УДК 519.17

Вполне регулярные графы с $b_1 = 6$

Константин С.Ефимов Александр А.Махнев*

Институт математики и механики УрО РАН, С.Ковалевской 16, Екатеринбург, 620219

Россия

Получена 10.09.2008, окончательный вариант 15.12.2008, принята к печати 15.01.2009

Неориентированный v-вершинный граф, в котором степени всех вершин равны k, а каждое ребро принадлежит точно λ треугольникам, называется реберно регулярным c параметрами (v,k,λ) . Положим $b_1=k-\lambda-1$. B монографии Броувера, Коэна и Ноймайера доказано, что связный реберно регулярный граф c $b_1=1$ является многоугольником или полным многодольным c долями порядка 2. Кроме того, ранее исследовались реберно регулярные графы c $b_1\leqslant 5$. B данной работе изучаются вполне регулярные графы c $b_1=6$.

Ключевые слова: неориентированный граф, вполне регулярный граф.

Введение

Мы рассматриваем неориентированные графы без петель и кратных ребер. Если a,b — вершины графа Γ , то через d(a,b) обозначается расстояние между a и b, а через $\Gamma_i(a)$ — подграф графа Γ , индуцированный множеством вершин, которые находятся на расстоянии i в Γ от вершины a. Подграф $\Gamma(a) = \Gamma_1(a)$ называется окрестностью вершины a и обозначается через [a]. Через a^{\perp} обозначается подграф, являющийся шаром радиуса 1 с центром a. Под собственными значениями графа понимаются собственные значения его матрицы смежности. В дальнейшем слово "подграф" будет означать индуцированный подграф. Пусть \mathcal{F} — семейство графов. Граф Γ называется локально \mathcal{F} графом, если $[a] \in \mathcal{F}$ для любой вершины $a \in \Gamma$.

^{*}e-mail: makhnev@imm.uran.ru

[©] Siberian Federal University. All rights reserved

Через K_{m_1,\dots,m_n} обозначим полный n-дольный граф, с долями порядков m_1,\dots,m_n . Если $m_1=\dots=m_n=m$, то соответствующий граф обозначается через $K_{n\times m}$. Граф $K_{1,m}$ называется m-лапой. Треугольным графом T(m) называется граф с множеством неупорядоченных пар из X в качестве вершин, |X|=m и пары $\{a,b\},\{c,d\}$ смежны тогда и только тогда, когда они имеют единственный общий элемент. Граф на множестве вершин $X\times Y$ называется $m\times n$ решеткой, если |X|=m, |Y|=n и вершины $(x_1,y_1), (x_2,y_2)$ смежны тогда и только тогда, когда $x_1=x_2$ или $y_1=y_2$. Граф Пэли P(q) в качестве вершин имеет элементы поля F_q , $q\equiv 1\pmod 4$, и две вершины a,b смежны, только если b-a является ненулевым квадратом в F_q . Граф Клебша (Шлефли) — это единственный сильно регулярный граф с параметрами (16,10,6,6) (с параметрами (27,16,10,8)). Граф Шрикханде — это единственный сильно регулярный локально шестиугольный граф с параметрами (16,6,2,2).

Граф Тервиллигера — это неполный граф Γ такой, что для любых двух вершин a,b на расстоянии 2 подграф $[a] \cap [b]$ является кликой порядка μ для некоторого фиксированного $\mu > 0$.

Полный (вполне несвязный) подграф данного графа называется κ ликой (κ окликой). Под кликовым (кокликовым) α -расширением графа Γ будем понимать граф, полученный заменой каждой вершины a из Γ на клику (коклику) (a), содержащую α вершин, при этом указанные клики (коклики) попарно не пересекаются, а вершины из (a) и (b) смежны тогда и только тогда, когда a и b смежны в Γ .

Если вершины u, w находятся на расстоянии i в Γ , то через $b_i(u, w)$ (через $c_i(u, w)$) обозначим число вершин в пересечении $\Gamma_{i+1}(u)$ (пересечении $\Gamma_{i-1}(u)$) с [w]. Заметим, что в реберно регулярном графе с параметрами (v, k, λ) значение $b_1 = b_1(u, w)$ не зависит от выбора ребра $\{u, w\}$ и равно $k - \lambda - 1$. Дистанционно регулярным графом с массивом пересечений $\{b_0, ..., b_{d-1}; c_1, ..., c_d\}$ называется граф диаметра d, в котором значения $b_i(u, w)$ и $c_i(u, w)$ не зависят от выбора вершин u, w. Граф диаметра d называется антиподальным, если отношение — совпадать или находиться на расстоянии d — является отношением эквивалентности на множестве вершин графа. Антиподальным частным Γ' называется факторграф антиподального графа Γ , вершинами которого являются указанные классы эквивалентности и два класса смежны, если некоторая вершина одного класса смежна с вершиной другого. Если все классы эквивалентности состоят из r вершин, то Γ называется r-накрытием графа Γ' .

В следствии 1.1.6 из [1] доказано, что если Γ — связный реберно регулярный граф с $b_1=1$, то Γ — многоугольник или полный многодольный граф $K_{n\times 2}$. Реберно регулярные графы с $2\leqslant b_1\leqslant 4$ изучались в работе [2]. Реберно регулярные графы с $b_1=5$ исследовались в [3].

Следующий класс графов введен А.А.Махневым и Д.В.Падучих [4]. Для четного натурального числа ω через $MP(\omega)$ обозначим класс реберно регулярных графов Γ с параметрами $b_1=3\omega/2-3,\ k=\omega^2-3\omega/2,\ \lambda=\omega^2-3\omega+2,\ v=\omega^2,$ содержащими пару непересекающихся подграфов Ω и Ω' , изоморфных $K_{\omega\times\omega/2}$, причем любая вершина из Ω (из Ω') не смежна с единственной вершиной в каждой доле из Ω' (из Ω) и для любого ребра $\{d,e\}$ из Ω подграф $\Gamma-(d^\perp\cup e^\perp)$ является ребром из Ω' . Любой граф из MP(2) состоит из двух изолированных ребер, а граф из MP(4) совпадает с графом Клебша, имеющим параметры (16, 10, 6, 6). Существование графов из $MP(\omega)$ с $\omega\geqslant 8$ неизвестно. Пример графа с $\omega=6$ построен Д.В.Падучих с использованием компьютерных вычислений (см.[2]).

В данной работе рассматриваются вполне регулярные графы с $b_1 = 6$.

Теорема 1. Пусть Γ — связный вполне регулярный граф с параметрами (v, k, λ, μ) и $b_1 =$

- 6. Тогда Γ является одним из следующих графов:
- (1) полный многодольный граф $K_{r\times7}$, граф с параметрами (25,12,5,6), 7×7 -решетка, треугольный граф T(9), дополнительный граф к 5×5 -решетке или к треугольному графу T(7), граф Хофмана-Синглтона или его дополнение, граф с параметрами (26,10,3,4) или его дополнение:
- (2) полный двудольный граф $K_{8,8}$ с удаленным максимальным паросочетанием, граф Тэйлора с параметрами (28, 13, 6, 6), в котором окрестности вершин изоморфны графу Пэли P(13), или граф Тэйлора с параметрами (32, 15, 8, 6), в котором окрестности вершин изоморфны треугольному графу T(6);
 - $(3) \mu = 4, k = 12, c_3(u, y) \geqslant 6$ для любых вершин $u, y \ c \ d(u, y) = 3 \ u$ диаметр Γ равен 3;
 - $(4) \mu = 3 u либо$
- (i) $\Gamma- \partial u c manuuonno регулярный граф с массивом пересечений <math display="inline">\{8,6,1;1,3,8\},$ либо
- (ii) Γ локально девятиугольный граф диаметра 3, каждый μ -подграф является 3-кокликой или объединением изолированной вершины и ребра, $b_2(u,x) \leq 3$ для любых вершин u,x c d(u,x) = 2 u $|\Gamma_3(u)| \leq 10$, либо
 - (iii) k = 10, либо
- $(iv)\ k=11,\ \Gamma$ является графом диаметра $3\ u\ c_3(u,y)\geqslant 5\ для$ любых вершин $u,y\ c\ d(u,y)=3;$
 - (5) $\mu = 2$ и либо
- (i) $\Gamma-\partial ucmanuuonno$ регулярный граф с массивом пересечений $\{9,6,1;1,2,9\}$, граф Конвея-Смит или граф Доро, либо
- (ii) Γ является ректаграфом с $v \leqslant 2^7$ и диаметра, не большего 7 (в случае $v = 2^7$ или $d(\Gamma) = 7$ граф Γ является 7-кубом), либо
- (iii) окрестность каждой вершины в Γ является объединением четырех изолированных ребер;
- (6) $\mu=1$ и окрестность каждой вершины является 7-кокликой, или объединением изолированных n-клик для n=2,3 или 6.

1. Предварительные результаты

В этом параграфе приведены некоторые вспомогательные результаты.

- **Пемма 1.1.** Пусть Γ реберно регулярный граф с параметрами (v, k, λ) и $b_1 = k \lambda 1$. Если вершины u, w находятся на расстоянии 2 в Γ , то выполняются следующие утверждения:
 - (1) степень любой вершины в графе $[u] \cap [w]$ из Γ не меньше $k-2b_1$;
- (2) вершина d имеет степень α в графе $[u] \cap [w]$ тогда и только тогда, когда [d] содержит точно $\alpha (k 2b_1)$ вершин вне $u^{\perp} \cup w^{\perp}$;
- (3) если $\mu(u,w) = k 2b_1 + 1$, то подграф $[u] \cap [w]$ является кликой $u \ [d] \subset u^{\perp} \cup w^{\perp}$ для любой вершины $d \in [u] \cap [w]$;
 - (4) если $\Gamma (u^{\perp} \cup w^{\perp})$ содержит единственную вершину z, то $\mu(u,z) = \mu(w,z)$.

