показал, что максимальный сбор воды будет возможен при отметке 122,5 м над уровнем моря, выше которой необходимо будет построить четвертую плотину. При отметке 122,5 м площадь составит 321,24 кв. км. объём превысит 3,6 миллиарда кубометров. Эти результаты, полученные по предлагаемой методике, соответствуют результатам, полученным с помощью геодезического планшета УзГИП.

Ключевые слова: ГИС и ДЗ, ЦМР, водоем, объем хранилища, площадь поверхности.

Introduction. Nowadays, accelerated development of the national economy, including water management, hydrotechnical construction in market conditions for representatives of any sphere, it is important to obtain accurate information about the geographical location of a particular object in a short time. The geographic information system (GIS) technologies, which emerged in the 60s of the last century, are now becoming an integral part of many industries.

GIS - managed by analytic specialists, consisting of collecting, managing, analyzing, modeling and displaying spatial and geographical data, arising from the combination of the subjects of mathematics, computer science and geography [1].

It is difficult to imagine the effective work of modern GIS without satellite methods for studying regions of our planet. Remote sensing (RS) is a scientific direction, which is based on the collection of information about the Earth's surface without practical contact with it, the obtained data on the energy reflected by objects can subsequently be processed, analyzed and used in practice. Now in the world in the industry of water resources management and their use, GIS and remote sensing are

widely used, including when obtaining hydrological, morphological and hydro meteorological data of the world's oceans, seas, lakes, rivers, reservoirs and other bodies of water using remote sensing [3].

The application of remote sensing methods to extract DEM from satellite images instead of direct measurement techniques has become a trend. DEM is the digital image of Earth elevation with respect to any coordinate system, the simplest form and digital characteristics of the topographical surface, it can be used in determining detentions and uplands at any point of earth, creating 3D models of the earth surface, obtaining hydrological and geological analysis, surveying natural resources, managing agriculture. Nowadays remote sensing satellites, in addition, to their high temporal and spatial resolutions, low-cost production compared to direct measurements. DEMs produced from these sources vary in cost, accuracy, availability, and sampling density[1,5]. With the help of a digital elevation model, the following operations can be carried out: obtain morphometric data at any point (elevation, angle, slopes) of the relief in the shortest possible time, in a short time analyze and their influence on the relief, create an appropriate terrain map, create contours (contours), create a transverse profile of the relief with straight and broken lines, analyze the water flow and determine water bodies, calculate the volume and area of water, calculate the volume, create a 3D relief model, create video images on the relief surface (in the virtual reality system), the ability to change the relief with the addition of new data and other. SRTM - The first disposable SAR (synthetic aperture radar) interferometer in space was launched after a short delay aboard the Space Shuttle Endeavor (STS-99), and on February 11, 2000, two modified antenna synthetic aperture radar systems were operated. , Was a joint project of the U.S. Department of Defense's National Aerospace and Space Administration, the National Geographic Intelligence Agency. Equipped with a set of SRTM C-band and X-Band synthetic aperture radars, it allows the development of a consistent and accurate global digital ground model and topographic maps of all land surfaces from + 60 to -56 latitude, and this has been successful achieved. SRTM DEM data has a horizontal resolution of 1 arc per second and a vertical resolution of 10 m. The level and resolution of data processing will be of three types across the SRTM Data Products: The first, Version 1 (2003-2004) is almost the raw data, processed from raw C-band radar signals spaced at intervals of 1 arc-second non-void filled elevation data. The second, Version 2.1 (~2005) is an edited version of v1, Void Filled elevation data are the result of additional processing to address areas of missing data or voids in the SRTM Non-Void Filled collection. The third, Version 3 (2013), also known as SRTM Plus, 1 Arc-Second Global elevation data offer worldwide coverage of void-filled data at a resolution of 1 arc-second (30 meters) [6].

