Key words: directional structural relaxation; amorphous alloy; nanocrystalline alloy; mechanical stress
REFERENCES
1. Sidorov S.A., Fedorov V.A., Pluzhnikova T.N., Kirillov A.M., Yakovlev A.V., Chernikova A.A. Issledovanie protsessov deformatsii amorfnykh splavov v usloviyakh impul'snogo elektricheskogo toka [Study of process of deformation of amorphous alloys under pulsed electric current]. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki — Tambov University Reports. Series: Natural and Technical Sciences, 2012, vol. 17, no. 1, pp. 135-138. (In Russian).
2. Fedorov V.A., Pluzhnikova T.N., Sidorov S.A. Vliyanie impul'snogo elektricheskogo toka na khod zavisimostey mekhanicheskoe napryazhenie - deformatsiya v amorfnykh i nanokristallicheskikh metallicheskikh splavakh [The effect of pulsed electric current on the dependence mechanical stress - deformationin amorphous and nanocrystalline metallic alloys]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya — Izvestia. Ferrous Metallurgy, 2013, no. 12, pp. 60-65. (In Russian).
3. Fedorov V.A., Pluzhnikova T.N., Sidorov S.A. Vliyanie agressivnykh sred na deformatsiyu amorfnykh i nanokristallicheskikh splavov, obuslovlennuyu vozdeystviem impul'snogo elektricheskogo toka [The influence of aggressive media on the deformation of amorphous and nanocrystalline alloys from exposure to pulsed electric current]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya — Izvestia. Ferrous Metallurgy, 2013, no. 4, pp. 59-62. (In Russian).
4. Fedorov V.A., Sidorov S.A., Druchinina O.A. Vliyanie impul'snogo elektricheskogo toka na mekhanicheskie svoystva navodorozhennykh metallicheskikh stekol na osnove kobal'ta i zheleza [Influence of pulse electric current on mechanical properties hy-drogenated metallic glasses based on cobalt and iron]. Mezhdunarodnyy nauchnyy zhurnal Al'ternativnaya energetika i ekologiya — International Scientific Journal for Alternative Energy and Ecology, 2013, no. 1 (117), pp. 10-13. (In Russian).
5. Kosilov A.T., Khonik V.A. Napravlennaya strukturnaya relaksatsiya i gomogennoe techenie svezhezakalennykh metallicheskikh stekol [Directional structural relaxation and homogeneous flow of freshly quenched metallic glasses]. Izvestiya Rossiyskoy akademii nauk. Seriya fizicheskaya — Bulletin of the Russian Academy of Sciences: Physics, 1993, vol. 57, pp. 192-198. (In Russian).
6. Glezer A.M., Permyakova I.E., Gromov V.E., Kovalenko V.V. Mekhanicheskoe povedenie amorfnykh splavov [Mechanics of amorphous alloys]. Novokuznetsk, Siberian State Industrial University Publ., 2006. 416 p. (In Russian).
7. Kamyshanchenko N.V., Neklyudov I.M., Bakay A.S., Krasil'nikov V.V. Vvedenie v osnovy fiziki amorfnogo i stekloobraznogo sostoyaniya tverdykh tel [Introduction in physics basis of amorphous and glass state of hard bodies]. Belgorod, Institute of Continious Education of Belgorod National Research University Publ., 2012. 320 p. (In Russian).
GRATITUDE: The work is fulfilled under financial support of Russian Fund of Fundamental Research (grant no. 16-3100432).
Received 24 May 2016
Fedotov Dmitriy Yurevich, Tambov State University named after G.R. Derzhavin, Tambov, Russian Federation, Postgraduate Student, Theoretical and Experimental Physics Department, e-mail: [email protected]
Sidorov Sergey Anatolevich, Tambov State University named after G.R. Derzhavin, Tambov, Russian Federation, Postgraduate Student, Theoretical and Experimental Physics Department, e-mail: [email protected]
Fedorov Viktor Aleksandrovich, Tambov State University named after G.R. Derzhavin, Tambov, Russian Federation, Doctor of Physics and Mathematics, Professor, Professor of Theoretical and Experimental Physics Department, e-mail: [email protected]
Pluzhnikova Tatyana Nikolaevna, Tambov State University named after G.R. Derzhavin, Tambov, Russian Federation, Candidate of Physics and Mathematics, Associate Professor, Associate Professor of Theoretical and Experimental Physics Department, e-mail: [email protected]
Berezner Arseniy Dmitrievich, Tambov State University named after G.R. Derzhavin, Tambov, Russian Federation, Postgraduate Student, Theoretical and Experimental Physics Department, e-mail: [email protected]
Yakovlev Aleksey Vladimirovich, Tambov State University named after G.R. Derzhavin, Tambov, Russian Federation, Candidate of Physics and Mathematics, Associate Professor, Associate Professor of Methodology of Teaching Natural Sciences Department, e-mail: [email protected]
Информация для цитирования:
Федотов Д.Ю., Сидоров С.А., Федоров В.А., Плужникова Т.Н., Березнер А.Д., Яковлев А.В. Влияние релаксационных процессов на величину сбросов механического напряжения в аморфном и нанокристаллическом сплавах при электроимпульсном воздействии // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 6. С. 2161-2165. DOI: 10.20310/1810-0198-2016-21-6-2161-2165
Fedotov D.Y., Sidorov S.A., Fedorov V.A., Pluzhnikova T.N., Berezner A.D., Yakovlev A.V. Vliyanie relaksatsionnykh protsessov na velichinu sbrosov mekhanicheskogo napryazheniya v amorfnom i nanokristallicheskom splavakh pri elektroimpul'snom vozdeystvii [The influence of relaxation processes on value of the discharge of mechanical stress in amorphous and nanocrystalline alloys under the influence of electric pulse]. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki — Tambov University Review. Series: Natural and Technical Sciences, 2016, vol. 21, no. 6, pp. 2161-2165. DOI: 10.20310/1810-0198-2016-21-6-2161-2165 (In Russian).
