ИЗВЕСТИЯ ВУЗОВ. ПРИКЛАДНАЯ ХИМИЯ И БИОТЕХНОЛОГИЯ Том 7 N2 2017
ХИМИЧЕСКИЕ НАУКИ / CHEMICAL SCIENCES Оригинальная статья / Original article УДК 541.123.3
DOI: 10.21285/2227-2925-2017-7-2-9-15
ВЗАИМОДЕЙСТВИЕ КОМПОНЕНТОВ В ВОДНОЙ СИСТЕМЕ С УЧАСТИЕМ ДИКАРБАМИДОХЛОРАТА КАЛЬЦИЯ И ФОСФАТА КАРБАМИДА
© Ш.Ш. Хамдамова
Институт общей и неорганической химии Академии наук Республики Узбекистан, Республика Узбекистан, 100170,г.Ташкент, ул. Мирзо-Улугбека, 77-а.
Рассмотрены вопросы взаимного поведения компонентов в тройной водной системе с участием дикарбамидохлората кальция и фосфата мочевины визуально-политермическим методом в широком интервале температур и концентраций. На основе полученных данных построена политермическая диаграмма растворимости системы на прямоугольном треугольнике от эвтектической точки замерзания до 30 0С. Поверхность ликвидуса разделена на четыре части, которые соответствуют полям кристаллизации льда, дикарбамидохлората кальция, фосфата мочевины и соединения состава Ca(H2PO4)(ClO3)CO(NH2)2. Соединение было выделено из предполагаемой области кристаллизации и идентифицировано методами химического, термографического и ИК-спектроскопического анализа. Благодаря хорошей растворимости исходных компонентов в системе наблюдается незначительное высаливающее действие дикарбамидохлората кальция и фосфата мочевины на соединение состава Ca(H2PO4)(ClO3)CO(NH2)2. Ключевые слова: растворимость, тройная система, дикарбамидохлорат кальция, фосфат мочевины, политерма, идентификация, высаливающее действие.
Формат цитирования: Хамдамова Ш.Ш. Взаимодействие компонентов в водной системе с участием дикарбамидохлората кальция и фосфата карбамида // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7, N 2. С. 9-15. DOI: 10.21285/2227-2925-2017-7-2-9-15
INTERACTION OF COMPONENTS IN WATER SYSTEM WITH CALCIUM DI-UREA-CHLORATE AND UREA PHOSPHATE
© Sh.Sh. Khamdamova
Institute of General and Inorganic Chemistry of Uzbek Academy of Science, 77a, Mirzo-Ulugbek St., Tashkent, 100170, Uzbekistan
In this article the mutual behavior of components in triple water system with participation of calcium di-urea-chlorate and urea phosphate in wide interval of the temperature and concentration have been studied by the visual-polythermyc method. Based on data obtained, the polythermic diagram of solubility of the system on right-angled triangle from eutectic freezing point till 30 0C has built. Surface of liquidus is divided into four parts, which correspond to the fields of crystallization of ice, calcium di- urea-chlorate, urea phosphate and compound with Ca(H2PO4}(ClO3)CO(NH2}2 composition. The compound was precipitated from supposed area of crystallization and was identified by the methods of chemical, thermographic and IR-spectroscopic analysis. Due to good solubility of initial components the insignificant salting-out effect of calcium di-urea-calcium chlorate and urea phosphate on compound containing Ca(H2PO4)(ClO3) CO(NH2}2 is observed in the system.
Keywords: solubility, triple system, calcium di-urea-chlorate, urea phosphate, polytherma, identification, salt action
For citation: Khamdamova Sh.Sh. Interaction of components in water system with calcium di-urea-chlorate and urea phosphate. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2017, vol. 7, no. 2, pp. 9-15. DOI: 10.21285/2227-2925-2017-7-2-9-15
INTRODUCTION
The development of a multifunctional and effective preparation for agriculture based on local raw materials is an important issue. Calcium chlorate is an inorganic defoliant that is effective in dewy and not dewy regions. Urea phosphate is a high concentrated complex fertilizer containing about 17.8% of the nitrogen and 44.9% of the phosphate anhydride. An alternative way of obtaining a polyfunctional defoliants with nutrients is a combination of defoliants with different mineral fertilizers [1].
Previously, the interaction of the above components in water systems has not been studied. For physico-chemical justification and further development of technology of calcium chlorate defoliant with active additives, we have studied the interaction of components in the system calcium di-urea-chlorate - urea phosphate - water in a wide interval of temperatures and concentrations by the visual-polythermal method [2].
