Научная статья на тему 'ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-800-240 КОНТУРА ЦИРКУЛЯЦИИ НА СО2'

ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-800-240 КОНТУРА ЦИРКУЛЯЦИИ НА СО2 Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
18
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПАРОВАЯ ТУРБИНА / СИСТЕМА ОХЛАЖДЕНИЯ / СЖИЖЕННЫЙ УГЛЕКИСЛЫЙ ГАЗ

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Потапов А. А., Гафуров Н. М.

Рассматриваются возможности экономии расхода условного топлива на собственные нужды станции при замещении традиционной системы охлаждения конденсаторов паровых турбин типа К-800-240 контуром циркуляции на сжиженном СО2 в зимний период времени.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по энергетике и рациональному природопользованию , автор научной работы — Потапов А. А., Гафуров Н. М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

POSSIBILITIES OF ECONOMY OF A CONSUMPTION OF EQUIVALENT FUEL ON OWN NEEDS OF STATION WHEN USING IN AN INTEGRAL COOLING SYSTEM OF STEAM TURBINES К-800-240 OF A CONTOUR OF CIRCULATION ON СО2

The possibilities of economy of a consumption of equivalent fuel on own needs of station at substitution of a traditional integral cooling system of condensers of steam turbines К-800-240 by a circulation contour on the liquefied СО2 in a winter time span is considered.

Текст научной работы на тему «ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-800-240 КОНТУРА ЦИРКУЛЯЦИИ НА СО2»

УДК 62-176.2

Потапов А.А., к.ф.-м.н.

доцент кафедра ПЭС ФГБОУВО «КГЭУ» Гафуров Н.М. студент 4 курса

факультет «Энергонасыщенных материалов и изделий»

ФГБОУ ВО «КНИТУ» Россия, г. Казань

ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-800-240 КОНТУРА ЦИРКУЛЯЦИИ НА СО2

Рассматриваются возможности экономии расхода условного топлива на собственные нужды станции при замещении традиционной системы охлаждения конденсаторов паровых турбин типа К-800-240 контуром циркуляции на сжиженном СО2 в зимний период времени.

Ключевые слова: паровая турбина, система охлаждения, сжиженный углекислый газ.

Potapov A.A.

candidate of physico-mathematical sciences assistant professor of department «industrial electronics and lighting»

«KSPEU» Gafurov N.M.

4th year student, faculty of «Energy-intensive materials and products»

«KNRTU» Russia, Kazan

POSSIBILITIES OF ECONOMY OF A CONSUMPTION OF EQUIVALENT FUEL ON OWN NEEDS OF STATION WHEN USING IN AN INTEGRAL COOLING SYSTEM OF STEAM TURBINES К-800-240 OF A CONTOUR OF CIRCULATION ON СО2

The possibilities of economy of a consumption of equivalent fuel on own needs of station at substitution of a traditional integral cooling system of condensers of steam turbines К-800-240 by a circulation contour on the liquefied СО2 in a winter time span is considered.

Keywords: steam turbine, integral cooling system, liquefied carbon dioxide

gas.

Конденсационная паровая турбина типа К-800-240 производственного объединения турбостроения «Ленинградский металлический завод» (ЛМЗ, входит в состав «Силовые машины») номинальной мощностью 800 МВт предназначена для непосредственной выработки электроэнергии в блоке с

прямоточным котлом. Давление пара за последними ступенями турбины перед входом в конденсатор достигает 3,5 кПа, что соответствует температуре насыщения в 26,67°С. При этом выпуск отработавшего пара в части низкого давления производиться в шесть потоков из-за большого объемного расхода пара [1].

Известно, что для конденсации отработавшего в турбине пара требуется большое количество охлаждающей воды. Это связано с тем, что процесс конденсации 1 кг пара сопровождается высвобождением скрытой теплоты парообразования (ранее затраченная на испарение) равная примерно 2200 кДж/кг, которая в настоящее время отводиться с помощью охлаждающей воды в окружающую среду [2].

При традиционном способе охлаждения 1 кг пара в конденсаторе паровой турбины требуется прокачивать около 45-60 кг охлаждающей воды с затратами электрической мощности на циркуляционные насосы в среднем 12 кВт. В данном случаи при расходе пара в конденсатор до 400 кг/с затраты электрической мощности на циркуляционные насосы могут составлять до 5 МВт.

Поэтому в настоящее время проводятся исследования и разработки новых энергоэффективных систем охлаждения конденсаторов паровых турбин для экономии расхода условного топлива на собственные нужды станции. Предлагаются варианты использования вместо воды низкокипящего теплоносителя, который испаряется в поверхностном конденсаторе паровой турбины, расширяется в турбодетандере и конденсируется затем в охладительной башне, где теплота конденсации передается наружному воздуху [3, 4].

