Научная статья на тему 'ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-240-2 КОНТУРА ЦИРКУЛЯЦИИ НА C3H8'

ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-240-2 КОНТУРА ЦИРКУЛЯЦИИ НА C3H8 Текст научной статьи по специальности «Химические технологии»

CC BY
9
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПАРОВАЯ ТУРБИНА / СИСТЕМА ОХЛАЖДЕНИЯ / СЖИЖЕННЫЙ ПРОПАН

Аннотация научной статьи по химическим технологиям, автор научной работы — Потапов А.А., Гафуров Н.М.

Рассматриваются возможности экономии расхода условного топлива на собственные нужды станции при замещении традиционной системы охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на сжиженном C3H8 в зимний период времени.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим технологиям , автор научной работы — Потапов А.А., Гафуров Н.М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

POSSIBILITIES OF ECONOMY OF A CONSUMPTION OF EQUIVALENT FUEL ON OWN NEEDS OF STATION WHEN USING IN AN INTEGRAL COOLING SYSTEM OF STEAM TURBINES К-500-240-2 OF A CONTOUR OF CIRCULATION ON C3H8

The possibilities of economy of a consumption of equivalent fuel on own needs of station at substitution of a traditional integral cooling system of condensers of steam turbines К-500-240-2 by a circulation contour on the liquefied C3H8 in a winter time span is considered.

Текст научной работы на тему «ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-240-2 КОНТУРА ЦИРКУЛЯЦИИ НА C3H8»

УДК 62-176.2

Потапов А.А., к.ф.-м.н.

доцент кафедра ПЭС ФГБОУВО «КГЭУ» Гафуров Н.М. студент 4 курса

факультет «Энергонасыщенных материалов и изделий»

ФГБОУ ВО «КНИТУ» Россия, г. Казань

ВОЗМОЖНОСТИ ЭКОНОМИИ РАСХОДА УСЛОВНОГО ТОПЛИВА НА СОБСТВЕННЫЕ НУЖДЫ СТАНЦИИ ПРИ ИСПОЛЬЗОВАНИИ В СИСТЕМЕ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-240-2 КОНТУРА ЦИРКУЛЯЦИИ НА C3H8

Рассматриваются возможности экономии расхода условного топлива на собственные нужды станции при замещении традиционной системы охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на сжиженном C3H8 в зимний период времени.

Ключевые слова: паровая турбина, система охлаждения, сжиженный пропан.

Potapov A.A.

candidate of physico-mathematical sciences assistant professor of department «industrial electronics and lighting»

«KSPEU» Gafurov N.M.

4th year student, faculty of «Energy-intensive materials and products»

«KNRTU» Russia, Kazan

POSSIBILITIES OF ECONOMY OF A CONSUMPTION OF EQUIVALENT FUEL ON OWN NEEDS OF STATION WHEN USING IN AN INTEGRAL COOLING SYSTEM OF STEAM TURBINES К-500-240-2 OF A CONTOUR OF CIRCULATION ON C3H8

The possibilities of economy of a consumption of equivalent fuel on own needs of station at substitution of a traditional integral cooling system of condensers of steam turbines К-500-240-2 by a circulation contour on the liquefied C3H8 in a winter time span is considered.

Keywords: steam turbine, integral cooling system, liquefied propane.

Основная часть электроэнергии в настоящее время производится на тепловых электростанциях (ТЭС). На ТЭС используется только 40% энергии топлива, это означает, что 60% этой энергии теряется безвозвратно в виде тепловых отходов. Это обусловлено использованием водяного пара в качестве рабочего тела в термодинамическом цикле Ренкина, когда в

процессе конденсации отработавшего в турбине пара происходит высвобождение скрытой теплоты парообразования равная примерно 2200 кДж/кг с 1 кг пара, которая в настоящее время отводиться с помощью охлаждающей воды в окружающую среду. Таким образом, потери теплоты в конденсаторе паровой турбины могут составлять до половины (45-50%) затрачиваемой теплоты в термодинамическом цикле.

В настоящее время проводятся исследования и разработки, новых энергоэффективных систем охлаждения паровых турбин, в которых промежуточным теплоносителем вместо воды служит низкокипящее рабочее тело, которое испаряется в поверхностном конденсаторе паровой турбины, расширяется в турбодетандере и конденсируется затем в охладительной башне, где теплота конденсации передается наружному воздуху [1, 2].

Например, мощные паровые турбины типа К-500-240-2 (номинальной мощностью 500 МВт и начальными параметрами пара: давление 23,5 МПа и температура 540°С) характеризуются тем, что почти весь пар, пройдя через турбину, поступает в конденсатор с расходом до 255 кг/с. При этом в конденсаторе паровой турбины типа К-500-240-2 поддерживается низкое давление пара равное 3,63 кПа, что соответствует температуре насыщения в 27,29°С. Таким образом в зимний период времени конденсаторы паровых турбин типа К-500-240-2 являются источниками сбросной низкопотенциальной теплоты с температурой в 27,29°С, а окружающая среда - прямой источник холода с допустимой температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью замкнутого контура циркуляции на низкокипящем рабочем теле представляющий собой тепловой двигатель, осуществляющий свою работу по органическому циклу Ренкина [3, 4].

