Научная статья на тему 'Выбор сердечников для моточных изделий импульсных источников питания'

Выбор сердечников для моточных изделий импульсных источников питания Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
2352
629
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Ковалев Николай

При разработке моточных изделий (трансформаторов, дросселей) импульсных источников питания, а также фильтров цепей питания всегда возникает вопрос: какой выбрать материал магнитопровода, какая конфигурация сердечника предпочтительна в данном изделии с учетом технических и экономических факторов? Наша статья является попыткой ответить на эти вопросы.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Выбор сердечников для моточных изделий импульсных источников питания»

Компоненты и технологии, № 1'2005

Выбор сердечников для моточных изделий

импульсных источников питания

При разработке моточных изделий (трансформаторов, дросселей) импульсных источников питания, а также фильтров цепей питания всегда возникает вопрос: какой выбрать материал магнитопровода, какая конфигурация сердечника предпочтительна в данном изделии с учетом технических и экономических факторов? Наша статья является попыткой ответить на эти вопросы.

Николай Ковалев

bec@telros.net

е-

Импульсные источники питания могут быть выполнен как с гальванической развязкой, так и без нее. Первые, как правило, содержат регулируемый или нерегулируемый инвертор или конвертор, наиболее важным моточным узлом которых является трансформатор. Исполнение трансформатора зависит от вида и режима работы инвертора или конвертора. Рассмотрим некоторые виды моточных изделий для различных видов таких преобразователей.

Нерегулируемые и регулируемые двухтактные инверторы (преобразователи постоянного напряжения в переменное) и конверторы (преобразователи постоянного напряжения в постоянное) могут быть выполнены по схеме со средней точкой (рис. 1а), по полу-мостовой (рис. 16) и мостовой (рис. 1в) схемам. В по-лумостовой схеме инвертора первичная обмотка трансформатора подключается через конденсаторы, поэтому постоянная составляющая тока (ток подмаг-ничивания) полностью отсутствует. В двух других схемах, а также в полумостовом конверторе, в котором трансформатор нагружен на выпрямитель, подмаг-ничивание сердечника полностью отсутствует только в идеальном случае — при полной симметрии схемы, при равенстве падения напряжения на открытых ключах и выпрямительных диодах и при одинаковом времени включения, выключения, восстановления об-

ратного сопротивления ключевых элементов и диодов обоих плеч. При невыполнении этих условий возможно появление некоторой постоянной составляющей, что приведет к несимметричному режиму работы сердечника трансформатора, и это обстоятельство в ряде случаев необходимо учитывать.

Поскольку сердечник трансформатора работает в сильных полях при большом размахе магнитной индукции, целесообразно выбирать так называемые «силовые» марки марганцево-цинковых ферритов, например, N87 или N97 производства фирмы Ерсоя до частоты 500 кГц или N49 фирмы Ерсоя до 1 МГц или их аналоги производства других фирм. При частоте преобразования до 30 кГц можно использовать отечественный материал М2500НМС2, а также аморфные магнитные сплавы. Применять порошковые магнитные материалы (мо-пермаллой и т. п.) нецелесообразно, так как они имеют низкое значение магнитной проницаемости и многие из них дороже ферритов. При выборе материала сердечника необходимо учитывать величину потерь в сердечнике, которая зависит от частоты и магнитной индукции и растет с увеличением обоих параметров. Сравнительные зависимости величины удельных потерь от частоты для некоторых магнитомягких материалов при магнитной индукции 0,1 Тл приведены на рис. 2.