Доказательство. Пусть $d \in [u] \cap [w]$. Тогда $|[d] - [u]| = |[d] - [w]| = b_1$. Поэтому по крайней мере $k - 2b_1$ вершин из [d] содержится в $[u] \cap [w]$. Утверждение (1) доказано.

Пусть $d \in [u] \cap [w]$ и степень d в этом μ -подграфе равна α . Тогда $k = \alpha + 2b_1 - |[d] - (u^{\perp} \cup w^{\perp})|$. Поэтому [d] содержит $\alpha - (k - 2b_1)$ вершин вне $u^{\perp} \cup w^{\perp}$. Верно и обратное. Утверждение (2) доказано.

Утверждение (3) следует из (1), (2).

Пусть $\{z\} = \Gamma - (u^{\perp} \cup w^{\perp})$. Так как число ребер между [u] - [w] и [w] - [u] равно $b_1|[u] - [w]| - \mu(u,z)$, то $\mu(u,z) = \mu(w,z)$.

Из леммы 1.1 следует, что в реберно регулярном графе для любых вершин u, w, находящихся на расстоянии 2, выполняется неравенство $\mu(u,w) \geqslant k-2b_1+1$. Пару вершин (u,w) с d(u,w)=2 назовем хорошей, если $\mu(u,w)=k-2b_1+1$. Если любая пара несмежных вершин графа Γ является хорошей, то Γ оказывается графом Тервиллигера без 3-лап и по теореме 1.2.3 из [1] получим, что Γ — граф прямых некоторого реберно регулярного графа Δ с $k_{\Delta}=2(\lambda_{\delta}+1)$ или граф икосаэдра.

Пусть до конца параграфа Γ — реберно регулярный граф с параметрами (v,k,λ) . Число ребер в Γ (в окрестности вершины из Γ) равно vk/2 (равно $k\lambda/2$), поэтому vk и $k\lambda$ четны. Число треугольников в Γ равно $vk\lambda/6$, поэтому $vk\lambda$ делится на 3.

Лемма 1.2. Пусть (u,w)- хорошая пара $u\;\mu(u,z)\leqslant k-2b_1+2\;$ для смежной $c\;w$ вершины $z\;$ из $\Gamma_2(u).\;$ Тогда $|[u]\cap [w]\cap [z]|<2.$

Доказательство. Утверждение следует из леммы 1.6 работы [5]. □

Лемма 1.3. Пусть $u \in \Gamma$ u w, z — несмежные вершины из $\Gamma_2(u)$ c $\mu(u, w) = \mu(u, z) = k - 2b_1 + 2$. Если $k \geqslant 3b_1 - 3$, то $|[u] \cap [w] \cap [z]| < 2$.

Доказательство. Утверждение следует из лемм 4, 5 работы [3]. □

Лемма 1.4. Пусть Γ — реберно регулярный граф с $k \geqslant 3b_1-3$, $\mu(u,w)+\mu(u,z)=2k-4b_1+4$ для смежных вершин w,z из $\Gamma_2(u)$, $\Delta=[u]\cap[w]\cap[z]$ и $\delta=|\Delta|$. Тогда выполняется одно из утверждений:

- (1) Δ содержит две несмежные вершины и $\delta = 2$;
- (2) вершины w, z смежны, Δ является кликой u если $\delta > 1$, то либо
- (i) подграф Δ содержит единственную вершину d, смежную c вершиной вне $u^{\perp} \cup [w] \cup [z]$, $\delta = 2$ u для $e \in \Delta(d)$ подграф $[d] \cup [e]$ содержит $[w] \cap [z] [u]$, a $[d] \cap [e]$ содержится e $\{u, w, z\} \cup ([u] \cap ([w] \cup [z])) \cup ([w] \cap [z] [u])$, либо
- (ii) подграф Δ не содержит вершин, смежных с вершиной вне $u^{\perp} \cup [w] \cup [z]$, и для любых двух вершин $d, e \in \Delta$ подграф $[d] \cap [e]$ содержит $\lambda 1 + \gamma$ вершин из $\{u, w, z\} \cup ([u] \cap [w] \cup [z])) \cup ([w] \cap [z] [u])$, где $\gamma = |\Delta ([d] \cup [e])|$.

Доказательство. Это лемма 1.7 из [5].

Сильно регулярные графы с собственным значением -2 были классифицированы Зейделем (теорема 3.12.4 [1]). Любой Зейделев граф — это либо полный многодольный граф $K_{r\times 2}$, либо решетчатый или треугольный граф, либо один из графов Шрикханде, Чанга, Петерсена, Клебша или Шлефли.

Пемма 1.5. Пусть Γ — сильно регулярный граф, имеющий целочисленные собственные значения, и $b_1 = k - \lambda - 1$. Тогда

(1) если b_1 — простое число, то Γ является полным многодольным графом $K_{r \times (b_1+1)}$ или Зейделевым графом;

- (2) если $b_1 = 2p, p-n$ ростое число, то Γ либо является полным многодольным графом, либо имеет собственное значение -2 или -3, либо является дополнительным κ Зейделеву графу;
- (3) если $b_1 = 6$, то Γ является полным многодольным графом $K_{r \times 7}$, графом c параметрами (25,12,5,6), 7×7 -решеткой, треугольным графом T(9), дополнительным графом κ 5×5 -решетке или κ треугольному графу T(7), графом Хофмана-Синглтона или его дополнением, графом κ параметрами (26,10,3,4) или его дополнением.

Доказательство. Утверждения (1–2) следуют из леммы 4 работы [2]. Пусть $b_1=6$. Если Γ является Зейделевым графом или дополнительным к Зейделеву графу, то заключение леммы выполняется. Пусть Γ имеет собственное значение -3. Тогда $b_1=6=2(n-2)$, $n=5,\ k=\lambda+7$ и $\mu=\lambda+1$. Из прямоугольного соотношения и условия целочисленности следует, что $\lambda+1$ делит $6(\lambda+7)$ и $5(\lambda+1)$ делит $2(\lambda+7)(\lambda+10)$. Отсюда $\lambda\in\{0,3,5,8,35\}$. В случае $\lambda=0$ граф Γ является графом Хофмана-Синглтона. В случае $\lambda=3$ граф Γ является графом Пэли с параметрами (26, 10, 3, 4). В случае $\lambda=5$ граф Γ имеет параметры (25, 12, 5, 6). В случае $\lambda=8$ граф Γ является дополнительным к графу с параметрами (26, 10, 3, 4). Наконец, в случае $\lambda=35$ граф Γ является дополнительным к графу Хофмана-Синглтона.

Лемма 1.6. Пусть Γ — связный реберно регулярный граф с параметрами (v, k, λ) и $b_1 = 6$. Если $k \ge 25$, то либо граф Γ сильно регулярен, либо Γ принадлежит MP(6).

 \mathcal{A} оказательство. Пусть Γ — неполный связный реберно регулярный граф с параметрами (v,k,λ) , не являющийся сильно регулярным. Ввиду теоремы 1.4.3 из [1] имеем $k<(b_1^2+3b_1+2)/2$ и $v<1+k+kb_1/(k-2b_1+1)$. В случае $b_1=6$ имеем $k\leqslant 27$ и v<1+k+6k/(k-11). Если $k\geqslant 25$, то ввиду следствия из [5] либо граф Γ принадлежит MP(6), либо для графа $\Delta=\overline{\Gamma}$ выполняется одно из следующих утверждений:

- (i) граф Δ разбивается дополнительными графами для 4-трапов Мебиуса $\Phi_1,...,\Phi_r$, где r=v/8 и граф Δ^* на множестве вершин $\{\Phi_1,...,\Phi_r\}$, в котором вершины Φ_i и Φ_j смежны, если некоторая вершина из Φ_i смежна с вершиной из Φ_j в графе Δ , является сильно регулярным с параметрами $(v/8,t^2-9,6,16)$ и t=12 или 36;
- (ii) граф Δ разбивается 3×3 решетками $\Omega_1, ..., \Omega_s$, где s = v/9 и граф Δ° на множестве вершин $\{\Omega_1, ..., \Omega_s\}$, в котором вершины Ω_i и Ω_j смежны, если некоторая вершина из Ω_i смежна с вершиной из Ω_j в графе Δ , является сильно регулярным с параметрами $(v/9, t^2 7, 8, 18)$ и t = 7, 14 или 28;
- (iii) граф Λ на множестве вершин графа Δ , в котором вершины u,w смежны, если они смежны в Δ и $|\Delta(u)\cap\Delta(w)|=0$, дистанционно регулярный граф диаметра 4 либо имеющий массив пересечений $\{136,135,6,1;1,2,135,136\}$ и являющийся антиподальным 4-накрытием сильно регулярного графа с параметрами (2432,136,0,8), либо имеющий массив пересечений $\{x,x-1,4,1;1,2,x-1,x\}$ и являющийся антиподальным 3-накрытием сильно регулярного графа с параметрами ((x+2)(x+3)/6,x,0,6).

Так как $v \leq 38$, то граф Γ принадлежит MP(6).

Пемма 1.7. Пусть Γ — реберно регулярный граф с параметрами (v, k, λ) . Если $k \geqslant 3b_1$, то диаметр Γ не больше 2.

Доказательство. Это лемма 1.4.1 из [1].