Особенностью конденсационных паровых турбин является возможность повышения их тепловой экономичности за счет усовершенствования той части тепловой схемы, которая относится к использованию теплоты отработавшего в турбине пара. Поэтому предлагается замещение традиционной системы охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на сжиженном пропане в виде теплового двигателя, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в конденсаторе паровой турбины второму контуру на низкокипящем рабочем теле - С3Н8. Основным преимуществом использования пропана С3Н8 является его температура насыщения равная минус 42°С при давлении 0,1 МПа, что позволяет осуществлять процесс охлаждения и сжижения газообразного С3Н8 наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [5].

Способ работы теплового двигателя на С3Н8 осуществляется следующим образом. Отработавший в паровой турбине влажный пар (2%-10%) при давлении в 3,63 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость.

В качестве охлаждающей жидкости используется сжиженный пропан С3Н8, который сжимают в насосе до давления 0,9-1,2 МПа и направляют в теплообменник-конденсатор паровой турбины типа К-500-240-2 для охлаждения отработавшего в турбине влажного пара. Конденсация 255 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 550 МВт, которая отводится на нагрев и испарение сжиженного газа С3Н8 до температуры перегретого газа в 22,29°С. На выходе из теплообменника-конденсатора паровой турбины полученный перегретый газ С3Н8 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный С3Н8 направляют в теплообменник-конденсатор аппарата воздушного охлаждения, где в процессе охлаждения газообразного С3Н8 ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ направляют в насос и цикл повторяется [6].

Аппараты воздушного охлаждения имеют более длительный срок службы по сравнению с аппаратами водяного охлаждения из-за меньшего загрязнения и коррозии наружной поверхности теплообмена.

На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на станции (т.у.т./ч) и эксергетической эффективности теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-500-240-2 контуром циркуляции на С3Н8 в зависимости от температуры наружного воздуха в зимний период времени.

Рис. 1. Для турбин К-500-240-2 с расходом пара в конденсатор 255

кг/с.

Рис. 2. Для турбин К-500-240-2 с расходом пара в конденсатор 255

кг/с.

Эксергетическая эффективность теплового двигателя (рис. 2) варьируется от 9,8% до 13,95%. При этом использование теплового двигателя с замкнутым контуром циркуляции на C3H8 в системе охлаждения паровых турбин типа К-500-240-2 позволяет экономить (рис. 1) до 4,67 т.у.т./час на собственные нужды станции в температурном диапазоне окружающей среды от 258,15 К (-15°С) до 223,15 К (-50°С).

Использованные источники:

1. Патент на изобретение № 2560495 РФ. Способ работы тепловой электрической станции / Гафуров А.М., Гафуров Н.М. 20.08.2015 г.

2. Патент на изобретение № 2560496 РФ. Способ работы тепловой электрической станции / Гафуров А.М., Гафуров Н.М. 20.08.2015 г.

3. Клименко А.В., Зорин В.М. Тепловые и атомные электростанции: Справочник. Книга 3. 3-е изд., перераб. и доп. - М.: Издательство МЭИ, 2003. - 648 с.

4. Турбина К-500-240-2. [Электронный ресурс] / Режим доступа: http://www.superheater.ru/index.php?option=com_content&view=article&id=164 &Itemid=167.

5. Гафуров А.М., Гафуров Н.М. Перспективы применения бинарных энергоустановок на тепловых электростанциях России. // Форум молодых ученых. - 2017. - №5 (9). - С. 509-512.

6. Зайнуллин Р.Р., Гафуров А.М. Осуществление бинарного цикла в составе конденсационной паровой турбины типа К-500-240-2 ХТЗ, охлаждаемого водой при температуре 5°С. // Форум молодых ученых. - 2017. - №5 (9). - С. 792-795.

УДК 62-176.2

Потапов А.А., к.ф.-м.н.

доцент кафедра ПЭС ФГБОУВО «КГЭУ» Гафуров Н.М. студент 4 курса

факультет «Энергонасыщенных материалов и изделий»

ФГБОУ ВО «КНИТУ» Россия, г. Казань ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ НИЗКОТЕМПЕРАТУРНОГО ТЕПЛОВОГО ДВИГАТЕЛЯ НА СО2 ДЛЯ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ В СОСТАВЕ КОНДЕНСАЦИОННОЙ ПАРОВОЙ

ТУРБИНЫ ТИПА К-800-240 Представлены результаты исследования способа работы низкотемпературного теплового двигателя на сжиженном СО2 по выработке электроэнергии в составе конденсационной паровой турбины типа К-800-240 при температуре окружающей среды до минус 50°С.

Ключевые слова: паровая турбина, низкотемпературный тепловой

i Надоели баннеры? Вы всегда можете отключить рекламу.