Международный научно-исследовательский журнал ■ № 10 (41) ■ Часть 2 ■ Ноябрь
DOI 10.18454/IRJ.2015.41.121
Бубенчиков А.А.1, Дайчман Р.А.2, Артамонова Е.Ю.2, Бубенчикова Т.В.2, Гафаров А.А.3, Гаибов И.А.3 1 Кандидат технических наук, 2ассистент кафедры Эс1 III. 3студент,
Омский государственный технический университет ВЫБОР ОПТИМАЛЬНОГО ГЕНЕРАТОРА ДЛЯ ВЕТРОУСТАНОВКИ
Аннотация
В статье рассмотрены вопросы применения различных типов генераторов для ветроустановок, выделены положительные и отрицательные стороны применения синхронного генератора на постоянных магнитах и асинхронного генератора.
Ключевые слова: ветроэнергетическая установка, синхронный генератор на постоянных магнитах, асинхронного генератора, асинхронизированный синхронный генератор.
Bubenchikov A.A.1, Daychman R.A.2, Artamonova E.Y.2, Bubenchikova T.V.2, Gafarov A.A.3, Gaibov I.A.3
1PhD in Engineering, 2assistant of ESPP Department, Omsk State Technical University,
3student, Omsk State Technical University CHOICE OF THE OPTIMUM GENERATOR FOR THE WIND TURBINE
Abstract
In article questions of application of various types of generators for wind turbines are considered, positive and negative sides of use of the synchronous generator on permanent magnets and the asynchronous generator are allocated.
Keywords: wind turbine, the synchronous generator on permanent magnets, asynchronous generator, asynchronized synchronous generator.
Применение нетрадиционных и альтернативных источников энергии в настоящее время одна из наиболее распространенных задач, как с точки зрения создания энергоресурсов, так и с точки зрения их потребления. Особенный интерес к таким источникам энергии исходит от населения, находящегося в зонах, отдаленных от центрального электроснабжения, другими словами в зонах без электрификации. Энергию, получаемую при работе альтернативных источников энергии можно использовать как для постоянного энергоснабжения, так и для резервного энергоснабжения, что особенно удобно для коттеджных поселков, небольших населенных пунктов или стратегических объектов.
Россия является одной из стран, обладающих большим энергопотенциалом, в том числе и энергией ветра. Применение энергии ветра в последнее время находит всё большее распространение, как в работах отечественных ученых, так и в разработках зарубежных изобретателей.
За рубежом наибольшее признание получили ветроэнергетические установки с горизонтальной осью ротора, рис. 1.
Рис . 1 - Ветроустановка с горизонтальной осью ротора
Такой тип ветроэнергетических установок работают по принципу ветряной мельницы, и имеет максимальное значение коэффициента использования энергии ветра 0,45 [1]. Ветроустановки с горизонтальной осью ротора, нуждаются в настройке на направление ветра, т.е. в регулировании геометрии лопастей.
Ветроустановки с вертикальным расположением оси, рис.2, имеют меньшее значение коэффициента использования, но в регулировании не нуждаются. Наиболее распространенными конструкциями роторов для ветроустановок с вертикальной осью вращения являются ротор Дарье, рис.2а [2] и ротор типа Савониуса, рис.2б [3]. Данный тип ветроустановок наиболее применим в условиях городской среды в виду отсутствия шумов при работе. Так же данные установки работают при меньших скоростях ветрового потока. [4].
18
Международный научно-исследовательский журнал ■ № 10 (41) ■ Часть 2 ■ Ноябрь
а) б)
Рис. 2 - Ветроустановки с вертикальной осью ротора
Основными компонентами ветроустановки являются ветроколесо, принимающее на себя ветровой поток и генератор, дополнительными компонентами, являются блок управления, мачта, система ориентации на ветер, система защиты от сильных ветров и.т.д.
Принцип действия ветроустановки заключается в преобразовании ротором кинетической энергии воздушных масс в механическую энергию вращающегося вала, затем генератор преобразует её в электрическую энергию.
