Эксергетическая эффективность теплового двигателя (рис. 2) варьируется от 5,44% до 19,25%. При этом использование теплового двигателя с замкнутым контуром циркуляции на СО2 в системе охлаждения паровых турбин типа ПТ-135/165-130/15 позволяет экономить (рис. 1) до 290 кг.у.т./час на ТЭЦ в температурном диапазоне окружающей среды от 268,15 К (-5°С) до 223,15 К (-50°С).
Использованные источники:
1.Пропуск пара вентиляционный через ЧНД турбины. [Электронный ресурс] / Режим доступа: http://mash-xxl.info/info/345214/.
2.Гафуров А.М. Использование сбросной низкопотенциальной теплоты для повышения экономической эффективности ТЭС в зимний период времени. // Энергетика Татарстана. - 2014. - № 3-4 (35-36). - С. 69-76.
3.Гафуров А.М. Возможности повышения выработки электроэнергии на Заинской ГРЭС в зимний период времени. Сборник научных трудов по итогам международной научно-практической конференции «Актуальные вопросы технических наук в современных условиях». - 2015. - С. 82-85.
4.Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140405 04.12.2013.
5.Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140435 04.12.2013.
6.Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС в работу низкотемпературного теплового двигателя с замкнутым контуром. // Вестник Казанского государственного энергетического университета. - 2016. - №3 (31). - С. 73-78.
УДК 62-176.2
Гафуров А.М. инженер I категории УНИР ФГБОУВО «КГЭУ» Зайнуллин Р. Р., к ф. -м. н. старший преподаватель кафедры ПЭС
ФГБОУ ВО «КГЭУ» Россия, г. Казань
ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА
НА ТЕПЛОЭЛЕКТРОЦЕНТРАЛЯХ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА ПТ-135/165-130/15 КОНТУРА ЦИРКУЛЯЦИИ НА СЖИЖЕННОМ ПРОПАНЕ
Рассматриваются возможности экономии расхода условного топлива на теплоэлектроцентралях при замещении традиционной системы охлаждения конденсаторов паровых турбин типа ПТ-135/165-130/15 контуром циркуляции на сжиженном C3H8 в зимний период времени.
Ключевые слова: паровая турбина, система охлаждения, сжиженный пропан.
Gafurov A.M.
engineer of the I category «Management of research work» Zainullin R.R., candidate of physico-mathematical sciences senior lecturer of department «industrial electronics and lighting»
«KSPEU» Russia, Kazan
POSSIBILITIES OF ECONOMY OF A CONSUMPTION OF EQUIVALENT FUEL ON COMBINED HEAT AND POWER PLANTS WHEN USING IN AN INTEGRAL COOLING SYSTEM OF STEAM TURBINES PT-135/165-130/15 OF A CONTOUR OF CIRCULATION ON
THE LIQUEFIED PROPANE
The possibilities of economy of a consumption of equivalent fuel on combined heat and power plants at substitution of a traditional integral cooling system of condensers of steam turbines PT-135/165-130/15 by a circulation contour on the liquefied C3H8 in a winter time span is considered.
Keywords: steam turbine, integral cooling system, liquefied propane.
В зимний период времени паровые турбины типа ПТ-135/165-130/15 (номинальной мощностью 135 МВт и начальными параметрами пара: давление 12,75 МПа и температура 555°С) работают в теплофикационном режиме, когда в конденсатор поступает минимальное количество вентиляционного пара около 10 кг/с. При этом в конденсаторе паровой турбины типа ПТ-135/165-130/15 поддерживается низкое давление пара равное 7,5 кПа, что соответствует температуре насыщения в 40,29°С. Процесс конденсации 1 кг отработавшего в турбине пара сопровождается высвобождением скрытой теплоты парообразования (ранее затраченная на испарение) равная примерно 2120 кДж/кг, которая в настоящее время отводиться с помощью охлаждающей воды в окружающую среду [1].
Известно, что при традиционном способе охлаждения 1 кг пара в конденсаторе паровой турбины требуется прокачивать около 45-60 кг охлаждающей воды с затратами электрической мощности на циркуляционные насосы в среднем 11-12 кВт. В данном случаи при расходе пара в конденсатор до 10 кг/с затраты электрической мощности на циркуляционные насосы составили бы около 110 кВт.
Проводятся исследования и разработки новых систем охлаждения конденсаторов паровых турбин, в которых промежуточным теплоносителем вместо воды служит низкокипящее рабочее тело (НРТ), которое испаряется в поверхностном конденсаторе паровой турбины, расширяется в турбодетандере и конденсируется затем в охладительной башне, где теплота конденсации передается наружному воздуху. Однако основной не решенной задачей является выбор оптимального НРТ для осуществления термодинамического цикла [2, 3].