Компоненты и технологии, № 1'2005

Рис. 2

100

Частота (кГц}

Конфигурация сердечника для двухтактных преобразователей может быть любая. Наиболее часто применяются кольцевые (тороидальные) сердечники (особенно для устройств малой и средней мощности). Трансформаторы на них при прочих равных условиях обладают минимальной индуктивностью рассеяния, что уменьшает выбросы напряжения на силовых ключах, излучение помех, снижает выходное сопротивление трансформатора. Кроме того, кольцевые сердечники дешевы. Недостатками тороидальных катушек является более высокая трудоемкость намотки, необходимость изоляции сердечника (отечественные сердечники выпускаются без покрытия, импортные — как без покрытия, так и с изоляционным покрытием, рассчитанным на определенное значение испытательного напряжения). Возможно также применение разъемных сердечников броневой и стержневой конструкции. Широко применяются отечественные сердечники типа КВ (импортные аналоги ИМ), а также Ш-образные сердечники и их модификации (отечественные Ш, импортные ЕЕ, Е1, ЕБЭ, ЕИ, ЕТБ и т. п.). Сердечники КВ (ИМ) вписываются в квадрат в плане, что удобно для размещения их на плате. Они имеют круглую катушку как с одной секцией, так и с двумя и более, удобную и технологичную в намотке. Однако из-за большей индуктивности рассеяния в некоторых случаях необходимо применять технологические усложнения в намотке, а также увеличивать демпфирующие цепи в схеме преобразователя, что в свою очередь несколько снижает КПД. Сердечники типа Б (импортные аналоги Р) подобны КВ, но круглые в плане, менее удобны при размещении на плате и применяются реже. Достаточно удобны сердечники ЕР, которые вписываются в прямоугольник (почти квадрат), имеют удобную в намотке катушку, которую сердечник закрывает со всех сторон, кроме одной, обращенной к плате. Сердечники типа ЕБЭ расположены горизонтально и имеют уменьшенную высоту. Низкопрофильные сердечники с индексами ЬР применяются в тех

случаях, когда требуется особо маленькая высота изделия. При этом часто применяются печатные обмотки в виде многослойных печатных плат. Для трансформаторов повышенной мощности и высоковольтных трансформаторов могут использоваться П-образные сердечники. Повышенная индуктивность рассеяния при высоких выходных напряжениях и маленьких токах не является большим недостатком, но зато такая конструкция с большим окном позволяет разместить высоковольтную обмотку, в которой много места занимает изоляция.

Однотактные прямоходовые конверторы выполняются в основном по одной из трех схем: с размагничивающей обмоткой (рис. 3а), без размагничивающей обмотки с рекуперацией энергии в емкость, в том числе паразитную (рис. 36), и на двух транзисторах и двух диодах по так называемой однотактной полу-мостовой схеме (рис. 3 В). В любом из этих случаев энергия от источника питания передается в нагрузку на прямом ходе, без накопления энергии в трансформаторе, в котором накапливается лишь небольшая энергия за счет тока намагничивания первичной обмотки. Рекуперация (возврат) этой энергии, при которой происходит размагничивание трансформатора, в каждой из схем происходит по-разному.

В первом случае для этого служит размагничивающая обмотка, и при разработке трансформатора необходимо обеспечить максимально возможную связь между нею и первичной обмоткой, учитывая при этом рабочее напряжение. Во втором — рекуперация происходит в емкость, и на обмотке во время обратного хода возникает выброс значительной величины, который необходимо учитывать при выборе элементов схемы и при проектировании трансформатора. В третьем случае рекуперация энергии происходит в источник питания через открывающиеся рекупераци-онные диоды, причем через ту же самую первичную обмотку, что обеспечивает отсутствие выброса на ней и наиболее надежное размагничивание трансформатора. В любом случае имеется постоянная составляющая тока первичной обмотки, а сердечник трансформатора перемагничивается по частному циклу петли гистерезиса от максимальной индукции Бш до остаточной индукции Бг. При этом, чем больше разность Б5-Бг, где Б5 — индукция насыщения материала, тем лучше. Для данного применения также предпочтительно использовать марки ферритов, предназначенные для работы в сильных полях. Конфигурация сердечника может быть любой. Могут быть использованы как кольцевые сердечники, так и любые другие, упомянутые ранее.