MATERIALS AND METHODS
For research used calcium di-urea-chlorate was used, which was obtained by interaction of the melt of urea with calcium chlorate at a molar ratio 2:1=CO(NH2)2: Ca(ClO3)2. Urea phosphate is synthesized by reacting urea and concentrated phosphoric acid in a molar ratio 1:1 [3]. The solid phase was identified by chemical and various methods of physico-chemical analysis. To clarify the nature of the interaction between the constituent components of the synthesized compounds was carried out infrared spectroscopic analysis. The IR absorption spectra of initial components and the studied compounds were recorded on FTIR spectrophotometer, System 2000 of the company Perkin-Elmer in the frequency range 4000-400 cm-1. Samples were prepared by pressing tablets with potassium bromide [4]. Thermal analysis was recorded on derivatograph system Paulik - Paulik - Erdey [5] with heating rate 10 deg/min, the batches of the substance 179, 197 mg, with the galvanometer sensitivity, 1/5 of the DTA, DTG 1/10, TG-200, T - 900 °C. Recording was carried out under atmospheric conditions. A corundum crucible with a diameter of 10 mm without lid was served as a holder. As calcined aluminum oxide was etalon. In the quantitative analysis, well-known methods of analytical chemistry were applied. Calcium was determined by volumetric complexonmetric method [6]; chlorine-ion by argentum metric method [7].
The system Ca(ClO3)2 2CO(NH2)2 - CO(NH2)2 •
H3PO4 - H2O studied with six internal sections, of which I-III, conducted from the side of Ca(ClO3)22CO(NH2)2 - H2O to pole of CO(NH2)2H3PO4, and sections IV-VI is to the contrary from the CO(NH2)2 H3PO4 - H2O to the pole Ca(ClO3)2 2CO(NH2)2. Binary system Ca(ClO3)2 • 2CO(NH2)2-H2O is characterized by the branches of crystallization of ice and calcium di-urea-chlorate with a transition point at 15°C, in which the concentration of Ca(ClO3)22CO(NH2)2 is 46.1%. Data for the solubility of the binary system CO(NH2)2 H3PO4 - H2O fully correspond with the data of authors [8].
Based on the data of the binary systems and polythermal sections built polythermal diagram of solubility on a right triangle and polythermal projection system from eutectic freezing point of the system (-22,7 °C) to 30°C (Fig. 1-2 a, b). The surface of the polythermal liquidus of diagram is divided into four fields corresponding to the fields of crystallization of ice, urea phosphate, calcium di-urea-chlorate and compound of composition of Ca(H2PO4)(ClO3)CO(NH2)2. There have been found the two of triple points of the system are defined the temperature of crystallization and the compositions of equilibrium solutions (table).
RESULTS AND DISCUSSION
It is seen from the diagram of solubility that in the system as a new phase formed the compound Ca(H2PO4)(ClO3)CO(NH2)2. It takes up a significant portion of the solubility diagram, which indicates its lower solubility relative to other components of the system. The minimum concentration of calcium di urea chlorate leading to the formation of compounds is 10.0%, and urea phosphate is 10.8%. It is possible that the mechanism of the reaction is similar to interaction in the system Ca(ClO3)2 - CO(NH2)2 ^PO4 - H2O [9]. The compound Ca(H2PO4)(ClO3)CO(NH2)2 was isolated in the crystalline state and identified by the methods of chemical and physico-chemical analysis.
According to the thermal analysis curve of heating double water of calcium di-urea-chlorate is characterized by the presence of ten endother-mic effects at 110, 190, 243, 325, 350, 360, 370, 400, 460, 780°, with five exothermic effects at 285, 315, 446, 492 and 610°C. Effects at 110-190°C are characterized by removal surface sphere molecule of water.Calcium chlorate being in the urea compound is decomposed in NH3 and CO2 at 243°C resulting decomposition of carbamide. Moreover, exothermic peaks at 310-
Взаимодействие компонентов в водной системе...
325°C indicate on decomposition process of calcium chlorate, which continues till 400 °C. Since 400 °C and more combustion action of thermolysis with generation of CaO takes place. The total mass loss in the temperature range 60-900°C by thermogra-vimetry curve is 86,21% [Fig.3 a].
Curve on heating connection Ca(H2PO4) (ClO3)CO(NH2)2 there are the following exothermic effects at 100, 215, 311, 420, 585 and 730 °C and endothermic effects at 85, 123, 150 °C.