Ветер воздействует на лопасти роторного механизма, создаёт крутящий момент. Под воздействием этого крутящего момента, роторное устройство начинает вращаться, передавая вращение через вал на редуктор и затем на генератор. При превышении скорости ветра значения в 30 м/с, на роторном механизме задействуется аэродинамическое тормозное устройство, препятствующее дальнейшему увеличению количества оборотов передающего вала.
Генератор является важнейшим элементом электрооборудования ветроустановки. Кроме основного назначения генератор должен выполнять определенные функции по стабилизации и регулированию параметров, характеризующих качество вырабатываемой электроэнергии.
Для ветроустановок возможно применение следующих типов генераторов: асинхронные генераторы (с к.з. ротором и с фазным ротором), синхронные генераторы (с электромагнитным возбуждением, с магнитоэлектрическим возбуждением, индукторные, с когтеобразным ротором и.т.д), а также асинхронизированные синхронные генераторы [5].
Различные аспекты использования синхронного генератора на постоянных магнитах для ветроустановок нашли отражение в трудах Олейникова А.М. [6], Канова Л.Н. [7], Радина В.И. [8], Кулагина Р.Н. [9], Балагурова В.А. [10], Харитонова С.А. [11], Коробкова Д.В.[12], Гейста А.В.[13], Саттарова Р.Р.[14], Данилевича Я.Б [15], Литвинов Б.В. [16], Никитенко Г.В.[17] и многих других.
Синхронный генератор на постоянных магнитах имеет простую конструкцию, легок в обслуживании, надежен и имеет высокий КПД. Улучшение характеристик (синхронного генератора на постоянных магнитах) СГПМ достигается за счет применения высококоэрцитивных постоянных магнитов. В то же время имеется сложность регулирования и стабилизации напряжения. Стабилизация напряжения осуществляется за счет регулирования реактивной мощности, поступающей в генераторы от конденсаторов. В синхронных генераторах на постоянных магнитах необходим редуктор (т.к. по большей части они высокооборотные, и начинают генерировать ток при 1000 об./мин.), а это дополнительные потери.
Тем не менее, данный тип генераторов является одним из самых распространенных генераторов для ветроустановок. В настоящее время ведутся исследования по улучшению конструкции и характеристик СГПМ [18].
Множество высших учебных заведений занимаются разработкой синхронных генератором на постоянных магнитах: научно-исследовательский конструкторско-технологический институт местной промышленности
(г.Н.Новгород), Политехнический институт Сибирского Федерального университета (г. Красноярск), Уфимский государственный авиационный технический университет, Новосибирский государственный технический университет, Кубанский государственный аграрный университет и др.
Приобрести СГПМ можно в следующих фирмах: XindaGreenEnergyCo. Китай [19], Нииместром [20], ДП «Верано» [21], ООО "Сальмабаш" [22] и др.
Что касается асинхронного генератора, то он так же имеет простую конструкцию, надежность в обслуживании, невысокую стоимость относительно СГПМ. Применение асинхронного генератора (АГ) в автономных ветроустановках ранее было менее распространено из-за отсутствия малогабаритных конденсаторов, обеспечивающих возбуждение генератора и компенсацию реактивной мощности нагрузки, а также из-за сложности стабилизации выходного напряжения. С появлением более компактных конденсаторов и новых систем стабилизации напряжения эти проблемы были решены.
Вопросами исследования АГ отражены в работах следующих авторов: Григораш О.В.[23], Мустафаева Р. И.[24], Никишина А.Ю.[25], Канова Л.Н. [26], Мазалова А.А.[27], Мамедова Ф.А.[28], Вронского О.В.[29] и др.
Фирмы, занимающиеся разработкой асинхронных генераторов с короткозамкнутым ротором: «Росэнергомаш» [30], «SUZLON» Индия[31], «SiemenxWindPower» Германия[32], «Vestas» Дания[33] и др.