Однотактные обратноходовые конверторы (рис. 4). Трансформатор работает с накоплением энергии на прямом ходе и передачей энергии в нагрузку на обратном ходе. Режим работы трансформатора аналогичен режиму работы дросселя, т. е. имеется постоянная составляющая тока обмоток и подмагничиваю-щее поле. Намагничивание происходит посредством первичной обмотки, а размагничивание — при передаче энергии в нагрузку через вторичную обмотку. Возможны три режима работы трансформатора по аналогии с дросселем: режим непрерывных токов, при котором энергия, запасенная в магнитном поле трансформатора, не уменьшается до нуля за время обратного хода; режим прерывистых токов, когда энергия передается в нагрузку полностью за часть длительности обратного хода, и граничный режим между первыми двумя. Наиболее часто используется граничный режим и режим прерывистых токов. Иногда выбирается непрерывный режим, однако он возможен только при определенной нагрузке, а при снижении тока нагрузки режим работы трансформатора неизбежно становится прерывистым.

Поскольку такой трансформатор всегда работает с подмагничиванием, он может быть выполнен либо на разъемном сердечнике из феррита «силовых» марок с немагнитным зазором, либо на кольцевом или разъемном сердечнике из магнитодиэлектрика без зазора. Конфигурация ферритовых сердечников может быть любой, но зазор должен быть обязательно. Различия в зависимости от конфигурации будут состоять в разной индуктивности рассеяния, разных габаритах, технологичности и стоимости.

Трансформаторы на ферритовых сердечниках с зазором имеют более стабильную индуктивность при изменении тока, но затем при достижении насыщения сердечника их индуктивность резко падает. У трансформаторов с сердечниками из магнитодиэлектриков при изменении тока индуктивность изменяется плавно, но в большей степени, и резкого насыщения не наблюдается. Последняя характеристика предпочтительнее, хотя для обратно-

www.finestreet.ru

17

Компоненты и технологии, № 1'2005

ходовых конверторов подходит и та и другая. Преимущество ферритов в более высокой магнитной проницаемости в данном применении теряется, так как величина эквивалентной проницаемости невелика и определяется в основном величиной немагнитного зазора.

Поскольку трансформатор работает в сильных полях, важное значение имеет величина потерь в сердечнике. Среди магнитодиэлек-триков наилучшими техническими параметрами обладает мо-пермаллой, но этот материал относительно дорогой. Если требуется снизить цену, то используется 8е^ш1 или Соо1 Мц, но при этом могут возрасти габариты изделия, так как для снижения потерь до той же величины, что и у мо-пермаллоя, придется снизить магнитную индукцию в сердечнике. В крайнем случае можно использовать сердечники из распыленного железа, но при этом габариты трансформатора могут еще больше возрасти, зато цена будет меньше. Трансформаторы на кольцевых сердечниках из магнитодиэлектриков обладают минимальной индуктивностью рассеяния по сравнению с разъемными сердечниками и обеспечивают минимальную величину паразитных выбросов напряжения.

Дроссели прямоходовых двухтактных и од-нотактных конверторов с гальванической развязкой (Ь1 на рис. 1 и 3) работают примерно в одинаковых режимах. В двухтактных схемах режим более легкий, так как дроссель работает на удвоенной частоте преобразования и с меньшей длительностью паузы (как правило). Дроссель работает с накоплением энергии, как и трансформатор обратноходового преобразователя, но имеет, в общем случае, одну обмотку, посредством которой осуществляется и накопление энергии, и передача ее в нагрузку. В сходном режиме работают дроссели конверторов без гальванической развязки и дроссели корректоров коэффициента мощности. Сердечник дросселя работает в сильных полях при большой постоянной составляющей тока. Поэтому, как и в предыдущем случае, подходят любые разъемные сердечники из ферритов с зазором либо сердечники из магнитодиэлектриков без зазора с учетом всех соображений, высказанных ранее.

