Научная статья на тему 'Второй этап реализации концепции сетей последующих поколений NGN'

Второй этап реализации концепции сетей последующих поколений NGN Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
609
71
Поделиться

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Пшеничников Анатолий Павлович, Али Раад А.М.

Концепция NGN является открытой. Стремительный прогресс беспроводных и нанотехнологий способствовали появлению беспроводных сенсорных сетей. На втором этапе реализации концепции NGN происходит конвергенция не только технологий, систем и сетей, но и услуг. Подсистема IMS предоставляет услуги независимо от технологии доступа, обеспечивает реальную конвергенцию речи и данных, стационарных и мобильных сетей связи. Конвергенция информационных и телекоммуникационных услуг приводит к появлению нового вида услуг инфокоммуникационных, имеющих новые свойства.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Пшеничников Анатолий Павлович, Али Раад А.М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Текст научной работы на тему «Второй этап реализации концепции сетей последующих поколений NGN»

Второй этап реализации концепции сетей последующих поколений - NGN

Концепция NGN является открытой. Стремительный прогресс беспроводных и нанотехнологий способствовали появлению беспроводных сенсорных сетей. На втором этапе реализации концепции NGN происходит конвергенция не только технологий, систем и сетей, но и услуг. Подсистема IMS предоставляет услуги независимо от технологии доступа, обеспечивает реальную конвергенцию речи и данных, стационарных и мобильных сетей связи. Конвергенция информационных и телекоммуникационных услуг приводит к появлению нового вида услуг — инфокоммуникационных, имеющих новые свойства.

Пшеничников А.П.,

МТУСИ

Али Раад А.М.,

МТУСИ

Смена парадигмы общественного производства

В конце двадцатого века в технологической сгрук-туре экономики произошли глобальные сдвиги - сформировалось ядро современного информационно-коммуникационного технологического уклада на базе универсальных информационно-коммуникационных технологий (ИКТ) [1]. Вследствие этого произошла смена парадигмы общественного производства: в мировом валовом внутреннем продукте (ВВП) доминирующее положение заняли нематериальные элементы общественного производства — услуги. Универсальные технологии прорывного характера впервые в экономической истории распространились на отрасли услуг.

К концу первого десятилетня XXI века доля услуг в мировом ВВП достигла 70%. В структуре самого ИКТ-комплекса услуги занимают значительную и всё возрастающую долю от общего объема (по данным Института мировой экономики и международных отношений РАН: 1985 г. - 62%; 1995 г. - 67%; 2009 г. - 71%). За последние 20 лет цикл обновления в среднем по комплексу ИКТ сократился с 7-11 лет до 5-7.

С 1995 года по инициативе группы развитых сграп начала формироваться концепция Глобальной информационной инфраструктуры как общемировой информационной сети массового обслуживания населения планеты на основе интеграции глобальных и региональных инфокоммуникационных систем. По вопросам информационного общества проводятся Всемирные встречи на высшем уровне (Женева 2003 г., Тунис 2005 г.).

Повышенное внимание проблемам информатизации уделяется на высшем уровне законодательной и исполнительной власти в Российской Федерации. В частности, принят Федеральный закон “Об электронной подписи”, одобрена Концепция формирования в РФ электронного правительства, утверждена Стратегия развития информационного общества в Российской Федерации.

С целью реализации Стратегии развития информационного общества Правительством РФ утверждена государственная программа “Информационное общество (2011-2020 гг.)”.

Конкурентные позиции любой страны в глобальной экономике неразрывно связаны с научными исследованиями. Так, доля расходов на НИР в ВВП в странах ЕС в среднем составляет 2,6%. В России этот показатель

почти в два раза ниже - 1,5%. Финансирование ИКТ в странах Организации экономического сотрудничества и развития (ОЭСР) составляет 17% всех затрат на НИР, в то время как в США - 52%, в Японии - 22% [2].

Для перехода от инерционного развития экономики к инновационному расходы на НИОКР в России должны быть увеличены в два раза, рост инвестиций в основной капитан инновационного сектора должен быть также удвоен [3].

Существующий в настоящее время технологический уклад основывается на применении достижений микроэлектроники в управлении физическими процессами на микронном уровне. Новый, зарождающийся технологический уклад базируется на использовании нанотехнологий, оперирующий на уровне одной миллиардной метра. Ядро этого уклада будут составлять следующие технологически сопряженные производства: наноэлектроника, молекулярная и нанофотоника, наноматериалы и наноструктурированные покрытия, нанобиотехнологии, нанооборудование и другие производства. По прогнозам Научного фонда США к 2015 г. годовой оборот рынка нанотехнологий достигнет 1-1,5 трл. долл.

