Научная статья на тему 'Влияние температурного поля камеры на эксергетические характеристики холодильной установки'

Влияние температурного поля камеры на эксергетические характеристики холодильной установки Текст научной статьи по специальности «Строительство и архитектура»

CC BY
176
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭКСЕРГЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ / ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ / ЭНЕРГЕТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ / ТЕМПЕРАТУРНОЕ ПОЛЕ / EXERGETIC STUDY / THERMODYNAMIC ANALYSIS / POWER EFFICIENCY / TEMPERATURE FIELD

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Галимова Лариса Васильевна, Петрова Юлия Евгеньевна, Кислова Дарья Олеговна, Бобрешов Максим Вячеславович

Определение характера изменения эксергетических показателей холодильной камеры в зависимости от температурного поля в ней было проведено на основе эксергетического анализа системы. Тепловой и эксергетический расчёты данной установки показали энергетическую эффективность работы каждого элемента в отдельности, а также установки в целом, позволили выявить причины снижения эффективной работы. Определено влияние температурного поля камеры на холодопроизводительность, а также факторы, влияющие на это поле. Ключевые слова: эксергетическое исследование, термодинамический анализ, энергетическая эффективность, температурное поле.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Галимова Лариса Васильевна, Петрова Юлия Евгеньевна, Кислова Дарья Олеговна, Бобрешов Максим Вячеславович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INFLUENCE OF THE TEMPERATURE FIELD OF THE CAMERA ON THE EXERGETIC CHARACTERISTICS OF THE REFRIGERATION UNIT

Determination of the nature of change of exergetic indicators of the refrigerating camera depending on its temperature field was carried out on the basis of the exergetic analysis of the system. Thermal and exergetic calculations of this installation showed power overall performance of each element, and also of the installation as a whole and helped reveal the reasons of decrease in effective work. Influence of the temperature field of the camera on refrigerating capacity and also factors influencing this field are defined.

Текст научной работы на тему «Влияние температурного поля камеры на эксергетические характеристики холодильной установки»

ТЕХНИЧЕСКИЕ НАУКИ

УДК 621.565:536.58 ББК 31.392:31.322.5

Л. В. Галимова, Ю. Е. Петрова, Д. О. Кислова, М. В. Бобрешов

ВЛИЯНИЕ ТЕМПЕРАТУРНОГО ПОЛЯ КАМЕРЫ НА ЭКСЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ХОЛОДИЛЬНОЙ УСТАНОВКИ

L. V. Galimova, Yu. E. Petrova, D. O. Kislova, M. V. Bobreshov

INFLUENCE OF THE TEMPERATURE FIELD OF THE CAMERA ON THE EXERGETIC CHARACTERISTICS OF THE REFRIGERATION UNIT

Определение характера изменения эксергетических показателей холодильной камеры в зависимости от температурного поля в ней было проведено на основе эксергетического анализа системы. Тепловой и эксергетический расчёты данной установки показали энергетическую эффективность работы каждого элемента в отдельности, а также установки в целом, позволили выявить причины снижения эффективной работы. Определено влияние температурного поля камеры на холодопроизводительность, а также факторы, влияющие на это поле.

Ключевые слова: эксергетическое исследование, термодинамический анализ, энергетическая эффективность, температурное поле.

Determination of the nature of change of exergetic indicators of the refrigerating camera depending on its temperature field was carried out on the basis of the exergetic analysis of the system. Thermal and exergetic calculations of this installation showed power overall performance of each element, and also of the installation as a whole and helped reveal the reasons of decrease in effective work. Influence of the temperature field of the camera on refrigerating capacity and also factors influencing this field are defined.

Key words: exergetic study, thermodynamic analysis, power efficiency, temperature field.

Введение

Целью исследований являлось определение характера изменения эксергетических характеристик охлаждаемой камеры от температурного поля в её объёме.

Учебная установка и камера, на которых проводились исследования, находятся во втором корпусе, в аудитории 107 Астраханского государственного технического университета. В учебном процессе проводились испытания, связанные с изучением принципа работы холодильной установки и её особенностей. Регулирующие и контролирующие приборы позволяют менять режим работы и измерять необходимые параметры.

Описание исследуемой установки

Исследуемая установка (рис. 1) состоит из компрессора 1, конденсатора 2, рекуперативного теплообменника 3, регулирующего вентиля 5 и испарителя 8. Компрессор 1 сжимает и перекачивает пары холодильного агента R22. Далее пар холодильного агента поступает в горизонтальный кожухотрубный водяной конденсатор 2 с конденсацией хладагента в межтрубном пространстве. Затем сконденсировавшийся холодильный агент из конденсатора поступает в рекуперативный теплообменник 3. В теплообменнике происходит охлаждение холодильного агента, после которого, через фильтр-осушитель 4, хладагент подается в регулирующую станцию. После регулирующего вентиля 5 холодильный агент поступает в воздушный испаритель с вынужденной циркуляцией воздуха, подвешенный на потолке (на высоте 1,5 м над полом). Выкипевший R22 движется через рекуперативный теплообменник и, подогревшись, поступает на всасывание в компрессор.