Дроссели фильтров питания, которые используются обычно во втором и последующих звеньях фильтрации (второе звено выходного фильтра источника питания, развязывающие фильтры питания на платах функциональной аппаратуры и т. п.) — Ь2 на рис. 1, 3 и 4 — работают при большом уров-

°)

DC/AC-

инвертор

(DC/DC

конвертор

ЗНН' II .. II 1

- Т

L3

Рис. 5

не тока подмагничивания, но при маленьком уровне переменной составляющей. При этом рабочий размах магнитной индукции в сердечнике невелик и потери в дросселе определяются больше потерями в меди, чем потерями в сердечнике. Для этого случая могут использоваться ферритовые незамкнутые сердечники (стержни, гантели), ферритовые сердечники с зазорами, а также ферритовые кольца, бусины, трубочки (в основном для од-новитковых дросселей). В последнем случае, несмотря на то, что сердечник работает с под-магничиванием, оставшейся магнитной проницаемости вполне достаточно для снижения уровня пульсаций, шумов и помех в несколько раз, а стабильность индуктивности при изменении тока не имеет принципиального значения. С успехом могут применяться также дроссели на сердечниках из магнитодиэлект-риков, причем наиболее подходящим материалом в данном случае будет распыленное железо, так как при маленькой переменной составляющей нет никакого смысла применять дорогие материалы, например мо-пермаллой. Повышенная величина потерь в сердечнике будет даже играть положительную роль и способствовать переводу энергии шумов и помех в тепло. Все сказанное выше относится также и к дросселям входных фильтров БСЮС-кон-верторов и БС/АС-инверторов (рис. 5а), так как они имеют сходный режим работы.

Дроссели сетевых фильтров АС/БС-источ-ников питания применяются в трех вариантах:

Тококомпенсированные дроссели, предназначенные для подавления синфазных составляющих помех (Ь1 на рис. 5б, в), содержат две

одинаковые обмотки, связанные между собою через магнитное поле сердечника. Подмагни-чивания сердечника током частоты ЗО Гц в них не происходит, так как токи в обеих обмотках создают поля, направленные навстречу и компенсирующие друг друга. Для такого дросселя могут быть применены ферритовые сердечники без зазора, причем предпочтительны высокопроницаемые марки ферритов, так как сердечник работает в слабых полях, создаваемых токами помех, и для получения максимально возможной резонансной частоты дросселя желательно получить заданную индуктивность с минимальным числом витков. Применение магнитодиэлектриков нецелесообразно ввиду низкой магнитной проницаемости и отсутствия подмагничивания, а также невысокой стоимости ферритов. Конструктивно дроссель часто выполняется на двухсекционном каркасе с П-образным или Ш-образным сердечником или на кольцевом сердечнике с намоткой обмоток на разных сторонах кольца.

Одно- и двухобмоточные дроссели (L2 на рис. Зби L2 и L3 рис. 5в), в которых обмотки для токов низкой частоты (ЗО Гц) включаются согласно, предназначены для подавления дифференциальных (противофазных) составляющих помех в проводах питающей сети. Здесь, при небольшом уровне напряжения помех, имеет место подмагничивание большим током потребления источника питания, действующим с частотой ЗО Гц, что в данной ситуации эквивалентно подмагничиванию постоянным током. Поэтому для таких дросселей необходимо применять ферритовые сердечники с зазором или сердечники из маг-нитодиэлектриков. Проницаемость феррито-вых сердечников не имеет принципиального значения, так как коэффициент индуктивности конкретного сердечника определяется в основном его геометрией и величиной немагнитного зазора. Сердечники по переменной составляющей высокой частоты работают в слабых полях, и потери в материале сердечника не имеют большого значения и даже играют положительную роль. Из магнитодиэлектри-ков целесообразно использовать кольцевые сердечники или Ш-образные без зазора из распыленного железа (Iron Powder), как наиболее дешевые и хорошо удовлетворяющие предъявляемым требованиям.

Таким образом, для каждого моточного изделия, работающего в составе импульсного источника питания, можно подобрать наиболее подходящую конфигурацию и материал сердечника.

18

www.finestreet.ru

-Q-

i Надоели баннеры? Вы всегда можете отключить рекламу.