19
Международный научно-исследовательский журнал ■ № 10 (41) ■ Часть 2 ■ Ноябрь
Институты, занимающиеся разработками АГ - Кубанский государственный аграрный университет, Севастопольский национальный технический университет, Азербайджанский НИ.
Обе машины имеют одинаковый КПД, но если рассматривать генератор не как отдельный механизм, а как часть ветроустановки, то наиболее эффективен СГПМ, потому что стабилизатор, требующийся для нормальной работы АГ, снижает КПД в большей степени, чем редуктор, необходимый для СГПМ. Если учитывать, что некоторые виды АГ требуют использования не только стабилизатора, но и редуктора [5], то подразумевается ещё большее снижение КПД. Асинхронный генератор дешевле СДПМ поэтому часто используется в качестве ветрогенератора малой и средней мощности.
Асинхронизированные синхронные генераторы (АСГ) находятся скорее в стадии разработки и моделирования, чем в стадии промышленного применения [34].
В заключение отметим, что наиболее популярным как для проектирования, так и для использования в ветроэнергетической установке является синхронный генератор на постоянных магнитах, благодаря его высоким характеристикам. Однако, асинхронный генератор также находит применение в ВЭУ за счет своей, относительно синхронного генератора на постоянных магнитах, низкой стоимости.
Литература
1. Горелов Д.Н., Кривоспицкий В.П. Перспективы развития ветроэнергетических установок с ортогональным ротором // Теплофизика и аэромеханика. - 2008. - №1 т.15. - С. 163-167.
2. Горелов Д.Н. Энергетические характеристики ротора Дарье // Теплофизика и аэромеханика. - 2010. - №3 т.17. - С. 325-333.
3. Горелов Д.Н. Аэродинамика ветроколес с вертикальной осью вращения. - Омск: Полиграфический центр КАН, 2012. - 68 с.
4. Вертикальный ветрогенератор, вертикальная ось вращения // ВЕТРОДВИГ.Яи URL: http://vetrodvig.ru/?p=1479 (дата обращения: 19.10.2015).
5. Шевченко В.В., Кулиш Я.Р. Анализ возможности использования разных типов генераторов для ветроэнергетических установок с учетом диапазона мощности // Вестник НТУ "ХПИ". - 2013. - №65. - С. 107-117.
6. Олейников А. М., Канов Л. Н. Исследование режимов маломощного генератора с постоянными магнитами методом схемного моделирования // Механика, энергетика, экология. - Севастополь: Вестник СевГТУ, 2007. - С. 29-34.
7. Олейников А. М., Канов Л. Н. Математическая модель автономной безредукторной ветроэлектрической установки на генераторе с постоянными магнитами // Электроэнергетика и электротехника. - 2010. - №1. - С. 82-87.
8. Радин В.И., Загорский А.Е., Манукян Л.А. Влияние повышения скорости вращения на мощность синхронного генератора // Известия вузов. Электромеханика. - 1973. - №1. - С. 82-87.
9. Кулагин Р.Н. Анализ конструкции тихоходных генераторов с постоянными магнитами // Известия ВолгГТУ. -
2011. - №7. - С. 87-80.
10. Балагуров В.А., Галтеев Ф.Ф. Электрические генераторы с постоянными магнитами. - М.: Энергоатомиздат, 1988. - 280 с.
11. Харитонов С.А., Симонов Б.Ф., Коробков Д.В., Макаров Д. В. К вопросу стабилизации напряжения синхронного генератора с постоянными магнитами при переменной частоте вращения // Физико-технические проблемы разработки полезных ископаемых. - Новосибирск: Издательство Сибирского Отделения РАН, июль-август
2012. - № 4. - С. 102-115.
12. Стабилизация напряжения синхронного генератора с постоянными магнитами при переменной нагрузке / С. А. Харитонов, Д. В. Коробков, Д. В. Макаров, А. Г. Гарганеев // Доклады Томского государственного университета систем управления и радиоэлектроники: июнь 2012. -Томск: ТУСУР, 2012. - № 1(25), часть 1. - С.139-146.