Лемма 1.8. Пусть Γ — связный вполне регулярный граф с параметрами $\lambda \leqslant \mu \neq 1$. Если $d(u,w)=i,\ i\geqslant 2\ u\ x\in [w]\cap \Gamma_{i-1}(u),\ mo\ c_i(u,w)\geqslant c_{i-1}(u,x)+1\ u\ c_i(u,w)\geqslant \mu-2+i.$

Доказательство. Доказательство леммы следует из доказательства предложения 1.9.1 [1].

2. Графы с $b_1 = 6$, μ -подграфы большие или кокликовые

В этом параграфе Γ – связный вполне регулярный граф с параметрами (v,k,λ,μ) диаметра, большего 2 и $b_1=6$. В этом случае $\mu\leqslant b_1$. Если $\mu\leqslant k-2b_1+2$, то либо $\mu=k-2b_1+1=k-11$ и Γ — граф с $\mu=1$, в котором окрестность любой вершины — объединение двух изолированных 6-клик, либо $\mu=k-2b_1+2$ и, по следствию из [6], либо диаметр Γ равен 2, либо k=3. Поэтому можно считать, что $\mu\geqslant k-2b_1+3$. Пусть uwxy — геодезический путь, $c_3(u,y)=t$, $[u]\cap \Gamma_2(y)=\{w_1,...,w_t\}$ и $[y]\cap \Gamma_2(u)=\{x_1,...,x_t\}$.

Лемма 2.1. Если $\mu = 6$, то Γ является либо полным двудольным графом $K_{8,8}$ с удаленным максимальным паросочетанием, либо графом Тэйлора с параметрами (28,13,6,6), в котором окрестности вершин изоморфны графу Пэли P(13), либо графом Тэйлора с параметрами (32,15,8,6), в котором окрестности вершин изоморфны треугольному графу T(6).

Доказательство. Пусть $\mu=6$. По теореме 1.5.5 из [1] граф Γ является многоугольником или графом Тэйлора. По теореме 1.5.3 из [1] окрестности вершин в Γ являются кокликами или сильно регулярными графами с параметрами (v',k',λ',μ') и $k'=2\mu'$. В первом случае k=7 и Γ является полным двудольным графом $K_{8,8}$ с удаленным максимальным паросочетанием.

Во втором случае $k'=\lambda$ и v'=k. Если $\mu'=2$, то k'=4 и v'=k=9. Противоречие с тем, что в этом случае $b_1=4$. Если $\mu'=3$, то k'=6 и v'=k=13. В этом случае $18=6(5-\lambda')$, поэтому $\lambda'=2$ и окрестности вершин в Γ изоморфны графу Пэли P(13).

Если $\mu'=4$, то k'=8 и k=15. В этом случае окрестность каждой вершины в Γ изоморфна треугольному графу T(6).

Лемма 2.2. Параметр μ не равен 5.

Доказательство. Пусть $\mu = 5$. По прямоугольному соотношению $kb_1 = k_2\mu$ параметр k делится на 5 и по лемме 1.7 имеем $k \leq 15$. Если k = 15, то $\mu = k - 2b_1 + 2$, противоречие.

Пусть k=10. Тогда $|\Gamma_2(u)|=12$ и по лемме 1.8 имеем $t\geqslant 6$. В случае t=6 каждая вершина из $\{w_1,...,w_6\}$ смежна с 5 вершинами из $\{x_1,...,x_6\}$, поэтому $[w_i]\cap [w_j]$ содержит u и не менее 4 вершин из $\{x_1,...,x_t\}$. В частности, $\{w_1,...,w_6\}$ является кокликой. Теперь число ребер между $[w_1]\cap \{x_1,...,x_6\}$ и $[w_1]-[y]$ равно 15, поэтому некоторая вершина из $[w_1]-(\{u\}\cup [y])$ смежна с 4 вершинами из $[w_1]\cap \{x_1,...,x_6\}$, противоречие.

В случае t=7 подграф $[w_i]\cap [w_j]$ содержит u и не менее 3 вершин из $\{x_1,...,x_7\}$. В частности, $\{w_1,...,w_7\}$ является кокликой. Противоречие как и выше. Итак, $c_3(u,y)\geqslant 8$ для любой вершины $y\in \Gamma_3(u)$. Если y,z — различные вершины из $\Gamma_3(u)$, то $[y]\cap [z]$ содержит не менее 4 вершин из $\Gamma_2(u)$. Отсюда $\Gamma_3(u)$ состоит из вершин, расстояние между которыми равно 2, и $c_3(u,y)=10$. Поэтому $|\Gamma_3(u)|=1$, $|\Gamma_2(u)\cap\Gamma_2(y)|=2$ и $\Gamma_2(u)\cap\Gamma_2(y)=\{p,q\}$. Далее, каждая вершина из $[u]\cup [y]$ смежна с единственной вершиной из $\{p,q\}$ и каждая из вершин p,q смежна с 10 вершинами из $[u]\cup [y]$. Поэтому d(p,q)=3, и подграф $\{u,y,p,q\}$ однозначно восстанавливается по любой его вершине. Таким образом, множество вершин графа Γ разбивается шестью 4-кокликами $C_1,...,C_6$, где $C_1=\{u,y,p,q\}$. Если $a\notin C_i$, то вершина a смежна точно с b вершинами из b.

Для вершины $a \in [u] \cap [p]$ ее антипод a^* принадлежит $[q] \cap [y]$. Противоречие с тем, что $[p] \cap [y]$ содержит не менее 4 вершин, не лежащих в $[a] \cup [a^*]$.

Лемма 2.3. Если $\mu = 4$, то k = 12, $c_3(u, y) \geqslant 6$ и диаметр Γ равен 3.

Доказательство. Пусть $\mu=4$. По прямоугольному соотношению k четно и v-k-1 делится на 3. Если Γ — граф с $k\geqslant 3b_1-2$, то, по следствию из [7], либо $b_1\leqslant 2$, либо диаметр Γ равен 2. Отсюда $k\leqslant 15$, причем в случае k=14 имеем $\mu=k-2b_1+2$.

Пусть k=8. Тогда окрестность любой вершины в Γ является объединением 4 изолированных ребер и диаметр Γ равен 2.

Пусть k=10. Тогда $\lambda=3$, $|\Gamma_2(u)|=15$ и по лемме 1.8 имеем $t\geqslant 5$. В случае t=5 каждая вершина из $\{w_1,...,w_5\}$ смежна с 4 вершинами из $\{x_1,...,x_5\}$, поэтому $[w_i]\cap [w_j]$ содержит u и не менее 3 вершин из $\{x_1,...,x_5\}$. В частности, $\{w_1,...,w_5\}$ является кокликой. Теперь $\{w_1,...,w_5\}\cap [x_1]$ содержит 6 пар вершин, каждая из которых лежит в пересечении окрестностей 2 вершин из $\Gamma-\{u,x_1\}$. С другой стороны, каждая из вершин $\{x_2,...,x_5\}$ смежна с 3 вершинами из $\{w_1,...,w_5\}\cap [x_1]$, поэтому каждая вершина из $[x_1]-[u]$ смежна не более чем с одной вершиной из $\{w_1,...,w_5\}\cap [x_1]$. Противоречие с тем, что число ребер между $\{w_1,...,w_5\}\cap [x_1]$ и [x]-[u] равно 4λ и не больше $\lambda+2$.

В случае t=6 каждая вершина из $\{w_1,...,w_6\}$ смежна с 4 вершинами из $\{x_1,...,x_6\}$, поэтому для смежных вершин w_i,w_j подграф $[w_i]\cap [w_j]$ содержит u и 2 вершины из $\{x_1,...,x_6\}$. В частности, $[w_i]\cup [w_j]$ содержит $\{x_1,...,x_6\}$ и $\{w_1,...,w_6\}$ не содержит треугольников. Если $w_1w_2w_3$ является 2-путем, то $[w_1]\cap [w_3]$ содержит u,w_2 и 2 вершины из $\{x_1,...,x_6\}$.

Пусть $z \in [y] \cap \Gamma_3(u)$. Тогда $[u] \cap \Gamma_2(y) \cap \Gamma_2(z)$ содержит 2 вершины w_i, w_j . Далее, $[w_i]$ содержит по 4 вершины из [y], [z] и не менее 2 вершин из $[y] \cap [z]$. Без ограничения общности, $x_1, x_2 \in [w_i] \cap [y] \cap [z]$. Тогда $[x_1] \cap [x_2]$ содержит y, z и 2 из $\{w_1, ..., w_6\}$, поэтому $[x_1] \cup [x_2]$ содержит $\{w_1, ..., w_6\}$ и $\{w_1, ..., w_6\} = [u] \cap \Gamma_2(z)$. Теперь можно считать, что $[y] \cap [z] \cap \Gamma_2(u) = \{x_1, x_2, x_3\}$, $[x_1] \cap [x_2] - \{y, z\} = \{w_1, w_2\}$, $[x_1] \cap [x_3] - \{y, z\} = \{w_3, w_4\}$ и $[x_2] \cap [x_3] - \{y, z\} = \{w_5, w_6\}$. Противоречие с тем, что $[w_1] \cap [w_2]$ содержит u, x_1, x_2 и по вершине из $[y] \cap \Gamma_2(u) - [z]$ и из $[z] \cap \Gamma_2(u) - [y]$.

Значит, $[y] \cap \Gamma_4(u)$ является 4-кликой и $[y] \cap \Gamma_3(u)$ — призма или полный двудольный граф $K_{3,3}$. Противоречие с тем, что $[y] \cap \Gamma_2(u)$ не содержит четырехугольников.