Например, в зимний период времени конденсаторы паровых турбин типа К-800-240 ЛМЗ являются источниками сбросной низкопотенциальной теплоты с температурой в 26,67°С, а окружающая среда - прямой источник холода с допустимой температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью замкнутого контура циркуляции на низкокипящем рабочем теле представляющий собой тепловой двигатель, осуществляющий свою работу по органическому циклу Ренкина.

Учитывая суровые климатические условия России и продолжительность зимнего периода времени появляется возможность осуществления низкотемпературных термодинамических циклов с использованием низкокипящих рабочих тел. Примером может служить Сургутская ГРЭС-2 - крупнейшая тепловая электростанция России с установленной мощностью около 5597 МВт, расположенная в городе Сургут Ханты-Мансийского автономного округа, где температура воздуха зимой опускается до минус 50°С и ниже [5, 6].

Таким образом предлагается использование в системе охлаждения конденсаторов паровых турбин типа К-800-240 ЛМЗ контура циркуляции на сжиженном углекислом газе СО2 в виде теплового двигателя, где реализуется термодинамический цикл Ренкина на основе парового контура с

отводом теплоты в холодном источнике (конденсаторе) второму контуру на низкокипящем рабочем теле - СО2. Основным преимуществом использования углекислого газа СО2 является его температура тройной точки равная минус 56,56°С, что позволяет осуществлять процесс охлаждения и сжижения газообразного СО2 наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [7].

Способ работы теплового двигателя на СО2 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (2%-10%) при давлении в 3,5 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. В качестве охлаждающей жидкости используется сжиженный углекислый газ СО2, который сжимают в насосе до высокого давления и направляют в теплообменник-конденсатор паровой турбины типа К-800-240 ЛМЗ для охлаждения отработавшего в турбине влажного пара. Конденсация 400 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 860 МВт, которая отводится на нагрев и испарение сжиженного газа СО2 до температуры перегретого газа в 21,67°С. На выходе из теплообменника-конденсатора паровой турбины полученный перегретый газ СО2 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный СО2 направляют в теплообменник-конденсатор аппарата воздушного охлаждения, где в процессе охлаждения газообразного СО2 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [8].

Аппараты воздушного охлаждения имеют более длительный срок службы по сравнению с аппаратами водяного охлаждения из-за меньшего загрязнения и коррозии наружной поверхности теплообмена.

На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на станции (т.у.т./ч) и эксергетической эффективности теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-800-240 ЛМЗ контуром циркуляции на СО2 в зависимости от температуры наружного воздуха в зимний период времени.

Рис. 1. Для турбин К-800-240 с расходом пара в конденсатор 400 кг/с.

Рис. 2. Для турбин К-800-240 с расходом пара в конденсатор 400 кг/с.

Эксергетическая эффективность теплового двигателя (рис. 2) варьируется от 6,89% до 11,43%. При этом использование теплового двигателя с замкнутым контуром циркуляции на СО2 в системе охлаждения паровых турбин типа К-800-240 ЛМЗ позволяет экономить (рис. 1) до 6,8 т.у.т./час на собственные нужды станции в температурном диапазоне окружающей среды от 258,15 К (-15°С) до 223,15 К (-50°С).

Использованные источники:

1. Клименко А.В., Зорин В.М. Тепловые и атомные электростанции: Справочник. Книга 3. 3-е изд., перераб. и доп. - М.: Издательство МЭИ, 2003. - 648 с.

2. Бродов Ю.М. Теплообменники энергетических установок. Учебное пособие. - Екатеринбург. Издательство «Сократ», 2003. - 965 с.

3. Патент на изобретение № 2560495 РФ. Способ работы тепловой электрической станции / Гафуров А.М., Гафуров Н.М. 20.08.2015 г.

4. Патент на изобретение № 2560496 РФ. Способ работы тепловой электрической станции / Гафуров А.М., Гафуров Н.М. 20.08.2015 г.

5. Гафуров А.М., Гафуров Н.М. Перспективы применения бинарных энергоустановок на тепловых электростанциях России. // Форум молодых ученых. - 2017. - №5 (9). - С. 509-512.

6. Минимальная температура воздуха. [Электронный ресурс] / Режим доступа: https://geographyofrussia.com/minimalnaya-temperatura-vozduxa/.

7. Гафуров А.М., Гатина Р.З. Выбор низкокипящего рабочего тела по термодинамическим показателям для использования в тепловом двигателе в области температур от 80°С до минус 55°С. // Форум молодых ученых. -2017. - №5 (9). - С. 493-496.

8. Зайнуллин Р.Р., Гафуров А.М. Осуществление бинарного цикла в составе конденсационной паровой турбины типа К-800-240-3 ЛМЗ, охлаждаемого водой при температуре 5°С. // Форум молодых ученых. - 2017. - №5 (9). - С. 796-799.

i Надоели баннеры? Вы всегда можете отключить рекламу.