13. Стабилизация выходного напряжения синхронного генератора с возбуждением от постоянных магнитов при переменной частоте вращения вала / А. В. Гейст, Д. В. Коробков, Д. В. Макаров, А. Н. Решетников, С. А. Харитонов // Техшчна електродинамша. Тематичний випуск. Силова електрошка та енергоефектившсть. Частина 2. - Кш'в, 2012. -С.39-46.
14. Саттаров Р.Р., Бабикова Н.Л., Полихач Е.А. Исследование установившегося режима синхронного генератора возвратно-поступательного движения // Вестник УГАТУ. - 2007. - №6. - С. 194-199.
15. Саттаров Р.Р., Бабикова Н. Л., Полихач Е. А. Исследование установившегося режима синхронного генератора возвратно-поступательного движения // Вестник УГ АТУ. - 2007. - №6. - С. 194-199.
16. Данилевич Я.Б., Коченев А.В. Синхронный генератор небольшой мощности с постоянными магнитами // Электричество. -1996. - № 4.- С. 27-29.
17. Литвинов Б.В. Однофазный синхронный генератор двойного вращения с возбуждением от постоянных магнитов высоких энергий // Электротехника. - 1998. - № 4. - С. 20-25.
18. Никитенко Г. В., Коноплев Е. В., Деведеркин И. В. Высокоэффективный синхронный генератор на постоянных магнитах для ветроэнергетической установки // Вестник АПК Ставрополья. - 2013. -№4.- С.80-84.
19. Кручинина И.Ю. Высокоиспользованные электрические машины для современной энергетики: проблемы создания и исследований: автореф. дис. ... канд. тех. наук: 05.09.01. - СПб., 2012. - 34 с.
20. Xinda Green Energy Co URL: http://www.xindaenergy.com/index.html (дата обращения: 19.10.2015).
21. Генератор дисковый синхронный // ОАО «НИИМЕСТПРОМ» URL: http://www.niimestprom.ru/?id=897 (дата обращения: 19.10.2015).
22. НПП КБ верано-Ко URL: http://dpverano.com/ (дата обращения: 19.10.2015).
23. Тихоходный генератор на постоянных магнитах // ООО "САЛЬМАБАШ" URL: http://mahaon-
energy.ru/generator-gvu-1000 (дата обращения: 19.10.2015).
24. Григораш О.В. Асинхронные генераторы в системах автономного электроснабжения // Электротехника. -2002. - №1. - С. 30-34.
20
Международный научно-исследовательский журнал ■ № 10 (41) ■ Часть 2 ■ Ноябрь
25. Мустафаев Р.И., Гасанова Л.Г. Моделирование и исследование квазистационарных режимов работы ветроэлектрических установок с асинхронными генераторами при частотном управлении // Электричество. - 2009. -№6. - С. 36-41.
26. Никишин А.Ю., Казаков В.П. Современные ветроэнергетические установки на базе асинхронных машин // Современные проблемы науки и образования. - 2012. - № 6.
27. Канов Л.Н. Математическое моделирование ветроэлектрической установки с асинхронным генератором // Электроэнергетика и электромеханика. - 2012. - №5. - С.71-74.
28. Мазалов А.А. Адаптивная ветроустановка переменного тока с асинхронным генератором // Известия ЮФУ. Технические науки. Тематический выпуск. - С.250-256.
29. Мамедов Ф.А., Закабунин А.В., Гуреев А.Е., Шевченко Г.В. Использование асинхронных многоскоростных полюсопереключаемых генераторов в автономных ветроэнергетических установках // Энергообеспечение и энергосбережение в сельском хозяйстве. - 2008. - Ч.4. - С.338-340.
30. Вронский О.В. Асинхронные генераторы повышенной частоты тока: автореф. дис. ... канд. тех. наук: 05.20.02. - Краснодар, 2004. - 24 с.
31. Тихоходный генератор на постоянных магнитах // Росэнергомаш. URL: http://www.rosenergomash.com/ (дата обращения: 19.10.2015).