Пусть $t=7,\ z\in [y]\cap \Gamma_3(u)$. Тогда $[u]\cap \Gamma_2(y)\cap \Gamma_2(z)$ содержит 4 вершины и число ребер между $\{w_1,...,w_7\}\cap \Gamma_2(z)$ и $\{x_1,...,x_7\}\cap [z]$ не меньше 8. Если $|[z]\cap \{x_1,...,x_7\}|=2$, то $|[u]\cap \Gamma_2(z)|=4$ и для различных вершин $a,e\in [z]\cap \{x_1,...,x_7\}$ подграф $[a]\cap [e]$ содержит y,z и 4 вершины из $[u]\cap \Gamma_2(z)$, противоречие. Если $|[z]\cap \{x_1,...,x_7\}|=3$, то снова $|[u]\cap \Gamma_2(z)|=7$ и некоторая вершина из $[z]\cap \{x_1,...,x_7\}$ смежна с 5 вершинами из $\{w_1,...,w_7\}$, противоречие.

Пусть $t=8, z\in [y]\cap \Gamma_3(u)$. Тогда $[u]\cap \Gamma_2(y)\cap \Gamma_2(z)$ содержит 6 вершин и число ребер между $\{w_1,...,w_8\}\cap \Gamma_2(z)$ и $\{x_1,...,x_8\}\cap [z]$ не меньше 12. Поэтому $|[z]\cap \{x_1,...,x_7\}|=3$ и каждая вершина из $\Gamma-(\{y,z\}\cup \{w_1,...,w_8\}\cap \Gamma_2(z))$ смежна не более чем с одной вершиной из $[z]\cap \{x_1,...,x_7\}$. Для отличной от z вершины z' из $[y]\cap \Gamma_3(u)$ подграф $[z']\cap \Gamma_2(u)$ содержит 2 вершины вне $[y]\cup [z]$ и по 3 вершины из [y]-[z] и из [z]-[y]. Поэтому для отличной от y вершины y' из $[z]\cap \Gamma_3(u)$ подграф $[y']\cap [z']\cap \Gamma_2(u)$ содержит 2 вершины вне $[y]\cup [z]$ и по вершине из [y]-[z] и из [z]-[y]. Далее, $\{w_1,...,w_8\}\cap \Gamma_2(z)\cap \Gamma_2(y')\cap \Gamma_2(z')$ содержит 2 вершины w_i,w_j и $[w_i]\cap [w_j]$ содержит u и 4 вершины из $\{x_1,...,x_8\}\cap ([z]\cup ([y']\cap [z']))$, противоречие.

Как и ранее доказывается, что $c_3(u,y) \neq 9$. Поэтому $c_3(u,y) = 10$, $|\Gamma_3(u)| = 1$ и $|\Gamma_2(u) \cap \Gamma_2(y)| = 5$. Так как для любой вершины $p_i \in \Gamma_2(u) \cap \Gamma_2(y)$ подграф $[p_i]$ содержит по 4

вершины из [u], [y] и 2 вершины из $\Gamma_2(u) \cap \Gamma_2(y)$, то $\Gamma_2(u) \cap \Gamma_2(y)$ является пятиугольником. Противоречие с тем, что для каждой вершины u найдется единственный антипод u^* , а число вершин v нечетно.

Пусть k=12. Тогда $\lambda=5$ и $|\Gamma_2(u)|=18$. В случае t=4 каждая вершина из $\{w_1,...,w_4\}$ смежна с 4 вершинами из $\{x_1,...,x_4\}$, поэтому $[w_i]\cap [w_j]$ содержит u и 4 вершины из $\{x_1,...,x_4\}$. Поэтому $\{w_1,...,w_4\}$ является кликой. Противоречие с тем, что $[w_1]\cap [w_2]$ содержит u,w_3,w_4 и 4 вершины из $\{x_1,...,x_4\}$.

В случае t=5 каждая вершина из $\{w_1,...,w_5\}$ смежна с 4 вершинами из $\{x_1,...,x_5\}$, поэтому $[w_i]\cap [w_j]$ содержит u и не менее 3 вершин из $\{x_1,...,x_5\}$. Без ограничения общности, вершина w_i не смежна с x_i . Пусть степень вершины w_1 в графе $\{w_1,...,w_5\}$ равна α . Если $\alpha=4$, то степень вершины w_i в графе $\{w_2,...,w_5\}$ не больше 1 и число ребер между $\{w_2,...,w_5\}$ и $[u]-\Gamma_2(y)$ не меньше 12. Противоречие с тем, что $[u]-\Gamma_2(y)$ содержит не менее 5 вершин, смежных с парами вершин из $\{w_2,...,w_5\}$.

Если $\alpha=3$ и вершина w_5 не смежна с w_1 , то вершина w_1 изолирована в графе $\{w_1,...,w_5\}$ и число ребер между $\{w_1,...,w_4\}$ и $[u]-(\Gamma_2(y)\cup [w_5])$ не меньше 11, противоречие.

Если $\alpha=2$ и если вершины w_4,w_5 не смежны с w_1 , то $[w_4]\cap [w_5]$ содержит u,3 вершины из $\{x_1,...,x_5\}$ и вершину из $[u]-\{w_1,...,w_5\}$. В этом случае $[u]-\{w_1,...,w_5\}$ содержится в $[w_4]\cup [w_5]$, противоречие с тем, что $[w_2]$ содержит не менее 3 вершин из $[u]-\{w_1,...,w_4\}$.

Если $\alpha=1$ и вершины $w_3,...,w_5$ не смежны с w_1 , то можно считать, что вершина w_5 изолирована в графе $\{w_1,...,w_5\}$ и число ребер между $\{w_1,...,w_4\}$ и $[u]-(\Gamma_2(y)\cup [w_5])$ не меньше 16, противоречие.

Значит, подграф $\{w_1,...,w_5\}$ является кокликой и $[w_i] \cap [w_j]$ содержит u и 3 вершины из $\{x_1,...,x_5\}$. Противоречие с тем, что число ребер между $\{w_1,...,w_5\}$ и $[u] - \Gamma_2(y)$ равно 25.

В случае t=6 каждая вершина из $\{w_1,...,w_6\}$ смежна с 4 вершинами из $\{x_1,...,x_6\}$. Для вершин $w_i,w_j\in\{w_1,...,w_6\}-[x_6]$ подграф $[w_i]\cap[w_j]$ содержит u и не менее 3 вершин из $\{x_1,...,x_5\}$.

Покажем, что подграф $[u] \cap [x_i]$ получается удалением из 4-клики не менее двух ребер. Без ограничения общности, $[u] \cap [x_i] = \{w_1, ..., w_4\}$. Если $\{w_1, ..., w_4\}$ является кликой, то $[w_1] \cap [w_2]$ содержит u, x_i, w_3, w_4 и не более одной вершины из $[y] \cap \Gamma_2(u) - \{x_i\}$. Поэтому $[w_1] \cup [w_2]$ содержит $[y] \cap \Gamma_2(u)$. Противоречие с тем, что $[w_3] \cap [w_4]$ содержит u, x_i, w_1, w_2 и 2 вершины из $[y] \cap \Gamma_2(u) - [w_1]$. Пусть подграф $[u] \cap [x_i]$ получается удалением из 4-клики ребра $\{w_1, w_2\}$. Тогда $[w_1] \cap [w_2]$ содержит u, x_i, w_3, w_4 и вершину из $[y] \cap \Gamma_2(u) - \{x_i\}$, противоречие.

Заметим теперь, что диаметр Γ равен 3. В противном случае для геодезического пути uwxyz число ребер между $([u] \cap [x]) \cup ([x] \cap [z])$ и $[x] - ([u] \cup [z])$ не меньше 24 и некоторая вершина из $[x] - ([u] \cup [z])$ смежна с 6 вершинами из $([u] \cap [x]) \cup ([x] \cap [z])$, противоречие. \square

В леммах 2.4–2.6 предполагается, что каждый μ -подграф является кокликой. Тогда окрестность любой вершины является объединением изолированных клик и $\lambda+1$ делит 6. Если окрестность каждой вершины в Γ является объединением двух изолированных 6-клик, то $\mu=1$.

Пемма 2.4. Если Γ является регулярным графом без треугольников, то либо $\mu=1$, либо $\mu=2$, граф Γ является ректаграфом с $v\leqslant 2^7$ и диаметра, не большего 7 (в случае $v=2^7$ или $d(\Gamma)=7$ граф Γ является 7-кубом).

Доказательство. Если $\lambda=0$, то $\mu\in\{1,2,3\}$. В случае $\mu=2$ граф Γ является ректаграфом, по предложению 1.13.1 из [1] имеем $v\leqslant 2^7$ и в случае $v=2^7$ граф Γ является 7-кубом. По теореме 1.13.2 из [1] диаметр Γ не больше 7 и в случае $d(\Gamma)=7$ граф Γ является 7-кубом.

Если диаметр Γ равен 6 и pquwxyz — геодезический путь в Γ , то $c_3(p,w)+c_3(z,w)\leqslant 7$, поэтому можно считать, что $c_3(p,w)=3$.

В случае $\mu=3$ по предложению 1.9.1 из [1] имеем $c_i(e,f)\geqslant 1+i$ для вершин e,f с d(e,f)=i.