2165
УДК 539.2
DOI: 10.20310/1810-0198-2016-21 -6-2166-2171
МЕХАНИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ НИТРИДА КРЕМНИЯ
© О.А. Лукьянова1*, В.А. Федоров2*, В.Ю. Новиков1*, В.В. Красильников1*, В.В. Сирота1*
1) Белгородский государственный университет 308015, Российская Федерация, г. Белгород, ул. Победы, 85 E-mail: [email protected] 2) Тамбовский государственный университет им. Г.Р. Державина 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33 E-mail: [email protected]
На примере исследования керамики на основе нитрида кремния с добавлением оксидов А12О3-У2О3, изготовленной холодным изостатическим прессованием и свободным спеканием в атмосфере азота при температуре 1650 °С в течение 1 часа, было показано, что модель, полученная методом конечных элементов, адекватно интерпретирует результаты эксперимента и качественно согласуется с эмпирическими результатами испытаний на двуосное сжатие, полученными методом «Шар на трех шарах». На основании представленной модели с учетом упругих характеристик керамики на основе нитрида кремния можно предсказать характер распространения критических трещин в исследуемом материале. Кроме того, было показано, что полученный керамический материал на основе нитрида кремния с добавлением оксидов иттрия и алюминия, полученный спеканием без давления в атмосфере азота, характеризуется умеренно высокими механическими свойствами по сравнению с другими материалами данного класса, в частности, трещиностойкость полученного материала, измеренная методом механических испытаний образцов с у-образным надрезом на трехточечный изгиб, составила 3,2 МПа-м-1/2. Ключевые слова: нитрид кремния; механические свойства; двуосное сжатие; метод конечных элементов
ВВЕДЕНИЕ
Характерной особенностью керамических материалов традиционно является высокая прочность вкупе с повышенной хрупкостью. Хрупкость, таким образом, является чрезвычайно важным недостатком всех керамических материалов и нитрида кремния в частности. Метод испытаний типа «Шар на трех шарах» является полупроизводственным аналогом метода трехточечного изгиба ввиду ряда преимуществ, к примеру, по причине простоты пробоподготовки экспериментальных образцов и т. д. [1]. В рамках полуэмпирической модели, полученной методом конечных элементов, имитирующей испытания на двуосное сжатие типа «Шар на трех шарах», можно определить характер разрушения образцов исследуемого материала, имеющих форму диска.
В нашей работе для получения керамики на основе нитрида кремния был использован метод свободного спекания без давления. Методом свободного спекания в атмосфере азота при температуре 1650 °С был получен керамический материал на основе нитрида кремния. В сумме по весу количество оксидных добавок составляло 15 %. Соотношение Y2Oз к А12О3 было 3:5. Порошки смешивались в дисковой мельнице Ке^сИ ЯБ-220-230В. Время приготовления смесей составляло 20 мин. Скорость перемешивания 250 об./мин. Компак-тирование осуществлялось при комнатной температуре и давлении 200 МПа. Время выдержки составляло 90 с. Процесс спекания был проведен в атмосфере азота (1 атм.) в высокотемпературной печи ШЬегШегт VHT
8/22-GR при температуре 1650 °С в течение 1 ч. Более подробно технология получения и некоторые особенности структуры и механических свойств данного типа материалов описаны в наших предыдущих работах [2-11 ].