Выполнение условий Всемирной торговой Организации

В декабре 2011 г. Россия была принята во Всемирную торговую организацию. Полноправным членом ВТО Россия станет в 2012 г. Согласно Протоколу о присоединении РФ к ВТО, существуют дополнительные обязательства России по базовым телекоммуникационным сервисам [4].

Одно из важнейших требований документа — предупреждение монополистической практики на телекоммуникационном рынке. Федеральная антимонопольная служба России создала рабочую группу для оценки возможности перехода ранка связи от естественной монополии к конкурентному состоянию, с введением “технологической нейтральности” его регулирования.

Другим важным требованием является недискриминационный доступ участников рынка к сетям существенных операторов связи. ВТО рекомендует установить цены на присоединение на основе себестоимости данной услуги.

Обязательствами России по базовым телекоммуникациям являются:

- независимость регулятора от участников рынка;

- публичность лицензионных критериев;

- прозрачность, недискриминационность, наличие конкурентной среды при оказании универсальных услуг связи;

- справедливое распределение и использование ограниченных ресурсов в отрасли.

В Протоколе зафиксировано, что любые процедуры по распределению и использованию ограниченных ресурсов, в том числе полос радиочастот и номерной ёмкости, должны осуществляться на объективной, прозрачной и недискриминационной основе.

Минкомсвязи России активно занимается разработкой соответствующих документов и с большой вероятностью в 2012-2013 гг. они будут приняты.

Реализация принципа “технологической нейтральности” даст положительный импульс для внедрения пакетных технологий на сетях всех уровней.

В настоящее время основными технологическими механизмами реализации стратегии развития информационного общества в нашей стране являются:

- обеспечение широкополосного доступа к инфоком-муникационным услугам;

- переход от технологии коммутации каналов к технологии коммутации пакетов в соответствии с концепцией сетей последующих поколений - NGN (Next Generation Networks);

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- конвергенция мобильных и стационарных сетей связи на базе универсальной распределённой архитектуры IMS (IP Multimedia Subsystem).

Широкополосный доступ к услугам.

Согласно отчёту Комиссии по широкополосной связи для цифрового развития генеральному секретарю ООН Пан Ги Муну (19 сентября 2010 г., Нью-Йорк) “В XXI столетии сети широкополосной связи будут иметь такое же решающее значение для социального и экономическою процветания, как транспортные, водопроводные и электросети”. Генеральный секретарь Международного союза электросвязи X. Туре на заседании указанной Комиссии призвал мировых лидеров добиться, чтобы к 2015 г. более половины населения мира получили доступ к широкополосной связи и доступ к высокоскоростным сетям стал одним из основных гражданских прав.

С быстрым увеличением в Интернете объемов контента и приложений, требующих высокой пропускной способности, растёт спрос на высокоскоростные соединения. Необходимость перехода к ШПД можно проиллюстрировать следующим примером. По данным МСЭ-Т при скорости 256 кбит/с скачивание высококачественного кинофильма потребует почти

1,5 дня, в то время как при скорости 100 Мбит/с -только 5 мин. Согласно результатам исследования Cisco Visual Networking Index к 2015 году объём потребляемого глобального интернет-трафика вырастет более чем в два с половиной раза по сравнению с 2011 г. Среднегодовой темп роста в России составит 30% в год.

За последние годы в РФ достигнуты значительные успехи в области развития сетей проводного широкополосного доступа (ШПД). Так, по данным аналитического агентства TelecomDaily число пользователей цифрового платного телевидения в России по итогам 2011 года достигло отметки в 10,3 млн. домохозяйств (проникновение 19%). В 2011г. Россия вошла в первую десятку государств по развитию ШПД и стала лидером по темпам ежегодного прироста пользователей: более 2 млн. человек [5]. В среднем проникновение ШПД в РФ превысило 20% домохозяйств, однако, например, в Швеции этот показатель составляет 69%, а в Республике Корея - 97%. Сопоставляя достигнутый уровень с темпами

роста, можно сделать вывод о том, что в РФ отставание в построении сетей проводного ШПД от стран ОЭСР составляет порядка 5-6 лет.

Доминирующими технологиями развития проводного ШПД являются оптические технологии. В настоящее время основными технологиями передачи сигнала по оптическому кабелю являются:

• FTTx (Fiber to the x - оптическое волокно до точки х);

• PON (Passive optical network - пассивная оптическая сеть).