Пусть $c_3(u,y)=t=4$. Тогда $[w_i]\cap [w_j]$ содержит u и 2 вершины из $[y]\cap \Gamma_2(u)$. Если $z\in [y]\cap \Gamma_4(u)$, то $[x]\cap [z]$ содержит различные вершины y,y'. В этом случае $\{w_1,...,w_3\}=[u]\cap [x]$ содержится в $\Gamma_2(y)\cap \Gamma_2(y')$. Поэтому $[y']\cap \Gamma_2(u)-\{x\}$ содержит по 2 вершины из $[w_i]$ для i=1,2,3. Отсюда $[[y']\cap \Gamma_2(u)]\geqslant 7$, противоречие.

Положим $\{y_1, y_2, y_3\} = [y] \cap \Gamma_3(u)$. Тогда $[u] \cap \Gamma_2(y_1)$ содержит единственную вершину из $\Gamma_2(y)$, в частности, $c_3(u, y_i) = 4$. Аналогично, $[u] \cap \Gamma_2(y_2)$ содержит единственную вершину из $\Gamma_2(y)$ и $\Gamma_2(y_1) \cap \Gamma_2(y_2) \cap \Gamma_2(y_3)$ содержит $[u] - \Gamma_2(y)$. Противоречие с тем, что для двух вершин $w_5, w_6 \in [u] - \Gamma_2(y)$ подграф $[w_5] \cap [w_6]$ содержит 2 вершины из $[y_1] \cap [y_2]$.

Пусть t=5. Тогда для $w_i,w_j\in [u]\cap \Gamma_2(y)-[x_1]$ подграф $[w_i]\cap [w_j]$ содержит u и 2 вершины из $[y]\cap \Gamma_2(u)$. Если $z\in [y]\cap \Gamma_4(u)$, то $[x]\cap [z]$ содержит 3 вершины y,y',y''. Если $[y]\cap [y']$ содержит 2 вершины x,x', то $[x]\cap [x']$ содержит y,y' и вершину из $[u]\cap \Gamma_2(y)$. В этом случае $[u]\cap \Gamma_2(y)=[u]\cap \Gamma_2(y')$ и для $w_i,w_j\notin [x]$ подграф $[w_i]\cap [w_j]$ содержит u,x' и по вершине из $\Gamma_2(u)-[y]$ и из $\Gamma_2(u)-[y']$, противоречие. Значит, $[y]\cap [y']$ содержит единственную вершину из $\Gamma_2(u)$. Противоречие с тем, что для $w\in [u]\cap [x]$ подграф $[w]\cap \Gamma_2(u)-\{x\}$ содержит по 2 вершины из [y],[y'] и из [y''].

Положим $\{y_1, y_2\} = [y] \cap \Gamma_3(u)$. Тогда $[u] \cap \Gamma_2(y_1)$ содержит не менее 3 вершин из $\Gamma_2(y)$. Отсюда $[u] \cap \Gamma_2(y)$ содержит вершину w из $\Gamma_2(y_1) \cap \Gamma_2(y_2)$. Подграф $[w] \cap \Gamma_2(u)$ содержит по 3 вершины из [y] и из $[y_1] \cap [y_2]$, противоречие.

Пусть t=7. Если $\Gamma_3(u)\cap\Gamma_3(y)$ содержит вершину z, то Γ — дистанционно регулярный граф с массивом пересечений $\{7,6,1;1,3,7\}$. Противоречие с тем, что некоторое собственное значение графа имеет не целочисленную кратность.

Положим $\Delta = \Gamma_2(u) \cap \Gamma_2(y)$. Если $p \in \Delta$, то [p] содержит по 3 вершины из [u], [y] и вершину из $\Delta \cup \Gamma_3(u) \cup \Gamma_3(y)$. Далее, для любой вершины $x \in [y]$ подграф [x] содержит y и по 3 вершины из [u] и из Δ . Так как $|\Delta| = 7$, то можно считать, что [p] содержит вершину z из $\Gamma_3(u) \cap \Gamma_2(y)$. В этом случае [z] содержит 3 вершины из [y] и 3 или 4 вершины из Δ , противоречие.

Итак, Γ — граф с $c_3 = 6$. Если $z \in [y] \cap \Gamma_3(u)$, то $[u] \cap \Gamma_2(y) \cap \Gamma_2(z)$ содержит не менее 5 вершин, каждая из которых смежна с 3 вершинами из [y] и с 3 из [z]. Для вершины $q \in \Gamma_2(u) - ([y] \cup [z])$ подграф [q] содержит не более 2 вершин из [u], противоречие. Итак, в случае $\lambda = 0$ выполняется заключение леммы.

Лемма 2.5. Если окрестность каждой вершины в Γ является объединением четырех изолированных ребер, то либо Γ — дистанционно регулярный граф с массивом пересечений $\{8,6,1;1,3,8\}$, либо $\mu \leqslant 2$.

Доказательство. Пусть Γ — граф с $\lambda=1$. Если $\mu=2$, то по предложению 1.9.1 из [1] имеем $c_i(e,f)\geqslant i$ и диаметр Γ не больше 7.

Пусть $\mu=3$. Тогда $|\Gamma_2(u)|=16$ и $c_3(u,y)\geqslant 4$. Далее, любая вершина из $\Gamma_2(u)$ смежна с единственной вершиной или с ребром из $\Gamma_3(u)$. Если $c_3(u,y)=t=4$, то $[x_i]\cap [x_j]$ содержит y и 2 вершины из $\Gamma_2(y)\cap [u]$, поэтому подграф $[u]\cap \Gamma_2(y)$ является кокликой. Для $z\in \Gamma_3(u)\cap [y]$ подграф $[u]\cap \Gamma_2(z)$ содержит 3 вершины w_1,w_2,w_3 из $[u]\cap [x]$, где $x\in [y]\cap [z]$. Так как $[w_i]\cap [w_j]$ содержит u и 2 вершины из $[y]\cap \Gamma_2(u)$, то $[z]\cap \Gamma_2(u)-\{x\}$ содержит по 2 вершины из $[w_1]$, $[w_2]$, $[w_3]$ и $c_3(u,z)=7$.

Для $z' \in \Gamma_3(u) \cap [y] - \{z\}$ подграф $[u] \cap \Gamma_2(z')$ содержит 3 вершины w_1, w_2, w_4 из $[u] \cap [x']$, где $x' \in [y] \cap [z]$, причем $[z'] \cap \Gamma_2(u) - \{x'\}$ содержит 2 вершины из $[w_1]$ и $|[w_1] \cap \Gamma_2(u)| \geqslant 7$, противоречие.

Значит, $t \ge 5$ и $[y] \cap \Gamma_2(u)$ содержит ребро $\{x_1, x_2\}$ и $t \ge 6$.

Допустим, что $\Gamma_3(u)$ содержит 2 несмежные вершины y,z. Если d(y,z)=2, то $[y]\cap[z]\subset \Gamma_3(u)\cup\Gamma_4(u)$, противоречие с тем, что $c_3(u,y)\geqslant 6$. Значит, $d(y,z)\geqslant 3$ и диаметр Γ равен 3 (иначе для $o\in[y]\cap\Gamma_4(u)$ подграф $[o]\cap\Gamma_3(u)$ содержит несмежную с y вершину y', противоречие). Далее, $c_3(u,y)=8$. В противном случае для $o\in[y]\cap\Gamma_3(u)$ подграф $\Gamma_2(u)$ содержит не менее 11 вершин из $[o]\cap[y]$ и не менее 6 вершин из [z]. Таким образом, Γ — дистанционно регулярный граф с массивом пересечений $\{8,6,1;1,3,8\}$, и выполняется заключение леммы.

Пусть $\Gamma_3(u)$ является кликой. Если $|\Gamma_3(u)|=1$, то v=26, противоречие с тем, что $vk\lambda$ делится на 3. Если $\Gamma_3(u)=\{y,z\}$, то $c_3=7$ и $|[u]\cap\Gamma_2(y)\cap\Gamma_2(z)\geqslant 6$. Противоречие с тем, что для вершины o из $\Gamma_2(u)-([y]\cup[z])$ получим $|[u]\cap[o]|\leqslant 2$. \Box Замечание. Каждый дистанционно регулярный граф с массивом пересечений $\{8,6,1;1,3,8\}$ отвечает спреду обобщенного четырехугольника GQ(2,4) и GQ(2,4) с точностью до изоморфизма имеет 2 спреда.

Лемма 2.6. Если окрестность каждой вершины в Γ является объединением трех изолированных треугольников, то либо Γ — дистанционно регулярный граф с массивом пересечений $\{9,6,1;1,2,9\}$, либо $\mu=1$.

Доказательство. Пусть Γ — граф с $\lambda=2$ и $\mu=2$. Тогда диаметр Γ равен 3, $|\Gamma_2(u)|=27$, и любая вершина из $\Gamma_2(u)$ смежна с n-кликой из $\Gamma_3(u)$, $n\leqslant 3$. По лемме 1.8 имеем $c_3(f,g)\geqslant 3$ для любых вершин f,g с d(f,g)=3.