Tthermoeffects at 85-100°C corresponds emission of fragments of chlorates that loss of mass is 28-30%. Effects at 215-311°C are character for decomposition compound urea with emission ammonia and carbon dioxide. Following that, heating stepped decomposition of Ca(H2PO4)2 and combustion of thermolysis products takes place that thermoeffects testify increase temperature above 420°C. The total mass loss in TG is 43,26% [Fig.3 b].
Fig. 1. Polythermal solubility diagram of the system calcium di-urea-chlorate - urea phosphate - water
t,°C
30 t 27,0 / 18.0
10 \ 6.4 Ад
-8,5 -10 \ -13.0
И 6,0 -14.0 j -20 -22.7 -15,0
(Ш,),СО Н,РО,-НгО 20 40 60 Ca(C10J,-2C0(NH,),-2H,0, % mass
a b
Fig. 2. Polythermal projection of the system of calcium di-urea-chlorate - urea phosphate - water on the sides of urea phosphate - water (a) and calcium di-urea-chlorate - water (b)
Double and triple points of the system Ca(ClO3)22CO(NH2)2 - CO(NH2)2H3PO4 - H2O
Composition of the liquid phase, % temp. of cryst.0C Solid phase
Ca(ClO3)2-2CO(NH2)2 CO(NH2)2- H3PO4 H2O
46,1 - 53,9 -15,0 Ice + Ca(ClO3)22CO(NH2)2
56,0 15,2 28,8 18,0 Ca(ClO3)22CO(NH2)2+ Ca(H2PO4)(ClO3)CO(NH2)2
52,8 12,8 34,4 7,2 The same
42,0 10,7 47,3 -14,0 The same
40,0 10,9 49,1 -22,7 Ice + Ca(ClO3)22CO(NH2)2+ Ca(H2PO4)(ClO3)CO(NH2)2
35,5 13,2 51,3 -20,6 Лед + Ca(H2PO4)(ClO3)CO(NH2)2
24,2 14,8 60,8 -16,0 The same
15,0 25,0 60,0 -13,0 The same
13,9 18,9 67,2 -12,0 Ice + CO(NH2)2H3PO4 + Ca(H2PO4)(ClO3)CO(NH2)2
12,0 34,6 53,4 6,4 CO(NH2)2H3PO4 + Ca(H2PO4)(ClO3)CO(NH2)2
10,0 50,0 40,0 27,0 CO(NH2)2H3PO4 + Ca(H2PO4)(ClO3)CO(NH2)2
To identify ways and places the coordination of the molecules of the compounds studied the IR spectra of it and the source components [Fig. 4 a, b].
The IR spectrum of the urea phosphate absorption band at 3456-2927 cm-1 attributed to the valent and deformation vibrations of NH2 group. The band at 2340 and 1247 cm- relate to stretching and deformation vibrations (P-O-H) bands. Ys(H2P04) and Yas (H2P04) are observed in the absorption bands and 1079-1174 996 cm-1. The valent and deformation vibrations of groups observed in 553-482 and 1669 cm-1 respectively [10].
The IR spectrum sodium di-urea-chlorate is characterized by ys(NH2+) and Yas (NH2+) at 3389 and 3467 cm-1. The bands at 1633 and 773 cm-1 corresponds to valent and deformation vibrations
of CO group. Deformation vibrations of NH2 group
are observed at 1471 cm-1. The bands at 1155,
-1
967, 613-474 cm- correspond to the valent asymmetric, symmetric and deformation vibrations (ClO3) group [11].
The IR spectrum of the formed compound characterized by the presence of absorption bands at 2324 and 1239 cm-1, characteristic for valent and deformation vibrations of (P-O-H) group. The bands at 1635 and 567 cm-1 correspond to u(CO) and 5(CO), and the band at 1466 cm-1 and 670-619 cm-1 corresponds to vibrations of 5(NH2+). The band at 1091 cm-1 attributed to the Yas(H2P04-). To the valent symmetric, asymmetric and deformation vibrations of ClO3- are belonged to the bands at 970, 1152,
and 491 cm-1.
Взаимодействие компонентов в водной системе..
ДР. г о
20 40 60 80 100 120 140 160 180 200
---\TG
310
DTG 610 / „„„ .-*. / 780 494 . - У-....... ..