Основная идея архитектуры PON - использование всего одного приёмопередающего модуля в OLT (optical line terminal) для передачи информации множеству абонентских устройств ONT (optical network terminal) и приёма информации от них. Для передачи потока информации от OLT к ONT - прямого (нисходящего) потока, как правило, используется длина волны 1490 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (восходящий) поток, передаются на длине волны 1310 нм. Для передачи сигнала телевидения используется длина волны 1550 нм. В ОГТ и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки.

По прогнозу доля технологий FTTx ШПД к 2015 г. в России достигнет 80% (или 16 млн. домохозяйств). На примере ОАО “Ростелеком” видно, что уже сейчас наблюдается резкий спад темпов строительства xDSL и значительный рост строительства FTTx.

В настоящее время МСЭ-Т в рекомендации G.983 стандартизовал xPON, а в рекомендации G.984 - GPON-Gigabit PON.

Стандартами IEEE группы 802.3 стандартизована так называемая технология Optical Ethernet.

• IEEE 802.3ц (Fast Ethernet, 100 Мбит/с);

• IEEE 802.3ah (GEPON - Gigabit Ethernet PON);

» IEEE 802.3av ( 1OGEPON - 10 Gigabit Ethernet PON);

• IEEE 802.3ba (40GE и 100GE). '

Основными преимуществами использования этой технологии для построения распределенной сети являются экономическая эффективность и простота подключения клиентов, эффективность использования канальных ресурсов и высокая производительность, масштабируемость и простота обслуживания. По сравнению с технологиями, имеющими схожие потребительские свойства, например SDH, реализация Optical Ethernet обходится в два-три раза дешевле. Эта транспортная технология в настоящее время является одной из самых динамично развивающихся.

При оказании услуг значительное внимание уделяется не только “скорости”, но и характеристикам качества обслуживания пользователей. Показатели качества определены в рекомендации МСЭ-Т G.1000. Она включает 11 функций и 7 критериев, охватывая все стадии жизненного цикла взаимоотношений с клиентами: от продажи и предконтрактной деятельности до прекращения обслуживания. Отечественный стандарт в этой области - ГОСТ Р 53632-2009 “Показатели качества услуг доступа в Интернет. Общие требования” введён в действие с 01.12.2010 г.

Первый этап реализации концепции NGN

На первом этапе решались задачи конвергенции сетей с коммутацией каналов и сетей с коммутацией паке-

тов [6]. Для сопряжения принципиально разных технологий коммутации необходимо было решить целый ряд технически сложных задач, в частности, обеспечить:

- приемлемое качество передачи голосовых сообщений, в первую очередь, минимизировать и нормировать задержки доставки пакетов, которые нельзя исключить при использовании технологии коммутации пакетов;

- преобразование (конвертацию) систем сигнализации, включая передачу сигнальных единиц ОКС 7 через пакетную сеть;

- раздельное управление устройствами доступа и гране порта, управление вызовами, управление услугами;

- информационную безопасность.

Одним из фундаментальных требований концепции NGN - обеспечение неразрушающего перехода от сетей с коммутацией каналов к сетям с коммутацией пакетов. Учитывая свойство гетерогенности этих сетей, при реализации концепции NGN необходимо обеспечить их глобальную совместимость — совместимость технических средств, услуг, классов и параметров качества обслуживания.

Основные положения концепции NGN изложены в рекомендациях

МСЭ-Т серии Y.20xx, в которых определены архитектурные принципы и модели, реализация качества обслуживания по принципу “из конца в конец”, управление, безопасность, нумерация и адресация, устойчивость к воздействию дестабилизирующих факторов, взаимосвязь NGN с базовой эталонной моделью взаимодействия открытых систем и другие вопросы.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Д1Я решения проблемы качества передачи сообщений реального времени стек протоколов TCP/IP дополнен стеком протоколов MPLS (Multiprotocol Label Switching — многопротокольная коммутация по меткам). Универсальная технологическая среда на базе IP/MPLS обеспечивает интефацию различных инфокоммуникационных приложений.

Для управления в сетях NGN и конвертации систем сигнализации был разработан Softswitch - программный (гибкий) коммутатор. В течение первого десятилетия XXI в. задачи сопряжения технологий коммутации каналов и коммутации пакетов были успешно решены. В России устанавливалось преимущественно оборудование зарубежных компаний, однако было разработано и отечественное оборудование, реализующее концепцию NGN [7].

Второй этап реализации концепции NGN

На втором этапе решаются задачи конвергенции стационарных сетей и сетей сотовой подвижной связи как на уровне сетей доступа, так и на уровне терминалов.