32. Suzlon Group URL: http://www.suzlon.com/ (дата обращения: 19.10.2015).
33. Wind power solutions for offshore, onshore, and service projects // Siemens Aktiengesellschaft URL: http://www.energy.siemens.com/hq/en/renewable-energy/wind-power/ (дата обращения: 19.10.2015).
34. Vestas URL: https://www.vestas.eom/#! (дата обращения: 19.10.2015).
35. Тыхевич О.О. Анализ совместной работы ветротурбины и асинхронизированного синхронного генератора ветроэнергетической установки // Автономна енергетика аерокосмiчных лггальних апарапв. -2003. №2(37).-С.70-75.
References
1. Gorelov D.N., Krivospickij V.P. Perspektivy razvitija vetrojenergeticheskih ustanovok s ortogonal'nym rotorom // Teplofizika i ajeromehanika. - 2008. - №1 t.15. - S. 163-167.
2. Gorelov D.N. Jenergeticheskie harakteristiki rotora Dar'e // Teplofizika i ajeromehanika. - 2010. - №3 1.17. - S. 325-333.
3. Gorelov D.N. Ajerodinamika vetrokoles s vertikal'noj osju vrashhenija. - Omsk: Poligraficheskij centr KAN, 2012. - 68 s.
4. Vertikal'nyj vetrogenerator, vertikal'naja os' vrashhenija // VETRODVIG.RU URL: http://vetrodvig.ru/?p=1479 (data obrashhenija: 19.10.2015).
5. Shevchenko V.V., Kulish Ja.R. Analiz vozmozhnosti ispol'zovanija raznyh tipov generatorov dlja vetrojenergeticheskih ustanovok s uchetom diapazona moshhnosti // Vestnik NTU "HPI". - 2013. - №65. - S. 107-117.
6. Olejnikov A. M., Kanov L. N. Issledovanie rezhimov malomoshhnogo generatora s postojannymi magnitami metodom shemnogo modelirovanija // Mehanika, jenergetika, jekologija. - Sevastopol': Vestnik SevGTU, 2007. - S. 29-34.
7. Olejnikov A. M., Kanov L. N. Matematicheskaja model' avtonomnoj bezreduktornoj vetrojelektricheskoj ustanovki na generatore s postojannymi magnitami // Jelektrojenergetika i jelektrotehnika. - 2010. - №1. - S. 82-87.
8. Radin V.I., Zagorskij A.E., Manukjan L.A. Vlijanie povyshenija skorosti vrashhenija na moshhnost' sinhronnogo generatora // Izvestija vuzov. Jelektromehanika. - 1973. - №1. - S. 82-87.
9. Kulagin R.N. Analiz konstrukcii tihohodnyh generatorov s postojannymi magnitami // Izvestija VolgGTU. - 2011. -№7. - S. 87-80.
10. Balagurov V.A., Galteev F.F. Jelektricheskie generatory s postojannymi magnitami. - M.: Jenergoatomizdat, 1988. -280 s.
11. Haritonov S.A., Simonov B.F., Korobkov D.V., Makarov D. V. K voprosu stabilizacii naprjazhenija sinhronnogo generatora s postojannymi magnitami pri peremennoj chastote vrashhenija // Fiziko-tehnicheskie problemy razrabotki poleznyh iskopaemyh. - Novosibirsk: Izdatel'stvo Sibirskogo Otdelenija RAN, ijul'-avgust 2012. - № 4. - S. 102-115.
12. Stabilizacija naprjazhenija sinhronnogo generatora s postojannymi magnitami pri peremennoj nagruzke / S. A. Haritonov, D. V. Korobkov, D. V. Makarov, A. G. Garganeev // Doklady Tomskogo gosudarstvennogo universiteta sistem upravlenija i radiojelektroniki: ijun' 2012. -Tomsk: TUSUR, 2012. - № 1(25), chast' 1. - S.139-146.