Для определения предела прочности на двуосное сжатие использовалась методика «Шар на трех шарах» с использованием Zwick Roell Z005 (Advanced Ceramics Institute, Bremen). Испытания были проведены согласно ASTM F 394. Данная методика является сравнительно новой в области двуосных испытаний хрупких керамических материалов. Испытания проводились при комнатной температуре. Величина предела прочности amax была рассчитана по формуле Шэтти [12]:
.3-Fmx -(1 + у)
4nt2
1 + 2ln R- +-И b (1 + у)
I-RL
2R2 I R2
(1)
где Етах - максимальная нагрузка, при которой происходит разрушение образца; и - коэффициент Пуассона исследуемого материала; Г - толщина образца; Ка -расстояние от центра образца до основания опоры; Ь -радиус стального шарика.
Значение К было вычислено по формуле Годфри [13]:
R = 0,721(Fdb (1-yb)/Eb + (1 -у)/E)1
,1/3
(2)
где dЬ - диаметр шарика; уЬ - коэффициент Пуассона шарика; Е - модуль Юнга исследуемого материала;
Таблица 1
а
2166
Параметры испытаний типа «Шар на трех шарах»
t, мм r, мм b, мм R, мм Eb, ГПа Ra, мм
2,92 21,97 0,33 8,5 210 35
Eb - модуль Юнга стального шарика. Исследуемые образцы имели форму диска диаметром 44 мм и высотой 3 мм. Исходные параметры испытаний приведены в табл. 1.
В качестве метода измерения трещиностойкости был выбран SENB-метод согласно ISO 15732:2003 Образцы представляли собой параллелепипеды с плоско-паралелльными гранями размером 5,6-5,6-50,6 мм.
Трещиностойкость K1c была рассчитана по формулам:
K\c -
Pd1
dw
3/2
11 -
21 w
1/2
Y (—) -
w
1,999--— (1--—)| 2,15 — 3,93— + 2,7(—)2
w w I w w
(3)
(4)
Рис. 1. Испытательная установка на двуосное сжатие методом шара на трех шарах
(1 + 2— )(1 — — )3/2 ww
где K¡c - трещиностойкость; Y - геометрический фактор; l - длина надреза; w - ширина образца; d - толщина образца; d¡ - расстояние между опорами.
На рис. 1-2 представлены установка и оснастка испытаний типа «Шар на трех шарах» соответственно. На рис. 3 можно видеть, что число полученных в результате разрушения осколков равно трем. Полученная методом конечных элементов модель испытаний представлена на рис. 4а и 4б. Видно, что центр диска является областью воздействия контактной нагрузки верхнего стального шарика, а также областью максимальной концентрации напряжений и зарождения трещины, ведущей к дальнейшему разрушению по хрупкому механизму (область красного цвета). Обработка экспериментальных данных в рамках модели позволила, таким образом, определить потенциальные траектории разрушения исследуемых образцов согласно распределению напряжений в объеме. Было установлено, что полученная модель адекватно интерпретирует и качественно согласуется с эмпирическими результатами, полученными методом «Шар на трех шарах» (рис. 3).
Об идентичности методов «Шар на трех шарах» -Ball on three balls (B3B) и метода трехточечного изгиба 3PB (three-point bending) свидетельствуют экспериментальные результаты, представленные в табл. 2. А именно, предел прочности на трехточечный изгиб составил 275 МПа, в то время как предел прочности при испытаниях «Шар на трех шарах» составил 277 МПа.
Как и другие механические характеристики, показатель трещиностойкости напрямую зависит от способа получения керамического материала. А именно, тре-щиностойкость керамики, полученной методами ГИП (горячее изостатическое прессование) и SPS (spark plasma sintering-искровое плазменное спекание), выше трещиностойкости керамики, полученной методом реакционного связывания. На рис. 5 изображен нагруженный образец при испытаниях на трехточечный из-
Рис. 2. Оснастка установки на двуосное сжатие методом шара на трех шарах
Рис. 3. Разрушенный образец после испытаний на двуосное сжатие методом шара на трех шарах
Таблица 2
Результаты испытаний методом «Шар на трех шарах»
V F Н F max, Н a, (B3B), МПа a, (3PB), МПа
0,28 1220 277 275
/
Y
w
2167
а)
б)
Рис. 4. Испытания на двуосное сжатие. Модель, полученная методом конечных элементов: а) вид сверху; б) вид сбоку
гиб с v-образным надрезом. Показатель трещиностой-кости, полученный методом SENB (single edge notched beam), составляет 3,2 МПа/м2, в то время как трещино-стойкость, измеренная методом индентирования (indentation fracture, IF-метод), составила 6,0 МПа/м2 (табл. 3) [9].
Столь существенное расхождение в показаниях можно объяснить несколькими факторами. Во-первых, ряд зарубежных научных трудов [14] приводит неопровержимые недостатки метода IF, а также демонстрирует, что зачастую результаты, полученные данным методом, являются завышенными.