С помощью установленных термопар и измерительного восьмиканального прибора ОВЕН УКТ38 были произведены необходимые замеры, характеризующие работу установки и камеры.

При помощи манометров было установлено давление всасывания и нагнетания. Мощность привода компрессора измерялась ваттметром.

/////////////

Рис. 1. Схема исследуемой установки: 1 - компрессор; 2 - конденсатор;

3 - рекуперативный теплообменник; 4 - фильтр; 5 - регулирующий вентиль;

6 - стекло для наблюдения; 7 - электродвигатель на вентилятор испарителя;

8 - испаритель (воздухоохладитель); 9 - гильза с термометром; 10 - счетчик расхода воды

Для измерения расхода воды, поступающей в конденсатор, на входном патрубке установлен счетчик расхода воды 10, с помощью которого определяется расход воды за определенный промежуток времени.

Температуру воздуха в камере определяли в трёх местах: у пола, на входе в воздухоохладитель, на выходе из воздухоохладителя.

Для определения среднего значения замеры каждого параметра проводились трижды. Размер холодильной камеры: длина - 2 м, ширина - 2 м, высота - 2 м. Стены изолированы, но пол и потолок изоляции не имеют.

Методика проведения эксергетического анализа заключается в следующем [1, с. 3]:

1. Тепловой расчет.

2. Эксергетический расчет.

3. Расчет эксергетического КПД.

4. Анализ результатов численного эксперимента.

Исходные данные для проведения эксергетического анализа приведены в табл. 1.

Таблица 1

Расчетные параметры системы

Параметр і, °С

1 испытание 2 испытание 3 испытание

Температура паров холодильного агента при входе в компрессор Ь 19,2 20 20,3

Температура паров холодильного агента при выходе из компрессора t2 126,6 120,1 116,3

Температура паров холодильного агента при входе в теплообменник їу 7,85 9,3 10,5

Температура паров холодильного агента при выходе из конденсатора t5 30 35,7 33,5

Температура жидкого холодильного агента перед регулирующим вентилем 4 23,05 29,9 28,9

Температура воды при входе в конденсатор и вх 12,35 12,8 12,3

Температура воды при выходе из конденсатора и вых 29,7 35,3 32,9

Средняя температура в камере 4ам -10,23 -7,52 -3,03

Расход воды в конденсаторе Gw, кг/с 0,044 0,03 0,04

Температура наружного воздуха ї нар, °С 17 17 17

Мощность привода компрессора N кВт 2,215 2,4 2,4

С целью проведения анализа для различных условий эксплуатации разработана программа на языке Basic, с модулями на С#. Блок-схема программы представлена на рис. 2. С использованием разработанной программы был проведен эксергетический расчет. Результаты программного расчета представлены на интерфейсе. Пример интерфейса одного из испытаний приведён на рис. 3.

Удельная холодопроизводительность, кДж/кг: д0 = іг- ... і6

Производительность конденсатора, кДж/с:

Q0 = д0 Gха

Холодильный

коэффициент:

Е = Qа/N

Эксергетическая

холодопроизводительность:

Е = Е подв п ■‘-'до ■‘-'д -^исп

Потери эксергии в испарителе: Эксергетическая температурная функция (кипение холодильного агента)

тЄ0исп = (Т - Гос)/Г0

Эксергетическая температурная функция (воздухоохладитель):

Твозд = (Ткам - Тос)/Ткам-

КПД испарителя:

= Т / Т ИСП-

писп Твозд / Тео ;

Писп = (1 - Писп) 100 %

Рис. 2. Блок-схема и алгоритм программы эксергетического анализа

Эксергетический Диализ

Легенда :

1 • компрессор

2 - конденсатор

3 * регулирующий вентиль

4 - испаритель

Расчетная температура окружающей среды. К: Т ос 290.00

Потери эксергии в компрессоре. V.: °кт 28.99

Потери эксергии в конденсаторе. Оконд 14.67

Потери эксергии в регулирующем вентиле. Х\ Орв 2.34

Подведенная эксергия: Р„ подв 54.00

КПД испарителя: П ИСП 0.69

Потери эксергии в испарителе: Оисп 31.20

Эксергетическая холодопроизво дительностъ: Едо 22.81

Назад

Финиш

Рис. 3. Интерфейс программы эксергетического анализа на 2-е испытание

Для анализа характера зависимости эксергетического КПД от температурного поля в камере за параметр была принята средняя температура воздуха в местах замера по всем режимам. Результаты расчета приведены в табл. 2.

Таблица 2

Расчётная температура в камере

Средняя температура в определенном месте камеры по результатам 3-х испытаний К Ее, кДж/кг

Т 1кам. ср 267,03 14,29

Т2кам. ср 263,08 25,07

Т3кам. ср 267,22 13,79

Тср. кам. 1-3 265,78 17,68

Результаты численного эксперимента представлены в виде графической и эмпирической зависимостей на рис. 4.