\ —адо-с»—/ —
. DTA / ; 325 370 / 350 / >43 360/
/190
110 m=116,0 mg
Т/
t,C 900
800 700 600 500 400 300 200 100
25
50
75 100
time, minutes
a b Fig. 3. Derivatograms: а - Ca(ClO3)22CO(NH2)2; b - Ca(H2PO4)(ClO3)CO(NH2)2
95.0 90 85 80 75 70 65 60 55 T 50 45 40 35 30 25 20 15 10.0
4000.0 3600 3200 2800 2400 2000
4000.0 3600 3200 2800 2400 2000
1600 1400 1200 1000 800 600 400.0
b
Fig.4. IR- spectra: a - Ca(ClO3h2CO(NH2)2; b - Ca(H2PO4)(ClO3)CO(NH2)2 ХИМИЧЕСКИЕ НАУКИ
800 1600 cm-1
400
200
000
800
600
400.0
a
26.0
24
22
20
4
T
8
6
4
2
0.0
-1
In IR compound Са(Н2Р04)(С103)С0 (NH2)2 composition relatively spectrum of starting components it is observed that fringe shift charactering Р-О-Н, СО, NH2+ and Cl03- groups apparently it is said on concern of these groups for formation of coordinating bonds of complex.
CONCLUSION
Thus, it was studied that interaction calcium di-urea-chlorate with urea phosphate in water system in a wide range of temperature and concentration. There had been revealed temperature and concentration bounds of existence of solid phases of system components and generation of complex compound Ca(H2P04)(Cl03) • C0(NH2)2, which was identified by chemical and physic-chemical analysis. As seen from results conducted by we study, above mentioned compound Ca(H2P04)(Cl03)C0(NH2)2 was formed at interaction components in triple system: Ca(Cl03)2 -C0(NH2)2H3P04 - H20 [9] и Ca(Cl03)2 •
2CO(NH2)2 - CO(NH2)2 H3PO4 - H2O as a result of the following reaction below
Ca(ClO3)2+CO(NH2)2-H3PO4^Ca(H2PO4)-
(ClO3)CO(NH2)2+HClO3 Ca(ClO3)2-2CO(NH2)2+CO(NH2b.H3PO4^ Ca(H2PO4)(ClO3)CO(NH2)2+ 2CO(NH2)2+HClO3 2HClO3^H2O+T2O2+TCl2
The IR spectrum of the compound relative to the spectra of the source components is observed shift of the bands describing P-O-N, CO, NH2+ and ClO3 - groups that, apparently, speaks about the participation of these groups in the formation of coordination bonds of the complex.
The data obtained based on study of the interaction of components in the water system with the participation of calcium di-urea-chlorate and urea phosphate, are of interest for subsequent development of technology for complex active defoliants of cotton due to the content in it of some physiologically active groups.
БИБЛИОГРАФИЧЕСКИМ СПИСОК
1. Набиев М., Тухтаев С. И др. Новые дефолианты типа УДМ // Сельское хозяйство Узбекистана. 1980.N 8. С. 18-19.
2. Трунин А.С., Петрова Д.Г. Визуально-политермический метод. Куйбышев: Куйбышевский политехнический институт, 1977. 94 с
3. Нурахметов Н.Н., Беремжанов Б.А., Ханапин К.Г. Политерма растворимости системы CO(NH2)2 - H3PO4 - H2O. // Журнал прикладной химии. 1973. Т. 46, вып. 2. С. 24052408.
4. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
5. Paulik F., Paulik J., Erdey L. der De-rivatigraf. I. Ein automatis^ registriernder. Apparat zur gleicheitigen Ausfuchrund der differensial termorgravimerischen untersuchhungen //Anal. chem.1958. V.160, N 4b. Р. 241-250.
6. Шварценбах Г., Флашка Г. Комплексо-нометрическое титрование / Пер. с нем. М.: Химия, 1970. 360 с.
7. Дорохова Е.Н., Прохорова Г.В. Аналитическая химия: физико-химические методы анализа. M.: Высш.шк., 1991. 255с.
8. Шукуров Ж.С., Аскарова М.К., Тухтаев С. Растворимость компонентов в системе NaClO3 - CO(NH2)2 - H2O // Химический журнал Казахстана. 2015. N3.C.171-174.
9. Хамдамова Ш.Ш., Тухтаев С. Изучение физико-химического взаимодействия компонентов в системе хлорат кальция - фосфат мочевины - вода // Universum: Технические науки: электрон. научн. журн. 2016. N 9(30). URL: http://7universum.com/ru/tech/archive/item /3664 (дата обращения: 27.09.2016).