Таким образом в зимний период времени конденсаторы паровых турбин типа ПТ-135/165-130/15 являются источниками сбросной низкопотенциальной теплоты с температурой в 40,29°С, а окружающая среда
- прямой источник холода с температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью замкнутого контура циркуляции на низкокипящем рабочем теле представляющий собой тепловой двигатель, осуществляющий свою работу по органическому циклу Ренкина [4].
Поэтому предлагается использование в системе охлаждения конденсаторов паровых турбин типа ПТ-135/165-130/15 контура циркуляции на сжиженном пропане в виде теплового двигателя, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в холодном источнике (конденсаторе) второму контуру на низкокипящем рабочем теле - CзH8. Основным преимуществом использования пропана CзH8 является его температура насыщения минус 42°С при давлении 0,1 МПа, что позволяет осуществлять процесс охлаждения и сжижения газообразного CзH8 наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [5].
Способ работы теплового двигателя на CзH8 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (3-10%) при давлении в 7,5 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный пропан CзH8, который сжимают в насосе до давления 0,9-1,2 МПа и направляют в конденсатор паровой турбины типа ПТ-135/165-130/15 для охлаждения отработавшего в турбине влажного пара. Конденсация 10 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 21,2 МВт, которая отводится на нагрев и испарение сжиженного газа CзH8 до температуры перегретого газа в 35,29°С. На выходе из конденсатора паровой турбины полученный перегретый газ CзH8 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный направляют в теплообменник-
конденсатор аппарата воздушного охлаждения, где в процессе охлаждения газообразного ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [6].
На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на ТЭЦ (кг.у.т./ч) и эксергетической эффективности теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа ПТ-135/165-130/15 контуром циркуляции на в зависимости от температуры наружного
воздуха в зимний период времени.
Рис. 1. Для турбин ПТ-135/165-130 с расходом пара в конденсатор 10
кг/с.
Рис. 2. Для турбин ПТ-135/165-130 с расходом пара в конденсатор 10
кг/с.
Эксергетическая эффективность теплового двигателя (рис. 2) варьируется от 10,92% до 30,58%. При этом использование теплового двигателя с замкнутым контуром циркуляции на C3H8 в системе охлаждения паровых турбин типа ПТ-135/165-130/15 позволяет экономить (рис. 1) до 406 кг.у.т./час на ТЭЦ в температурном диапазоне окружающей среды от 273,15 К (0°С) до 223,15 К (-50°С).
Использованные источники:
1.Техническое описание и тепловая схема установки ПТ-135/165-130. [Электронный ресурс] / Режим доступа: http://energoworld.ru/blog/tehnicheskoe-opisanie-i-teplovaya-shema-turboustanovki-pt-135-165-130/.
2.Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140435 04.12.2013.
3.Гафуров А.М. Тепловая электрическая станция. Патент на полезную модель RUS 140405 04.12.2013.
4.Гафуров А.М. Использование сбросной низкопотенциальной теплоты для повышения экономической эффективности ТЭС в зимний период времени. // Энергетика Татарстана. - 2014. - № 3-4 (35-36). - С. 69-76.
5.Гафуров А.М. Возможности повышения выработки электроэнергии на Заинской ГРЭС в зимний период времени. Сборник научных трудов по итогам международной научно-практической конференции «Актуальные вопросы технических наук в современных условиях». - 2015. - С. 82-85.
6.Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС в работу низкотемпературного теплового двигателя с замкнутым контуром. // Вестник Казанского государственного энергетического университета. - 2016. - №3 (31). - С. 73-78.
УДК 62-176.2
Гафуров А.М. инженер I категории УНИР ФГБОУВО «КГЭУ» Зайнуллин Р. Р., к ф. -м. н. старший преподаватель кафедры ПЭС
ФГБОУ ВО «КГЭУ» Россия, г. Казань ВОЗМОЖНОСТИ ДОПОЛНИТЕЛЬНОЙ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ В СОСТАВЕ ТЕПЛОФИКАЦИОННОЙ ПАРОВОЙ ТУРБИНЫ ТИПА ТК-450/500-5,9 С ПОМОЩЬЮ НИЗКОТЕМПЕРАТУРНОГО ТЕПЛОВОГО ДВИГАТЕЛЯ НА СО2 Представлены результаты исследования способа работы низкотемпературного теплового двигателя на сжиженном СО2 по выработке электроэнергии в составе теплофикационной паровой турбины типа ТК-450/500-5,9 при температуре окружающей среды до минус 50°С.