Methodology. In this research work, the area and volume for each contour were analyzed simultaneously with the definition of the area and volume of the reservoir from a digital model of the projected Shurbulak reservoir (recommended to construction in the Republic of Karakalpakstan), obtained using remote sensing using one of the programs of the Geographic Information System - Global Mapper.

The Global Mapper program is a program of the Blue Marble Geographics innovative mapping software company, is one of the GIS programs, it is now widespread and differs from other GISs by the ability to enter the global database, the simplicity and convenience of the software interface, the existence of the Global Mapper program Mobile and the ability to download GPS data to the program. One of the features of the Global Mapper program is the ability to load files of different formats and sizes into the program. It is possible to directly online - download more than 300 types of necessary documents and head files from a global database into the program, such as ESRI, KML, LiDAR, MrSID, SRTM, using this data, you can carry out the following work: the development of topographic maps in 2D and 3D format, geo-linking maps, determination of distance and area, measurement of depressions and elevations, development of terrain contours, calculation of volumes (filled and cut), calculation of volume between two surfaces, development of formation of reservoir tributaries, consideration of simulation of changes in the water level of terrain, use of raster and calculators, use of NDVI ( vegetation) and NDWI (water), use Lidar

Module functions, edit head files with Digitizer prescription, export data to a larger format than other GIS programs[1,2].

In the research work, DEM data of the region of Shurbulak reservoir downloads from the provide data with high accuracy from the online database - Opentopology. And the total volume of the reservoir, the volume for each contour and surface calculated, based on the capabilities of the Global Mapper program. (fig. 1.)

Figure 1. Digital elevation model of the Shurbulak reservoir (obtained from the website opentopo.sdsc.edu/raster, accuracy 30 meters).

The digital model of the water reservoir is used to study terrain data: the coordinates of the reservoir location, the highest and lowest points from sea level, slopes, primary data on the length and height of dams designed for maximum water storage volume and area, profiles along the sections of dams designed for maximum water accumulation.

In the article, in order to calculate the maximum water capacity of the reservoir, the relief was studied in-depth, covered with dam dams where necessary and several surface areas were analyzed using dam dams of different contours. And for maximum water collection, dam crosses-section was constructed at 3 locations of the relief, and the area where these dam crosses-sections were combined with contour 124 was accepted as the most optimal option.

Figure 2. 124th contour of the reservoir relative to sea level and dam site No. 1, No. 2 and No. 3

Results and discussions. With the help of the generated surface area, it will be possible to determine the area and volume of water less than the desired mark (... <124m). With the help of the generated surface area, it will be possible to determine the area and volume of water less than the desired mark (... <124m). Use the ground height at the boundary (measured pile size) - defines the size and area between the created surface and the digital model. Use Height from Terrain Surface at Boundary (Meassure Pile Volume) - Specifies the area and volume of each interval depending on the input interval (step size) between the two heights. For example, if you enter a range of 75 to 122.5 and a range of 1m, then you can calculate 49 surfaces and volumes from 75 to 122.5. (Fig. 3)

BASEJHBGKT ClFT_VOLUME CUT_AREA CUT_AREA_3D FIH_VOLUME FIL1_AREA FILL_AREA_3D

75 m 13392181552 oibic meters 358,06 sq km 358,18 sqkm 0 cubic meters 0 sq km 0 sq km

76 m 13034417113 cubic meters 358.06 sq km 358.18 sqkm 0 cubic meters 0 sq km 0 sq km

77 m 12676352781 cubic meters 358,06 sq km 358,18 sqkm 110.93182 cubic meters 0,0002577 sqkm 0.0002616 sq km

78 m 12318292543 cubic meters 358.05 sq km 358.47 sqkm 4309.1819 cubic meters 0.00902 sq km 0.00903 sqkm

79 m 11960254711 cubic meters 358,01 sq km 358,43 sqkm 30916,248 cubic meters 0,04716 sq km 0.04723 sq km

80 m 11602283119 cubic meters 357.92 sq km 358.34 sqkm 123763.74 cubic meters 0.1417 sqkm 0.1419 sqkm