10. Молодкин А.К., Эллерт Г.В., Иванова О.М., Скотникова Г.А. О соединениях карбамида с кислотами. // Журн. неорг. химии. 1967. Т.12, вып.4. С. 947-957.
11.Тарасевич Б.Н. ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 55 с.
REFERENCES
1. Nabiev M., Tukhtaev S. Novel defoliants type of UDM. Sel'skoe khozyaistvo Uzbekistana [Agriculture of Uzbekistan]. 1980, no. 8, pp. 18-19. (in Russian)
2. Trunin A.S., Petrova D.G. Visual-polythermal method. Kuibyshev, Kuibyshev Polytechnic Institute Publ., 1977, 94 p. (in Russian)
3. Nurakhmetov N.N., Beremzhanov B.A., Khanapin and K. G. Politerm solubility of the system CO(NH2)2 - H3PO4 - H2O. Zhurnal prikladnoi
khimii [Journal of applied chemistry]. 1973, vol. 46, no. 2, pp. 2405-2408. (in Russian)
4. Nakamoto K. IK-spektry i spektry KR ne-organicheskikh i koordinatsionnyh soedinenii [Infrared spectra and CD spectra of inorganic and coordination compounds]. Moscow, Mir Publ., 1991, 536 p. (in Russian)
5. Paulik F., Paulik J., Erdey L. Der Deri-vatigraf. I. Ein automatisch registriernder. Apparat zur gleicheitigen Ausfuchrund der differensial ter-
Взаимодействие компонентов в водной системе..
morgravimerischen untersuchhungen. Anal. Chem. 1958, vol. 160, no. 4b, рp. 241-250. (in German)
6. Shvartsenbah G., Flashka G. Komplek-sonometricheskoe titrovanie [Chelato-metric titration]. Moscow, Khimiya Publ., 1970, 360 p.
7. Dorokhova E.N., Prokhorova G.V. Analit-icheskaya khimiya: fiziko-khimicheskie metody analiza [Analytical chemistry: physic-chemical methods of analysis]. Moscow, Vysshaya shkola Publ., 1991, 255 p.
8. Shukurov J.S., Askarova M.K., Tukhtaev S. The solubility of components in the system NaClO3-CO(NH2)2-H2O. Khimicheskii zhurnal Kazakhstana [Chemical journal of Kazakhstan]. 2015, no. 3, pp. 171-174. (in Russian)
9. Hamdamova Sh.Sh., Tukhtayev S. Investigation of physicochemical interaction of compo-
Критерии авторства
Хамдамова Ш.Ш. выполнила экспериментальную работу, на основании полученных результатов провела обобщение и написала рукопись. Хамдамова Ш.Ш. имеет на статью авторские права и несет ответственность за плагиат.
Конфликт интересов
Автор заявляет об отсутствии конфликта интересов.
СВЕДЕНИЯ ОБ АВТОРАХ Принадлежность к организации
Шохида Ш. Хамдамова
Институт общей и неорганическойхимии Академии наук Республики Узбекистан, К.т.н., с.н.с. лаборатории «Дефолиантов» [email protected]
Поступила 27.12.2016
nents in the system of calcium chlorate - urea phosphate -water. Universum: tekhnicheskie nauki. Elektronnyi zhurnal [Universum: Technical Sciences: Electron. Scientific Journal]. 2016, no. 9(30). (in Russian) Available at: http://7univer-sum.com/ru/tech/archive/item/3664 (date of access: 27.09.2016).
10.Molodkin A., Ellert V., Ivanova O.M., Skotnikova G.A. The compounds of urea with acids. Zhurnal neorganicheskoi khimii [Journal of inorganic chemistry]. 1967, vol. 7, no. 4, pp. 947957. (in Russian)
11.Tarasevich B.N. IK spektry osnovnykh klassov organicheskikh soedinenii. [The IR spectra of the main classes of organic compounds]. Moscow, Lomonosov Moscow State University, 2012, 55 p.
Contribution
Khamdamova Sh.Sh. carried out the experimental work, on the basis of the results summarized the material and wrote the manuscript. Khamdamova Sh.Sh. have author's rights and bear responsibility for plagiarism.
Conflictofinterests
The author declare no conflict of interests regarding the publication of this article.
AUTHORS' INDEX Affiliations
Shokhida Sh. Khamdamova
Institute of Generaland Inorganic Chemistry of Uzbek Academy of Science Ph.D. (Engineering), Senior Researcher Defoliants Laboratory [email protected]
Received 27.12.2016