13. Stabilizacija vyhodnogo naprjazhenija sinhronnogo generatora s vozbuzhdeniem ot postojannyh magnitov pri peremennoj chastote vrashhenija vala / A. V. Gejst, D. V. Korobkov, D. V. Makarov, A. N. Reshetnikov, S. A. Haritonov // Tehnichna elektrodinamika. Tematichnij vipusk. Silova elektronika ta energoefektivnist'. Chastina 2. - Kiiv, 2012. - S.39-46.
14. Sattarov R.R., Babikova N.L., Polihach E.A. Issledovanie ustanovivshegosja rezhima sinhronnogo generatora vozvratno-postupatel'nogo dvizhenija // Vestnik UGATU. - 2007. - №6. - S. 194-199.
15. Sattarov R.R., Babikova N. L., Polihach E. A. Issledovanie ustanovivshegosja rezhima sinhronnogo generatora vozvratno-postupatel'nogo dvizhenija // Vestnik UGATU. - 2007. - №6. - S. 194-199.
16. Danilevich Ja.B., Kochenev A.V. Sinhronnyj generator nebol'shoj moshhnosti s postojannymi magnitami // Jelektrichestvo. -1996. - № 4.- S. 27-29.
17. Litvinov B.V. Odnofaznyj sinhronnyj generator dvojnogo vrashhenija s vozbuzhdeniem ot postojannyh magnitov vysokih jenergij // Jelektrotehnika. - 1998. - № 4. - S. 20-25.
18. Nikitenko G. V., Konoplev E. V., Devederkin I. V. Vysokojeffektivnyj sinhronnyj generator na postojannyh magnitah dlja vetrojenergeticheskoj ustanovki // Vestnik APK Stavropol'ja. - 2013. -№4.- S.80-84.
19. Kruchinina I.Ju. Vysokoispol'zovannye jelektricheskie mashiny dlja sovremennoj jenergetiki: problemy sozdanija i issledovanij: avtoref. dis. ... kand. teh. nauk: 05.09.01. - SPb., 2012. - 34 s.
20. Xinda Green Energy Co URL: http://www.xindaenergy.com/index.html (data obrashhenija: 19.10.2015).
21. Generator diskovyj sinhronnyj // OAO «NIIMESTPROM» URL: http://www.niimestprom.ru/?id=897 (data obrashhenija: 19.10.2015).
22. NPP KB verano-Ko URL: http://dpverano.com/ (data obrashhenija: 19.10.2015).
21
Международный научно-исследовательский журнал ■ № 10 (41) ■ Часть 2 ■ Ноябрь
23. Tihohodnyj generator na postojannyh magnitah // OOO "SAL''MABASh" URL: http://mahaon-energy.ru/generator-gvu-1000 (data obrashhenija: 19.10.2015).
24. Grigorash O.V. Asinhronnye generatory v sistemah avtonomnogo jelektrosnabzhenija // Jelektrotehnika. - 2002. -№1. - S. 30-34.
25. Mustafaev R.I., Gasanova L.G. Modelirovanie i issledovanie kvazistacionarnyh rezhimov raboty vetrojelektricheskih ustanovok s asinhronnymi generatorami pri chastotnom upravlenii // Jelektrichestvo. - 2009. - №6. - S. 36-41.
26. Nikishin A.Ju., Kazakov V.P. Sovremennye vetrojenergeticheskie ustanovki na baze asinhronnyh mashin // Sovremennye problemy nauki i obrazovanija. - 2012. - № 6.
27. Kanov L.N. Matematicheskoe modelirovanie vetrojelektricheskoj ustanovki s asinhronnym generatorom // Jelektrojenergetika i jelektromehanika. - 2012. - №5. - S.71-74.
28. Mazalov A.A. Adaptivnaja vetroustanovka peremennogo toka s asinhronnym generatorom // Izvestija JuFU. Tehnicheskie nauki. Tematicheskij vypusk. - S.250-256.
29. Mamedov F.A., Zakabunin A.V., Gureev A.E., Shevchenko G.V. Ispol'zovanie asinhronnyh mnogoskorostnyh poljusoperekljuchaemyh generatorov v avtonomnyh vetrojenergeticheskih ustanovkah // Jenergoobespechenie i jenergosberezhenie v sel'skom hozjajstve. - 2008. - Ch.4. - S.338-340.