81m 11244438431 cubic meters 357,75 sq km 358,17 sq km 313515,63 cubic meters 0,2945 sqkm 0.2949 sqkm

82 m 10886772597 cubic meters 357.55 sq km 357.97 sqkm 742121.52 cubic meters 0.4909 sqkm 0.4915 sqkm

83 m 10529361271 cubic meters 357,23 sq km 357,65 sqkm 1395235,1 cubic meters 0,798 sqkm 0.799 sqkm

84 m 10172333074 cubic meters 356,74sq km 357,16 sq km 2431477,6 cubic meters 1,264 sqkm 1.266 sq km

85 m 9815971826 cubic meters 355.79 sq km 356.21 sqkm 4131668.3 cubic meters 2.139 sqkm 2.141 sqkm

86 m 9460861755 cubic meters 354,16 sq km 354,58 sq km 7089036,9 cubic meters 3,693 sqkm 3.697 sq km

87 m 9107665527 cubic meters 351.81 sq km 352.23 sqkm 11957219 cubic meters 5.912 sqkm 5.918 sq km

88 m 8757253069 cubic meters 348,24sq km 348,65sqkm 19609230 cubic meters 9,175 sq km 9.184 sqkm

89 m 8410928535 cubic meters 343.51sq km 343.92 sqkm 31349136 cubic meters 13.702 sqkm 13.714sq km

90 m 8069409201 cubic meters 339,01sq km 339,41 sqkm 47894241 cubic meters 18,182 sqkm 18,198 sqkm

91 m 7732152290 cubic meters 335.04sq km 335.44 sqkm 68701769 cubic meters 22.519 sqkm 22.539 sqkm

92 m 7398659142 cubic meters 331,69 sq km 332,09 sqkm 93273061 cubic meters 26,078 sqkm 26,101 sqkm

93 m 7068260510 cubic meters 328.84sq km 329.23 sqkm 120938868 cubic meters 28.94 sqkm 28.967 sqkm

94 m 67407180 50 cubic meters 325,91sqkm 326,3sqkm 151490848 cubic meters 31,899 sqkm 31,929 sqkm

95 m 6416152865 cubic meters 323.07sq km 323.16 sqkm 184960103 cubic meters 34.789 sqkm 34.823 sqkm

96 m 6094376391 cubic meters 320,3sq km 320,68 sqkm 221218069 cubic meters 37,591 sqkm 37,629 sqkm

97 m 5775377223 cubic meters 317,49 sq km 317,87 sqkm 260313339 cubic meters 40,353 sqkm 40,396 sqkm

98 m 5459200780 cubic meters 314.67 sq km 315.05 sqkm 302201337 cubic meters 43.215 sqkm 43.262 sqkm

99 m 5145894043 cubic meters 311,77 sq km 312,14 sqkm 316959039 cubic meters 46,1 sqkm 16,152 sqkm

100 m 1835542794 cubic meters 308.77sq km 309.13 sq km 394672229 cubic meters 49.113 sqkm 49.17 sqkm

101 m 4528214302 cubic meters 305,63sq km 305,99 sqkm 415438177 cubic meters 52,25 sqkm 52,312 sqkm

102 m 4224154701 cubic meters 302.3 sq km 302.65 sqkm 499413015 cubic meters 55.549 sqkm 55.616 sqkm

103 m 3923547359 cubic meters 298,61sq km 298,96 sqkm 556870113 cubic meters 59,181 sqkm 59,257 sqkm

104 m 3626815904 cubic meters 294.53 sq km 294.88 sqkm 618203097 cubic meters 63.235 sqkm 63.314 sqkm

105 m 3334342489 cubic meters 290,06sq km 290,4sqkm 683794122 cubic meters 67,679 sqkm 67,764sq km

106 m 3046434115 cubic meters 285.37sq km 285.7 sq km 753950187 cubic meters 72.352 sqkm 72.444sq km