30 25 20

Ед0, кДж/кг 1

10 5 О

262,00 263,00 264,00 265.00 266,00 267,00 268,00

7"кам. ср К

Рис. 4. График зависимости эксергетической холодопроизводительности от температуры внутри камеры

Анализ результатов исследования позволил сделать вывод о том, что в системе перепад между значениями температуры воздуха (температурный напор) в камере и кипения холодильного агента значительно больший, чем оптимальный, что приводит к увеличению расхода мощности. Результаты расчёта приведены в табл. 3.

Таблица 3

Температурный напор в камере и расход мощности

Т емпературный напор ^ К N кВт

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

А01 18,77 2,4

Д02 18,47 2,22

А01 21,64 2,4

Результаты численного эксперимента приведены в виде графической и эмпирической зависимостей на рис. 5.

3

2,5

2

N кВт 1

1

0,5

О

0,00 5,00 10,00 15,00 20,00 25,00

7кам. ср - Т0, К

Рис. 5. График зависимости потребляемой мощности от температурного напора в камере

,00 5,00 10,00 15,00 20,00 25,

7кам. ср - 70, К

Ед0 — 2,7295 Ткам.ср + 743,15

Анализ зависимостей на рис. 4 показал, что с увеличением средней местной температуры воздуха в камере величина эксергетического КПД уменьшается. Это объясняется тем, что при постоянной температуре окружающей среды увеличение температуры охлаждаемого воздуха снижает работоспособность потока (согласно определению понятия эксергии) [2]. Относительное изменение КПД по объёму составляет 268 %, что свидетельствует о недопустимо большой неравномерности температурного поля [3].

Анализ зависимости на рис. 5 показывает, что повышение затраченной мощности с увеличением температурного напора в камере является значительным. Так, при температурном напоре в 22 К, в сравнении с оптимальным значением 10 К, затраченная мощность больше на 16,7 %.

Выводы

1. В результате исследования выявлено влияние неравномерности температурного поля в охлаждаемой камере на величину эксергетических показателей её работы. В качестве влияющих факторов можно отметить неудовлетворительное состояние изоляционного контура (в данном случае - отсутствие изоляции пола и потолка); частое открывание дверей (особенно заметно для камер малого объёма).

2. Результаты испытания в виде полученных зависимостей можно рекомендовать для проведения анализа работы сходных промышленных холодильных установок.

СПИСОК ЛИТЕРАТУРЫ

1. Галимова Л. В. Термодинамическая эффективность холодильной системы на примере пластинчатого льдогенератора / Л. В. Галимова, Т. К. Гуиди // Материалы IV Междунар. конф. «Низкотемпературные и пищевые технологии в XXI веке», Санкт-Петербург, ноябрь 2009 г. СПб., 2009.

2. Бродянский В. М. Эксергетический метод и его приложения / В. М. Бродянский, В. Фратшер, К. Михалек; под ред. В. М. Бродянского. М.: Энергоатомиздат, 1988. 288 с.

3. Курылев Е. С. Холодильные установки / Е. С. Курылев, Н. А. Герасимов. М.: Энергия, 1970. 158 с.

REFERENCES

1. Galimova L. V., Guidi T. K. Termodinamicheskaia effektivnost' kholodil'noi sistemy na primere plastinchatogo l'dogeneratora [Thermodynamic performance of the refrigerating system by the example of tabular ice generator]. Materialy IVMezhdunarodnoi konferentsii «Nizkotemperaturnye i pishchevye tekhnologii v XXI veke», Sankt-Peterburg, noiabr' 2009 g. Saint Petersburg, 2009.

2. Brodianskii V. M., Fratsher V., Mikhalek K. Eksergeticheskii metod i ego prilozheniia [Exergetic method and its application]. Pod redaktsiei V. M. Brodianskogo. Moscow, Energoatomizdat, 1988. 288 p.

3. Kurylev E. S., Gerasimov N. A. Kholodil'nye ustanovki [Refrigerating units]. Moscow, Energiia Publ., 1970. 158 p.

Статья поступила в редакцию 8.10.2013

ИНФОРМАЦИЯ ОБ АВТОРАХ

Галимова Лариса Васильевна - Астраханский государственный технический университет; д-р техн. наук, профессор; профессор кафедры «Холодильные машины»; [email protected].

Galimova Larisa Vasilievna - Astrakhan State Technical University; Doctor of Technical Sciences, Professor; Professor of the Department "Refrigerating Machines"; [email protected].

Петрова Юлия Евгеньевна — Астраханский государственный технический университет; магистрант кафедры «Холодильные машины»; [email protected].

Petrova Yulia Evgenievna — Astrakhan State Technical University; Master’s Degree Student of the Department "Refrigerating Machines"; [email protected].

Кислова Дарья Олеговна — Астраханский государственный технический университет; магистрант кафедры «Холодильные машины»; [email protected].

Kislova Daria Olegovna — Astrakhan State Technical University; Master’s Degree Student of the Department "Refrigerating Machines"; [email protected].

Бобрешов Максим Вячеславович — Астраханский государственный технический университет; магистрант кафедры «Холодильные машины»; [email protected].

Bobreshov Maxim Vyacheslavovich — Astrakhan State Technical University; Master’s Degree Student of the Department "Refrigerating Machines"; [email protected].

i Надоели баннеры? Вы всегда можете отключить рекламу.