Покажем, что $\Gamma_2(u)\cap [y]$ содержит 3-коклику. Если $c_3(u,y)=t=3$, то $[x_i]\cap [x_i]$ содержит y и вершину из $\Gamma_2(y) \cap [u]$, поэтому подграф $[u] \cap \Gamma_2(y)$ является кокликой. Симметрично, подграф $[y] \cap \Gamma_2(u)$ является кокликой. Если $t \geqslant 5$, то $[y] \cap \Gamma_2(u)$ содержит 3-коклику. Пусть t=4 и подграф $[y] \cap \Gamma_2(u)$ содержит изолированные ребра $\{x_1,x_2\}$ и $\{x_3,x_4\}$. Так как подграфы $[u] \cap [x_1] = \{w_1, w_2\}$ и $[u] \cap [x_2] = \{w_3, w_4\}$ являются непересекающимися 2-кокликами, то можно считать, что вершина w_1 смежна с вершиной w_3 и подграф $[u] \cap$ $\Gamma_2(y)$ является объединением изолированного ребра $\{w_1, w_3\}$ и подграфа $\{w_2, w_4\}$. Повторив рассуждения для ребра $\{x_3, x_4\}$, убедимся, что единственная пара вершин из $\{w_1, ..., w_4\}$, попадающая в окрестность вершины из $\Gamma - (u^{\perp} \cup \{x_1,...,x_4\}),$ — это $\{w_2,w_4\}$ (при условии, что вершины w_2, w_4 не смежны). Пусть $\{z_1, z_2, z_3\} = [y] \cap \Gamma_3(u), \Delta$ состоит из вершин в $\Gamma_3(u) - \{y, z_1, z_2, z_3\}$, смежных с вершиной из $\{y, z_1, z_2, z_3\}$. Тогда $|\Delta| = 8$ и Δ имеет 12 ребер. Пусть Σ состоит из вершин в $\Gamma_2(u)$, не смежных с вершинами из $\{y, z_1, z_2, z_3\}$. Тогда $|\Sigma|=11,\,c_3(u,z)\geqslant 5$ для $z\in\Delta$ и число ребер между Σ и Δ не меньше 24. Пусть γ_i — число вершин из Σ , смежных точно с i вершинами из Δ . Тогда $\sum \gamma_i = 11, \ \sum i \gamma_i \geqslant 24$. Так как $\gamma_i=0$ для i>3 и $\gamma_3\leqslant 3$, то либо $\gamma_3=3, \gamma_2=7$ и $\gamma_1=1,$ либо $\gamma_3=2$ и $\gamma_2=9.$ В любом случае число ребер в Δ больше 12, противоречие.

Допустим, что $\Gamma_3(u)$ содержит 3-клику $\{y_1,...,y_3\}$. Тогда $\{y_1,...,y_3\}\subset [x]$ для некоторой вершины $x\in\Gamma_2(u)$, и $4\leqslant c_3(u,y_i)\leqslant 7$. Положим $\{w_1,w_2\}=[u]\cap [x]$. Тогда $[w_1]$ содержит по треугольнику из u^\perp , x^\perp и еще один треугольник $\{r_1,r_2,r_3\}$ из $\Gamma_2(u)$. Аналогично $[w_2]$ содержит треугольник $\{s_1,s_2,s_3\}$ из $\Gamma_2(u)-x^\perp$. Далее, $[w_1]\cap [y_i]$ содержит x и вершину из $\{r_1,r_2,r_3\}$. Без ограничения общности, вершина y_i смежна с r_i и с s_i .

Заметим, что треугольник $[w_1] \cap x^{\perp}$ изолирован от $\{r_1, r_2, r_3\}$ и от $\{s_1, s_2, s_3\}$ (например,

 $[r_i] \cap [x] = \{w_1, y_i\}$). Более того, вершины s_i, r_j не смежны для различных $i, j \in \{1, 2, 3\}$ (например, $[r_1] \cap [y_2] = \{r_2, y_1\}$ и вершины r_1, s_2 не смежны). Положим $[u] \cap w_1^{\perp} = \{w_3, w_4\}$. Если вершины r_1, s_1 смежны, то $[w_1] \cap [s_1]$ содержит вершину из $\{w_3, w_4\}$. Если вершины r_i, s_i смежны для всех i, то одна из вершин в $\{w_3, w_4\}$ смежна с 2 вершинами из $\{s_1, s_2, s_3\}$, противоречие. Пусть, для определенности, вершины r_1, s_1 не смежны. Заметим, что $[w_3] \cap [x]$ содержит w_1 и вершину из треугольника $[w_2] \cap x^{\perp}$, поэтому треугольник $[u] - (w_1 \perp \cup w_2^{\perp})$ попадает в $\Gamma_3(x)$.

Допустим, что $[y_1] \cap \Gamma_3(u)$ содержит вершину z_1 . Тогда $[x] \cap [z_1]$ содержит y_1 и вершину o из $[x] \cap ([w_1] \cup [w_2])$. Без ограничения общности, $o \in [w_1]$ и $[w_1] \cap [z_1]$ содержит o и вершину из $\{r_1, r_2, r_3\}$. Так как для i > 1 подграф $[y_1] \cap [r_i]$ содержит r_1, y_i , то $z_1 \in [r_1]$. Более того, для любого i вершины r_i, s_i не смежны.

Для i>1 подграф $[y_i]\cap [z_1]$ содержит y_1 и вершину $z_i\in \Gamma_3(u)$. Так как вершины z_2,z_3 не попадают в $(z_1^\perp\cap y_1^\perp)\cup (z_1^\perp\cap r_1^\perp)$, то $z_2,z_3\in [o]$, вершина z_2 смежна с r_2 и z_3 смежна с r_3 . Значит, клика $\{z_1,z_2,z_3\}$ содержится в [o] и $[u]\cap [o]=\{w,w_1\}$. Напомним, что $[u]-(w_1\perp\cup w_2^\perp)$ содержится в $\Gamma_3(x)$, поэтому $w\in [w_2]$. Отсюда $[u]-(w_1\perp\cup w_2^\perp)$ содержится в $\Gamma_3(x)$, поэтому $v\in [w_2]$. Отсюда $[u]-(w_1\perp\cup w_2^\perp)$ содержится в $\Gamma_3(x)\cap \Gamma_3(o)$.

Заметим, что $[w_2]$ не пересекает $\{r_1, r_2, r_3\}$, иначе $s_i \in \{r_1, r_2, r_3\}$ для некоторого $i \in \{1, 2, 3\}$. Положим $[u] \cap w_2^{\perp} = \{w_2, w, w'\}$. Так как $[u] \cap [r_i]$ содержит вершину из $\{w_2, w, w'\}$, то $r_1, r_2, r_3 \in [w']$, противоречие.

Итак, треугольник $\{y_1,y_2,y_3\}$ изолирован в $\Gamma_3(u)$, $|\Gamma_2(u)\cap(\cup_i[y_i])|=19$ и $c_3(u,y_i)=7$. Если $\Gamma_3(u)-\{y_1,y_2,y_3\}$ содержит вершину z, то $d(y_i,z)=3$ и $\Gamma_3(u)=\{y_1,y_2,y_3,z\}$, противоречие с тем, что [z] пересекает $\Gamma_2(u)\cap(\cup_i[y_i])$. Таким образом, $\Gamma_3(u)=\{y_1,y_2,y_3\}$. Положим $\Sigma=[x]\cap\Gamma_2(u),\ \Sigma'=\Gamma_2(u)-((\cup_i[y_i])\cup[x])$. Тогда $|\Sigma|=|\Sigma'|=4$, для любой вершины $p\in\Sigma$ подграф $[p]\cap\Sigma'$ является ребром, и для любой вершины $q\in\Sigma'$ подграф [q] содержит по 2 вершины из $[u],\ \Sigma$ и четное число вершин из $\Gamma_2(u)\cap(\cup_i[y_i])$. Поэтому Σ' является 4-кликой. Противоречие с тем, что каждая вершина из Σ' смежна с 2 вершинами из [u]-[x], и некоторая вершина из [u]-[x] смежна с 2 вершинами из Σ' .

Мы доказали, что для любой вершины u подграф $\Gamma_3(u)$ не содержит треугольников. Поэтому, в частности, $c_3(u,y)\leqslant 2$. Допустим, что $\Gamma_3(u)$ содержит 2-путь. Тогда связная компонента Δ графа $\Gamma_3(u)$, содержащая этот путь, является ректаграфом степени, не большей 3. Отсюда Δ — четырехугольник или куб. Если же $\Gamma_3(u)$ не содержит 2-путей, то $\Gamma_3(u)$ является объединением изолированных вершин и ребер.

Если Δ — куб, то число ребер между Δ и $\Gamma_2(u)$ равно 48, причем каждая вершина из Δ смежна с 3 изолированными ребрами из $\Gamma_2(u)$. Поэтому $\Gamma_2(u)$ содержит ровно 3 вершины p_1, p_2, p_3 , не смежные с вершинами из Δ и $\Gamma_3(u) = \Delta$. Если q, q^* — антиподы графа $\Gamma_3(u)$, то $\Gamma_3(q)$ — куб, антиподами в котором являются u, q^* . Поэтому p_1, p_2, p_3 лежат в $\Gamma_2(q)$ для любой вершины q из $\Gamma_3(u)$. Противоречие с тем, что $[p_1]$ содержит не менее 8 вершин из $\Gamma_2(u)$.

Через P(u) обозначим множество вершин из $\Gamma_2(u)$, не смежных с вершинами из $\Gamma_3(u)$. Тогда для любой вершины $p \in P(u)$ подграф p^{\perp} содержит единственную 4-клику из $\Gamma_2(u)$, причем каждая вершина из этой 4-клики принадлежит P(u). Поэтому P(u) имеет разбиение 4-кликами, и |P(u)| делится на 4.

Если Δ является 4-циклом y_1, y_2, y_3, y_4 , то число ребер между Δ и $\Gamma_2(u)$ равно 28, причем каждая вершина y_i из Δ смежна в $\Gamma_2(u)$ с 2 изолированными ребрами и треугольником. Поэтому $\Gamma_2(u)$ содержит 7-вершиный подграф $P(u) = \{p_1, ..., p_7\}$, противоречие.

Если $|\Gamma_3(u)| = 1$, то |P(u)| = 18, противоречие.