107 m 2763364757 cubic meters 280,34sq km 280,66 sq km 828945269 cubic meters 77,33 sqkm 77,428 sqkm

10S m 2485695263 cubic meters 274,4 sq km 274,72 sqkm 909310214 cubic meters 83,153 sq km 83,259 sqkm

109 m 2211439474 cubic meters 267.36 sq km 267.67 sqkm 996118865 cubic meters 90.061 sqkm 90.179 sqkm

110 m 1950950188 cubic meters 258,63 sq km 258,93 sqkm 1090721018 cubic meters 98,623 sqkm 98,748 sqkm

111 m 1697064316 cubic meters 247.88 sq km 248.16 sq km 1194902586 cubic meters 109.15 sqkm 109.29 sqkm

112 m 1455132945 cubic meters 234.47 sq km 234,74 sqkm 1311035654 cubic meters 122.36 sq km 122,52 sqkm

113 m 1227875527 cubic meters 218.28 sq km 218.53 sqkm 1141842676 cubic meters 138.3 sqkm 138.47 sqkm

114 m 1018313595 cubic meters 198,99 sqkm 199,22 sqkm 1590345183 cubic meters 157.41 sq km 157,6 sq km

115 m 829111594 cubic meters 177.38 sq km 177.59 sqkm 1759207622 cubic meters 178.81 sq km 179.02 sqkm

116 m 662075031 cubic meters 154,64 sqkm 154,83 sqkm 1950235498 cubic meters 201.43 sqkm 201,67 sqkm

117 m 517725385 cubic meters 132.44 sqkm 132.6 sqkm 2163950292 cubic meters 223.9 sqkm 224.16 sqkm

118 m 394790531 cubic meters 111,97 sqkm 112,11 sqkm 2399079877 cubic meters 244.48 sq km 244,76 sqkm

119 m 291538022 cubic meters 93.29 sq km 93.405 sqkm 2653891807 cubic meters 263.37 sqkm 263.67 sqkm

120 m 206329372 cubic meters 75,988 sq km 76.083 sq km 2926747598 cubic meters 280.79 sq km 281,12 sqkm

121 m 137941809 cubic meters 59,776 sqkm 59.85 sqkm 3216424473 cubic meters 297.19 sqkm 297,53 sqkm

122 m 85575692cubic meters 43.884sqkm 43.938 sq km 3522122796 cubic meters 313.11 sqkm 313.47 sqkm

| Copy to Clipboard... | [ Close ]

Figure 3. Surface and volume between contours from 75 to 122.5 (per 1m)

Based on the results obtained, a correlation curve between elevation and surface, elevation and volume was constructed.

a) F=f(H) b) W=f(H)

Figure 4. Curve of the relationship between elevation and area (a), elevation and volume (b).

Another feature of the program is the Show path details command, in which we can draw a target and look at the contour of the alignment. By creating cross-sections of the dams using the Path Profile command, you can find out the length of the dam, the average height, and using the Show path details function in the Path Setup menu, can be getting other data about the dams. (Fig. 5-7)

Figure 5. Cross-section of dan No1

Figure 6. Cross-section of dan No2

Figure 7. Cross-section of dan No3

Conclusion. Figures 4 and 8 show a graph of the relationship between the volume of the Shurbulak reservoir along the contours (horizontal lines) based on materials obtained using remote sensing and Geographic Information Systems. As you can see, the results obtained by the proposed method

correspond to the results obtained using the geodetic tablet of UzGIP.

0 O.S 1 1.5 2 2,5 3 3,5 4 4,5 Volume, milrd m ' -Till AME -UzGIP

Figure 8. W=f(H). Curve of the relationship between elevation and volume (results of TIIIAME and

UzGIP)

REFERENCES

1. K. Khasanov, "Evaluation of ASTER DEM and SRTM DEM data for determining the area and volume of the water reservoir," IOP Conf. Ser. Mater. Sci. Eng., vol. 883, no. 1, 2020, [Online]. Available: https://iopscience.iop.org/article/10.1088/1757-899X/883/17012063/pdf.