30. Vronskij O.V. Asinhronnye generatory povyshennoj chastoty toka: avtoref. dis. ... kand. teh. nauk: 05.20.02. -Krasnodar, 2004. - 24 s.
31. Tihohodnyj generator na postojannyh magnitah // Rosjenergomash. URL: http://www.rosenergomash.com/ (data obrashhenija: 19.10.2015).
32. Suzlon Group URL: http://www.suzlon.com/ (data obrashhenija: 19.10.2015).
33. Wind power solutions for offshore, onshore, and service projects // Siemens Aktiengesellschaft URL: http://www.energy.siemens.com/hq/en/renewable-energy/wind-power/ (data obrashhenija: 19.10.2015).
34. Vestas URL: https://www.vestas.com/#! (data obrashhenija: 19.10.2015).
35. Tyhevich O.O. Analiz sovmestnoj raboty vetroturbiny i asinhronizirovannogo sinhronnogo generatora vetrojenergeticheskoj ustanovki // Avtonomna energetika aerokosmichnyh lital'nih aparativ. -2003. №2(37).-S.70-75.
DOI 10.18454/IRJ.2015.41.064 Буялич Г.Д.* 1, Фурман А.С.2
1 Доктор технических наук, 2аспирант,
Кузбасский государственный технический университет имени Т.Ф. Горбачева ИССЛЕДОВАНИЕ СКОРОСТНЫХ РЕЖИМОВ ДВИЖЕНИЯ КАРЬЕРНЫХ АВТОСАМОСВАЛОВ
Аннотация
Представлены результаты исследований скоростных режимов движения карьерных автосамосвалов по маршрутам. Установлены законы распределения скоростей движения в порожнем и груженом направлениях. Ключевые слова: скорость движения, карьерные автосамосвалы, закон распределения скоростей.
Bujalich G.D.1, Furman A.S.2
:PhD in Engineering, 2postgraduate student,
Kuzbass State Technical University name T. F. Gorbachev THE STUDY OF HIGH-SPEED MODES OF MOTION OF MINE DUMP
Abstract
Results of researches of high-speed modes of movement of career autodumpers on routes are presented. Laws of distribution of speeds of movement in empty and full directions are established.
Keywords: speed of movement, career autodumpers, the law of distribution of speeds.
Скорость движения автосамосвалов по карьерным дорогам зависит от множества факторов и, прежде всего, от удельной мощности двигателя, типа трансмиссии, качества дорожного полотна, продольного профиля дороги, условий безопасного движения и т.д. [1]
На допустимую скорость движения накладываются ограничения:
1.Максимально-возможная скорость преодоления автосамосвалом подъема определяется, во-первых, тяговодинамическими свойствами автосамосвала, а именно, удельной мощностью двигателя, приходящейся на одну тонну собственного веса автосамосвала, во-вторых, дорожными условиями, а именно, величинами продольного уклона и коэффициента сцепления, и, в-третьих, климатическими условиями, а именно, влажностью и температурами окружающего воздуха, от которых зависит, прежде всего, состояние опорной поверхности карьерной автодороги
2.Допустимая скорость движения автосамосвала при прохождении поворота определяется дорожными условиями, т.е. величиной сцепления колес с дорогой в поперечном направлении, величиной поперечного уклона автодороги, и продольным рельефом. В данном случае существуют два типа ограничений:
• по условию бокового скольжения автосамосвала:
• по условию ограниченной видимости
3.Допустимая скорость автосамосвала при движении на спуск определяется заданной величиной остановочного пути, который должен быть меньше расстояния видимости.
4.Допустимая скорость движения автосамосвала по условию нагрева шин.
Для выявления, характера распределения скоростных режимов движения карьерных автосамосвалов был поставлен эксперимент в условиях АО «Красный Брод» ОАО «Угольная компания «Кузбассразрезуголь». Испытанию
22