В качестве базовой архитектуры для конвергенции этих сетей рабочими группами 3GPP [8] и TISPAN [9] рекомендована мультимедийная подсистема на базе протокола IP-IMS (IP Multimedia Subsystem). В этой платформе сделана попытка реализации следующих фундаментальных принципов будущих инфокоммуникаций: глобальность, интерактивность, информационная безопасность и защищённость, мобильность, персональность [10].

Архитектура IMS реализована по трёхуровневой модели в соответствие с концепцией сетей последующих поколений NGN: транспортный уровень; уровень управления вызовами; уровень приложений.

Все три уровня независимы, но связаны друг с другом через стандартизированные интерфейсы при использовании открытых протоколов.

Все контент-провайдеры присоединяются к единой платформе, обеспечивающей все возможные интерфейсы и протоколы. При добавлении очередной услуги нет необходимости в разработке новых интерфейсов.

Одним из требований к сервисной мультимедийной подсистеме является независимость её функционирования от уровня доступа с обеспечением обобщённой мобильности - для любого абонента предоставлять любые услуги в любом объёме и в любом месте (принцип глобальности).

Мультисервисная сеть на базе платформы IMS имеет горизонтальную распределенную структуру, позволяющую быстро и легко устанавливать медиа-шлюзы в точках концентрации трафика, а интеллектуальные функции сосредотачивать в центральном сервере для быстрого и эффективного обновления программного обеспечения, что сокращает период разработки и внедрения новых услуг.

В рекомендациях 3GPP и TISPAN по архитектуре IMS стандартизируются не конкретные узлы сети, а функциональные элементы и интерфейсы между ними. Основные функциональные элементы IMS могут быть разделены на следующие группы:

- элементы управления установлением сессий (CSCF — Call Session Control Function). На уровне управления сессиями с помощью протокола SIP (Session Initiation Protocol) реализуется механизм инициации и управления сессиями, управление качеством обслуживания “из конца в конец” (end-to-end QoS), управление мобильностью пользователей;

- сервер абонентских данных (HSS - Home Subscriber Server), где хранятся уникальные сервисные профили всех абонентов;

- элементы, обеспечивающие предоставление дополнительных видов обслуживания (Application Server — сервер приложений, MRF- Media Resource Function -источник мультимедийных потоков);

- элементы обеспечения межсетевого взаимодействия (BGCF — Breakout Gateway Control Function - контроллер шлюзов при связи с оконечным устройством в сети с коммутацией каналов; MGCF — Media Gateway Control Function - контроллер шлюза, выполняющего функции по транслированию протокола SIP в ISUP или В ICC поверх SCTP/IP; IMS-MGW - IP Multimedia Subsystem Media Gateway - транспортный шлюз для взаимодействия с ТфОП; SGW - Signaling Gateway -сигнальный шлюз);

- элементы обеспечения безопасности (PDF - Policy Decision Function - функция запрета использования кодека, SEG - Security gateway — шлюз, обеспечивающий безопасность на уровне сигнализации; THIG - Topology Hiding Gateway - шлюз, скрывающий топологию, ёмкость и конфигурацию сети оператора от других операторов и третьих лиц);

- элементы обеспечения тарификации (функциональные модули, позволяющие разделить списание средств в зависимости от предоставляемого сервиса -телефонии, видеосвязи, передачи данных или ДВО).

При внедрении IMS-платформы для повышения экономической эффективности конвергентного развития инфокоммуникаций осуществляется интеграция систем управления сетевыми ресурсами (OSS-Operations Support Systems-система поддержки операционной деятельности) и бизнес-процессами (BSS-Business Support Systems -

система поддержки бизнеса) оператора связи (NGOSS -Next Generation Operations Systems and Software - системы следующего поколения для поддержки операционной деятельности телекоммуникационной компании).

На втором этапе реализации концепции NGN происходит конвергенция не только технологий, систем и сетей, но и услуг. Подсистема IMS предоставляет услуги независимо от технологии доступа, обеспечивает реальную конвергенцию речи и данных, стационарных и мобильных сетей связи. Конвергенция информационных и телекоммуникационных услуг приводит к появлению нового вида услуг - инфокоммуникационных, имеющих новые свойства [11, 12]:

- мультисервисность и пакетность услуг;

- возможность оплаты услуг по этапам производственного процесса;

- наличие звеньев между оператором связи и пользователем: сервис-провайдер, системный интегратор;

- широкополосный доступ к услугам;

- активная роль пользователя на основе обратной интерактивной связи с производителем услуг и участие в процессе генерации услуг.