Пусть $|\Gamma_3(u)|=2$. Если $\Gamma_3(u)$ является кокликой, то |P(u)|=9, а если $\Gamma_3(u)$ является

кликой, то |P(u)| = 13. В любом случае имеем противоречие.

Пусть $|\Gamma_3(u)|=3$. Если $\Gamma_3(u)$ является кокликой для любой вершины u, то Γ — дистанционно регулярный граф с массивом пересечений $\{9,6,1;1,2,9\}$ и выполняется заключение леммы. Если $\Gamma_3(u)$ является объединением ребра $\{y,y'\}$ и изолированной вершины z, то |P(u)|=4. В этом случае $\Gamma_3(z)=\{u,y,y'\}$ и $|[u]\cap\Gamma_2(y)|=|[z]\cap\Gamma_2(y)|=8$, противоречие.

Пусть $|\Gamma_3(u)| = 4$. Если $\Gamma_3(u)$ является кокликой, то $|\Gamma_2(u)| \geqslant 36$. Значит, $\Gamma_3(u)$ содержит ребро $\{y,y'\}$. Число ребер между $\Gamma_2(u)$ и $\{y,y'\}$ равно 14. Если $\Gamma_3(u) - \{y,y'\}$ является кокликой, то $|\Gamma_2(u)| \geqslant 32$, а если $\Gamma_3(u) - \{y,y'\}$ является ребром, то $|\Gamma_2(u)| \geqslant 28$. В любом случае имеем противоречие.

Замечание. Дистанционно регулярный граф с массивом пересечений $\{9,6,1;1,2,9\}$ существует. Он получается удалением спреда из обобщенного четырехугольника GQ(3,3).

3. Графы с $b_1=6,\ \mu$ -подграфы малые, но не все кокликовые

До конца работы будем предполагать, что некоторый μ -подграф не является кокликой. Зафиксируем геодезический путь uwxy и положим $[u] \cap \Gamma_2(y) = \{w_1, ..., w_t\}$, $[y] \cap \Gamma_2(u) = \{x_1, ..., x_t\}$. В случае t = 4 либо $\{w_1, ..., w_4\}$ является кокликой, либо для смежных вершин w_i, w_j подграф $[w_i] \cap [w_j]$ содержит u и не менее двух вершин из $\{x_1, ..., x_4\}$. В последнем случае $\lambda \geqslant 3$ и $k \geqslant 10$.

Пусть $\mu=2$. Так как $k-2b_1+2\leqslant 2$, то $k\leqslant 12$. В случае k=12 имеем $\mu=k-2b_1+2$ и, по следствию из [9], Γ является графом Зейделя. Если $k\leqslant 8$, то каждый μ -подграф является кокликой. Поэтому $9\leqslant k\leqslant 11$.

Лемма 3.1. Если $\mu = 2$ и $k \leq 10$, то $\Gamma - \operatorname{граф}$ Конвея-Смит или граф Доро.

Доказательство. Пусть $\mu=2$ и k=9. Тогда окрестность каждой вершины является одним из графов:

- (i) девятиугольником;
- (*ii*) объединением треугольника и шестиугольника;
- (iii) объединением четырехугольника и пятиугольника.

Пусть [a] содержит треугольник $\{b_1,b_2,b_3\}$ и 6-цикл $c_1c_2...c_6$. Тогда $\Gamma_2(a)$ имеет разбиение на 3 шестивершинных подграфа $\{[c_i]-a^{\perp}\mid i=1,3,5\}$. Противоречие с тем, что $\Gamma_2(a)\cap [c_2]$ содержит по вершине из $[c_1],[c_3]$ и не более 2 вершин из $[c_5]$.

Если [a] содержит 4-цикл $b_1b_2...b_4$, то $\mu(b_1,b_3)=3$, противоречие.

Итак, в случае k=9 граф Γ является локально девятиугольным. Пусть [a] содержит 9-цикл $b_1b_2...b_9$. Положим $B_i=[b_i]-a^{\perp}$. Тогда B_3 не пересекает B_1,B_5 и $|B_1\cap B_5|\leqslant 1$. Противоречие с тем, что B_2 содержит по вершине из B_1,B_3 и не более 2 вершин из B_5 .

Пусть $\mu=2$ и k=10. Тогда окрестность каждой вершины является регулярным графом степени 3 на 10 вершинах. Ввиду теоремы 1.16.3 из [1] граф Γ является локально Петерсеновским графом Тервиллигера, поэтому Γ — граф Конвея-Смит или граф Доро. \square

Лемма 3.2. *Если* $\mu = 2$, *mo* $k \neq 11$.

Доказательство. Пусть $\mu=2$ и k=11. Тогда окрестность Σ вершины a является регулярным графом степени 4 на 11 вершинах с $\mu_{\Sigma}=1$.

Если Σ содержит 5-клику K, то $\Sigma-K$ является октаэдром, противоречие. Если Σ содержит 4-клику $L=\{b_1,...,b_4\}$, то $\Sigma-L$ содержит 4 вершины $c_1,...,c_4$, такие, что c_i смежна с b_i . Для несмежной с c_1 вершины $b_i\in L$ получим $[b_i]\cap [c_1]=\{a,b_1\}$, поэтому $L\cap [c_i]=\{b_i\}$. Если вершины c_1,c_2 смежны, то $[b_2]\cap [c_1]$ содержит вершину c_2 , противоречие. Поэтому подграф $\{c_1,...,c_4\}$ является кокликой, и $[c_1]\cap [c_2]$ содержит 3 вершины из $\Sigma-\{b_1,...,b_4,c_1,...,c_4\}$, противоречие.

Заметим, что число ребер между $\Sigma(b)$ и $\Sigma_2(b)$ не больше 6. Так как $\mu_{\Sigma}=1$, то $\Sigma(b)$ является объединением изолированных клик порядка, не большего 2. Противоречие с тем, что число ребер между $\Sigma(b)$ и $\Sigma_2(b)$ не меньше 8.

Пусть $\mu=3$. Так как $k-2b_1+2\leqslant 3$, то $k\leqslant 13$. В случае k=13 имеем $\mu=k-2b_1+2$ и, по следствию из [9], Γ является графом Зейделя. Если $k\leqslant 8$, то каждый μ -подграф является кокликой. Поэтому $9\leqslant k\leqslant 12$.

Лемма 3.3. Если $\mu = 3$ и k = 9, то Γ является локально девятиугольным графом диаметра 3, кажедый μ -подграф является 3-кокликой или объединением изолированной вершины и ребра, $b_2(u,x) \leq 3$ для любых вершин u,x с d(u,x) = 2 и $|\Gamma_3(u)| \leq 10$.

 \mathcal{A} оказательство. Пусть k=9. Тогда окрестность каждой вершины является одним из графов:

- (i) девятиугольником;
- (*ii*) объединением треугольника и шестиугольника;
- (iii) объединением четырехугольника и пятиугольника.

Пусть [a] содержит треугольник $\{b_1,b_2,b_3\}$ и 6-цикл $c_1c_2...c_6$. Тогда $\Gamma_2(a)$ имеет разбиение на 3 шестиугольника $\{[b_i]-a^\perp\mid i=1,2,3\}$. Для любой вершины e из $\Gamma_2(a)\cap [b_1]$ подграф [e] содержит 3 вершины из [a], и по 2 вершины из $[b_i]-a^\perp$ для $i=1,2,3\}$. Противоречие с тем, что тогда $|\Gamma_3(a)|=0$.

Пусть [a] содержит 4-цикл $b_1b_2...b_4$ и 5-цикл $c_1c_2...c_5$. Тогда $\Gamma_2(a)$ содержит 4 вершины, смежные с ребрами из $\{b_1,...,b_4\}$, и 16 вершин, каждая из которых смежна с единственной вершиной из $\{b_1,...,b_4\}$, противоречие.

Итак, в случае k=9 граф Γ является локально девятиугольным. Если попарные расстояния между вершинами из $[w]\cap [y]$ в графе [y] равны 3, то $|[y]\cap \Gamma_3(w)|=0$. Заметим, что $[u]\cap [x]=\{w_1,w_2,w_3\}$ не является 2-путем. В противном случае подграф $\{w_1,w_2,w_3\}$ содержит вершину w_i степени 2. Тогда $[w_i]$ содержит 2-путь из u^\perp и 5-путь из $\Gamma_2(u)$, противоречие с тем, что $[x]\cap \Gamma_2(u)$ не пересекает $[w_i]$. Таким образом, любой μ -подграф является 3-кокликой или объединением изолированной вершины и ребра. Отсюда $b_2(u,x)\leqslant 3$ и $|\Gamma_3(u)|\leqslant 10$.

Заметим, что диаметр графа Γ равен 3. Иначе для геодезического пути uwxyz подграф [x] содержит два изолированных 3-вершинных подграфа $[u] \cap [x]$ и $[x] \cap [z]$. Противоречие с тем, что число ребер между $([u] \cap [x]) \cup ([x] \cap [z])$ и $[x] - ([u] \cup [z])$ не меньше 8. \square

Случаю $\mu = 3$ и k = 10 будет посвящена специальная статья.

Пемма 3.4. Если $\mu = 3$ и k = 11, то Γ является графом диаметра 3 и $c_3(u,y) \geqslant 5$ для любых вершин u,y c d(u,y) = 3.

Доказательство. Пусть $\mu=3$ и k=11. Тогда окрестность любой вершины является регулярным графом степени 4 на 11 вершинах, и $|\Gamma_2(u)|=22$. Если [u] содержит 5-клику L, то [u]-L является октаэдром, противоречие.