2. K. Khasanov, Руководство по определению площади и объема водохранилища с

использованием геоинформационных технологий и дистанционного зондирования. 2020.

3. O. Darkwah, M. D. Scoville, and L. K. Wang, "Geographic Information Systems and Remote Sensing Applications in Environmental and Water Resources," in Integrated Natural Resources Management, L. K. Wang, M.-H. S. Wang, Y.-T. Hung, and N. K. Shammas, Eds. Cham: Springer International Publishing, 2021, pp. 197-236.

4. M. N. Gebeyehu, "Remote Sensing and GIS Application in Agriculture and Natural Resource Management," Int. J. Environ. Sci. Nat. Resour., vol. 19, no. 2, 2019, doi: 10.19080/ijesnr.2019.19.556009.

5. C. Abdallah, "Application of remote sensing and geographical To cite this version : HAL Id : tel-00800759 PARIS 6 Mémoire des Sciences de la Terre Présenté par," p. 10, 2013.

6. K. G. Nikolakopoulos, E. K. Kamaratakis, and N. Chrysoulakis, "SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece," Int. J. Remote Sens., 2006, doi: 10.1080/01431160600835853.

УУК 556.536 Арифжанов А.М., Самиев Л.Н., Хазратов А.Н.

ОЧИЦ УЗАНЛАРДА ЛОЙЦАЛИ ОЦИМЛАР ^АРАКАТИНИ ГИДРАВЛИК МОДЕЛЛАШТИРИШ МАСАЛАЛАРИ

Арифжанов А.М. - т.ф.д.,профессор; Самиев Л.Н. - т.ф.ф.д., доцент (ТИКХММИ); Хазратов А.Н. - т.ф.ф.д.; (КарМИИ)

Аннотация: При моделировании гидравлических и гидрологических процессов выявление критериев подобия и реализация моделирования на их основе являются актуальной задачей. В этой статье предлагаются новые критерии для моделирования для моделирования процессов с целью повышения надежности результатов моделирования мутных потоков.

Ключевые слова:: моделирование движения мутных течений, теория подобия, геометрическое, кинематическое и динамическое подобие, критерий гидравлического сопротивления.

In the modeling of hydraulic and hydrological processes, the identification of similarity criteria and the implementation of modeling based on them is an urgent task. This paper proposes new modeling criteria for process modeling to increase the reliability of results in modeling turbid flows.

Key words. modeling the motion of turbid currents, similarity theory, geometric, kinematic and and dynamic similarity, flow resistance criterion.

Гидротехник иншоотларда, узанларда, кувурларда, каналларда юзага келадиган гидравлик жараёнларни бах,олашда моделлаштириш услубларидан кенг фойдаланиб келинмокда. Маълумки жараёнларни физик моделлаштиришда моделдаги оким хдракати конуниятлари натурадаги конуниятларга мос келиши керак. Буни амалга ошириш учун маълум мезонларга амал килишга тугри келади. Бу мезонлар ухшашлик назарияси асосида аникланади. Х,озирги замон моделлаштириш методлари И.Ньютон томонидан (1686) яратилган ухшашлик конунларига асосланган. И.Ньютон назарияси асосида физик ухшаш жараёнларда барча геометрик элементлар, тезликлар, кучлар нисбати бир хил булиши керак [1,2].

Шундай конуниятлардан бири гидродинамик ухшашлик конуни дейилади. Гидродинамик ухшашлик асосини геометрик, кинематик ва ва динамик ухшашлик ташкил килади. Юкоридагилардан келиб чикиб, иккита системада бир хил физик жараёнлар акс эттирилса, бу системалар ухшаш дейилади. У х,олда улардан бирини "модел" иккинчисини асл нусха - "натура" деб атаймиз ва бу системалар бир-бири билан ухшашлик

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.