Распределённая сервисная архитектура IMS позволяет предоставлять пользователям контент-ориентирован-ные услуги, в том числе IP-телевидение и интерактивное телевидение, конвергентные мультимедийные услуги в “пакете”, “облачные услуги”.

Облачные услуги. Термины “облачные услуги”, “облачные вычисления”, “облачные технологии”, применяются к различным способам предоставления инфокоммуникационных услуг через сети электросвязи или сеть Интернет. При этом сеть изображается на схемах в виде “облака” для подчеркивания того, что подробности транспортировки данных скрыты от конечных пользователей. Им важна лишь услуга с гарантированным качеством.

Облачную бизнес-модель отличают следующие характеристики:

- самообслуживание по требованию. Пользователь самостоятельно обеспечивает себя ИКТ — ресурсами с нужными ему параметрами. Всё это осуществляется автоматически, без личного участия администратора ресурса;

- ИКТ-ресурсы объединяются в пулы. Из общего пула ресурсы автоматически выделяются и таким же образом возвращаются обратно в пул по мере их затребования и освобождения пользователями;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- эластичность ресурсного пула. Ресурсы облачного пула могут предоставляться пользователю незамедлительно и при этом масштабироваться как в сторону наращивания, так и в сторону сокращения;

- доступность ресурсов пула любым оконечным устройствам пользователей;

- открытый автоматический контроль, оптимизация и учёт потребляемых ресурсов облачной системой.

В настоящее время известны следующие категории облачных сервисов:

- приложения как сервис - возможность удалённого пользования приложениями в облачной инфраструктуре сервис-провайдера;

- коммуникации как сервис - возможность удалённого пользования средствами связи в облачной инфраструктуре сервис-провайдера;

- программная платформа как сервис — в облачной инфраструктуре пользователь развёртывает и эксплуатирует собственные приложения;

- ИКТ-инфраструктура как сервис - предоставление в удалённое пользование ИКТ-ресурсов облачной инфраструктуры для произвольного применения пользователем;

- сеть как сервис - в качестве услуг пользователю предоставляются средства сетевого транспорта, включая внутриоблачный [13].

Вместо заключения

Концепция NGN является открытой и её реализация не заканчивается вторым этапом. Стремительный прогресс беспроводных и нанотехнологий способствовали появлению беспроводных сенсорных сетей [14]. Для этих сетей уже придумано новое название - SAN (Smart Ubiquitous Networks - умные всё проникающие сети).

В настоящее время трафик межмашинного обмена (М2М и пиринговые сети) уже соизмерим с трафиком, в котором участвует человек. Отдельная тема - социальные сети и их влияние на самоорганизацию и саморегулирование общества.

Литература

1. Глазьев С.Ю. Как оседлать волну, www.glazev.ru.

2. Шульцева В.К. Мировой ИКТ-мейнстрим. - Электросвязь. - №4. - 2010. - С. 14-17.

3. Глазьев С.Ю. Мировой экономический кризис как процесс замещения доминирующих технологических укладов. www.glazev.ru.

4. Jlaurryii Е. ВТОржение в телеком. - Стандарт. - №2 ( 109). - 2012. - С. 18-22.

5. Богородицкая И.А. Отрасль ИКТ на восходящем тренде. -Электросвязь. -№1.-2012. С.2-3.

6. Нестеренко И.В., Носов А.И. Основные этапы реализации концепции сетей последующего поколения - NGN. - T-Comm -Телекоммуникации и транспорт. -№7. - 2011. C. 117-120.

7. Компания НТЦ ПРОТЕЙ, www.protei.ru.

8. Официальный сайт 3rd Generation Partnership Project (3GPP) - www.3gpp.org.

9. Официальный сайт ETSI TISPAN - www.etsi.org/tispan.

10. Аджемов A.C. Телекоммуникации, инфокоммуника-ции-что дальше? - М.: “ИД Медиа Паблишер”, 2011. - 140 с.

11. Кузовкова Т.А. Экономические аспекты конвергентного развития инфокоммуникаций. - Электросвязь. — №2.-2009.-С. 16-19.

12. Сети следующего поколения NGN/ Под ред. A.B. Рос-лякова.-М.: Эко-Трендз, 2008. - 424 с.

13. Гехтман Б. Облачные ИТ-услуги. - Вестник связи. — №2.-2012.

14. Nitaigour P.M. (Editor) Sensor networks and configuration fundamentals, standards, platforms and applications / P.M.Nitaigour // Springer. - 2007. - 510 p.