В случае t=3 имеем $[w_i]\cap [y]=\{x_1,x_2,x_3\}$ и $[x_j]\cap [u]=\{w_1,w_2,w_3\}$, поэтому подграфы $\{x_1,x_2,x_3\}$ и $\{w_1,w_2,w_3\}$ являются кликами и $[w_1]\cap [w_2]$ содержит u,w_3,x_1,x_2,x_3 , противоречие.

Покажем, что диаметр Γ равен 3. Пусть uwxyz — геодезический путь в Γ , $\Lambda = [x]$ — $([u] \cup [z])$. Тогда $|\Lambda| = 5$. Если $[u] \cap [x]$ содержит изолированную вершину w, то для $p \in [u] \cap [x] - \{w\}$ подграф $[w] \cap [p]$ содержит u, x и не менее 2 вершин из Λ . Если $[u] \cap [x]$ содержит геодезический 2-путь pwq, то $[p] \cap [q]$ содержит u, w, x и вершину из Λ . Таким образом, $[u] \cap [x]$ и $[x] \cap [z]$ являются 3-кликами. Если вершина x' из Λ смежна с 2 вершинами p, q из $[u] \cap [x]$, то $[p] \cap [q]$ содержит u, x, x' и вершину из $[u] \cap [x]$. Если d(x', z) = 2, то по доказанному $[u] \cap [x']$ является 3-кликой, противоречие. Значит, d(x', z) = 3 и Λ содержит 2 вершины x_1, x_2 , смежные с парами вершин из $[x] \cap [z]$. Как и ранее, $d(u, x_1) = d(u, x_2) = 3$. Теперь любая вершина x' из $\Lambda - \{x_1, x_2\}$ смежна с 2 вершинами из $[u] \cap [x]$. Противоречие с тем, что x_1, x_2 смежны с тройками вершин из $[x] \cap [z]$.

Пусть t=4. Тогда можно считать, что вершины w_i, x_i не смежны для любого $i\in\{1,...,4\}$. Если $[w_1]$ содержит w_2, w_3 , то $[w_2]\cap [w_3]$ содержит u, w_1, x_1, x_4 , поэтому вершины w_2, w_3 смежны. В этом случае вершины w_1, w_2, w_3 не смежны с w_4 , иначе $\{w_1,...,w_4\}$ является кликой и $[w_2]\cap [w_3]$ содержит u, w_1, w_4, x_1, x_4 , противоречие. Заметим, что число ребер между $\{w_1,...,w_4\}$ и $[u]-\{w_1,...,w_4\}$ равно $4+3\cdot 2$, поэтому некоторая вершина из $[u]-\{w_1,...,w_4\}$ смежна с 2 вершинами w_i, w_j из $\{w_1,...,w_4\}$. Противоречие с тем, что $[w_i]\cap [w_j]$ содержится в $\{u\}\cup \{w_1,...,w_4\}\cup \{x_1,...,x_4\}$. Итак, степень каждой вершины в графе $\{w_1,...,w_4\}$ не больше 1. Теперь число ребер между $[u]-\{w_1,...,w_4\}$ и $\{w_1,...,w_4\}$ не меньше 12. Если $z\in [u]-\{w_1,...,w_4\}$ и вершина z смежна с 2 вершинами w_i, w_j , то $[w_i]\cap [w_j]$ содержит u,z и 2 вершины из $\{x_1,...,x_4\}$, поэтому вершины w_i,w_j смежны. Противоречие с тем, что $[u]-\{w_1,...,w_4\}$ содержит не менее 5 вершин, смежных с парами вершин из $\{w_1,...,w_4\}$, а число ребер в $\{w_1,...,w_4\}$ не больше 2. Итак, $t\geqslant 5$.

Лемма **3.5.** *Если* $\mu = 3$, *mo* $k \neq 12$.

Доказательство. Пусть $\mu = 3$ и k = 12. Тогда окрестность вершины u является регулярным графом степени 5 на 12 вершинах, причем пересечение окрестностей двух несмежных вершин в графе [u] содержит не более 2 вершин.

Пусть d(u,x)=2. Если $[u]\cap [x]$ содержит изолированную вершину w, то для $z,z'\in [u]\cap [x]-\{w\}$ подграф $[w]\cap [z]$ содержит не менее 3 вершин в каждом из подграфов [x]-[u] и из [u]-[x]. Противоречие с тем, что $[z]\cap [z']$ содержит u,x и по 2 вершины из [x]-[u] и из [u]-[x].

Если $[u] \cap [x]$ содержит геодезический путь $w_1 w_2 w_3$, то $[w_1] \cup [w_3]$ содержит 8 из 9 вершин в [x] - [u]. Далее, $[w_2]$ содержит 2 вершины p, p' вне $u^{\perp} \cup x^{\perp}$ и 2 вершины q, q' вне $w_1^{\perp} \cup w_3^{\perp}$.

Если $\{p,p'\}$ не пересекает $\{q,q'\}$, то $[w_2]$ содержит по 1 вершине, смежной с ребрами четырехугольника $\{u,x,w_1,w_3\}$, и можно считать, что p смежна с w_1 , q смежна с u. Заметим, что $[p] \cap [u]$ содержит w_1,w_2 и еще не более одной вершины. Симметрично, $[p] \cap [x]$ содержит w_1,w_2 и еще не более одной вершины. Противоречие с тем, что степень p в графе $[w_2]$ не больше 4.

Пусть $\{p,p'\}$ пересекает $\{q,q'\}$ точно по 1 вершине, скажем, p=q. Без ограничения общности, p' смежна с w_1 , q' смежна с u. Повторив рассуждения из предыдущего абзаца, убедимся, что степень p' в графе $[w_2]$ не больше 4.

Если $\{p, p'\} = \{q, q'\}$, то $[w_2] \cap [w_i]$ содержит 3 вершины из $([x] - [u]) \cup ([u] - [x])$ для i = 1, 3, для определенности, $[u] \cap [w_1]$ и $[x] \cap [w_3]$ содержат по 2 вершины из $[w_2]$. Далее, вершины

p,p' смежны (иначе $[p]\cap [p']$ содержит w_2 и не менее 4 вершин из $[w_2]-\{p,p',u,x,w_1,w_3\}$). Положим $\Phi=[w_2]-\{p,p',u,x,w_1,w_3\}$ и $[p]\cap [p']-w_2^\perp=\{z_1,z_2\}$. Тогда число ребер между Φ и $[w_2]-\Phi$ равно 20, поэтому Φ является 6-кокликой. Для $w'\in\Phi-[p]$ подграф $[w']\cap [p]$ содержит w_2,p и вершину из $\{z_1,z_2\}$. Поэтому число ребер между $\Phi-([z_1]\cap [z_2])$ и $\{z_1,z_2\}$ равно 4, можно считать, что z_1 смежна с 2 вершинами из $\Phi-([z_1]\cap [z_2])$ и $\mu(w_2,z_1)\geqslant 4$, противоречие.

Таким образом, любой μ -подграф является 3-кликой и Γ — граф Тервиллигера. Поэтому $\Delta = [u]$ — регулярный граф Тервиллигера диаметра 2, степени 5 на 12 вершинах с $\mu_{\Delta} =$ 2. Так как $\Delta(w)$ — граф на 5 вершинах с $\mu(\Delta(w)) = 1$, то $\Delta(w)$ является 4-лапой или пятиугольником. Так как Δ — граф Тервиллигера, то Δ — локально пятиугольный граф и Δ — граф икосаэдра. Противоречие с тем, что диаметр Δ равен 2.

Работа выполнена при финансовой поддержке РФФИ (грант 08-01-00009) и РФФИ-БРФФИ (грант 08-01-90006).

Список литературы

- [1] A.E.Brouwer, A.M.Cohen, A.Neumaier, Distance-regular graphs, Berlin etc, Springer-Verlag, 1989.
- [2] А.А.Махнев, О сильной регулярности некоторых реберно регулярных графов, *Известия РАН. Сер. матем.*, **68**(2004), №6, 159-172.
- [3] В.И.Казарина, А.А.Махнев, О реберно регулярных графах с $b_1 = 5$, Межд. конф. "Ал-гебра, логика и кибернетика". Тез. докл. Иркутск, 2004, 159-161.
- [4] А.А.Махнев, Д.В.Падучих, Об одном классе кореберно регулярных графов, *Известия РАН. Сер. матем.*, **69**(2005), №6, 95-114.
- [5] А.А.Махнев, Д.В.Падучих, Новая оценка для числа вершин реберно регулярных графов, *Сиб. матем. эсурн.*, **48**(2007), №4, 817-832.
- [6] И.Н.Белоусов, А.А.Махнев, О почти хороших парах вершин в реберно регулярных графах, Известия Уральского госуниверситета, **36**(2005), №7, 35-48.
- [7] А.А.Махнев, И.М.Минакова, Об одном классе реберно регулярных графов, *Известия* Гомельского госуниверситета. Вопросы алгебры, **3**(2000), №16, 145-154.

Amply Regular Graphs with $b_1 = 6$

Konstantin S.Efimov Alexander A.Makhnev

The unnoriented graph with v verteces of valency k, such that every edge belongs to λ triangles, is called an edge regular graph with the parameters (v, k, λ) . Let $b_1 = k - \lambda - 1$. In [1] it is proved that a connected edge regular graph with $b_1 = 1$ is either a polygon or a complete multipart graph all of whose parts have order 2. Edge regular graphs with $b_1 \leq 5$ have been studied in previous work. In the present paper we investigate amply regular graphs with $b_1 = 6$.

Keywords: amply regular graph, unoriented graph.