Во-вторых, очевидным фактором является необходимость плоскопараллельности противоположных граней испытуемых образцов, что ввиду высокой твердости и прочности весьма проблематично.
Рис. 5. Нагруженный образец, SENB метод, керамика на основе нитрида кремния с добавлением оксидов иттрия и алюминия, полученная методом свободного спекания
2168
Таблица 3
Трещиностойкость нитрида кремния с добавлением оксидов иттрия и алюминия, полученного свободным спеканием
Метод SENB IF
K1c, МПа/м2 3,2 6,0
ЗАКЛЮЧЕНИЕ
Было установлено, что керамика на основе нитрида кремния, полученная методом свободного спекания в атмосфере азота при температуре 1650 °С и с добавлением Al2O3-Y2O3, характеризуется сравнительно близким показателем предела прочности на трехточечный изгиб и предела прочности на двуосное сжатие и тре-щиностойкостью 3,2 МПам-1/2.
СПИСОК ЛИТЕРАТУРЫ
1. Danzer, R., Harrer W., Supancic P., Lube T., Wang Z., Borger A. The ball on three balls test-strength and failure analysis of different materials // Journal of the European ceramic society. 2007. V. 27. № 2-3. P. 1481-1485.
2. Лукьянова О.А., Сирота В.В., Красильников В.В., Селеменев В.Ф., Докалов В.С., Алтухов А.Ю., Агеев Е.В. Исследование структуры и свойств керамики на основе нитрида кремния с добавлением оксида магния // Физика и технология наноматериалов и структур: сб. науч. ст. 2 Междунар. науч.-практ. конф.: в 2 т. Курск, 2015. Т. 1. С. 104-110.
3. KrasilNikov V.V., Sirota V.V., Ivanov A.S., Luk'Yanova O.A., Ivanisenko V. V., Kozlova L.N. Ivestigation of the structure of Si3N4-based ceramic with А^Оэ and Y2O3 additives // Glass and Ceramics. 2014. V. 71. № 1-2. P. 15-17.
4. Красильников В.В., Сирота В.В., Иванов А.С., Козлова Л.Н., Лукьянова О.А., Иванисенко В.В. Исследование структуры керамики на основе Si3N с добавками Al2O3 and Y2O3 // Стекло и керамика. 2014. № 1. С. 17-19.
5. Сирота В.В., Иванисенко В.В., Красильников В.В., Савотчен-ко С.Е., Лукьянова О.А. Свойства наноструктурной керамики на примере анализа микроструктуры порошков диоксида циркония и механических характеристик нитрида кремния // Вестник Новгородского государственного университета им. Ярослава Мудрого. 2013. № 73-2. С. 113-116.
6. Сирота В.В., Иванисенко В.В., Красильников В.В., Лукьянова О.А., Савотченко С.Е. Экспериментальное и аналитическое исследование механических характеристик композиционной керамики на основе нитрида кремния // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2013. Т. 18. Вып. 4. С. 1865-1866.
7. Сирота В.В., Красильников В.В., Савотченко С.Е., Лукьянова О.А., Иванисенко В.В. Механические свойства композиционной керамики на основе нитрида кремния // Известия Тульского государственного университета. Естественные науки. 2014. № 2. С. 264-269.
8. Лукьянова О.А., Сирота В.В., Туштев К., Хорват Ю., Красильни-ков В.В., Иванов А.С., Козлова Л.Н., Исследование механических свойств конструкционной керамики на основе Si3N4 c добавками А^О3 и Y2O3 // Деформация и разрушение материалов. 2015. № 5. С. 17-19.
9. Lukianova O. Mechanical and elastic properties of new silicon nitride ceramics produced by cold isostatic pressing and free sintering // Ceramics International. 2015. V. 41. P. 13716-13720.
10. Лукьянова О.А., Красильников В.В. Изучение упругих характеристик конструкционного керамического материала на основе Si3N4 с добавками A^O3 и Y2O3 // Огнеупоры и техническая керамика. 2015. № 7-8. С. 21-24.
11. Лукьянова О.А., Красильников В.В. Изучение радиотехнических характеристик конструкционной керамики на основе нитрида кремния // Огнеупоры и техническая керамика. 2015. № 10. С. 2931.
12. Borger A., Supancic P., Danzer R. The ball on three balls test for strength testing of brittle discs: stress distribution in the disc // Journal of the European Ceramic Society. 2002. V. 22. P. 1425-1436.
13. Godfrey D.J. Fabrication, formulation, mechanical properties, and oxidation of sintered Si3N4 ceramics using disc specimens // Mat. Sci. and Technology. 1985. V. 1. P. 510-515.
14. Quinn J.B., Quinn G.D. Indentation brittleness of ceramics: a fresh approach // Journal of Materials Science. 1997. V. 32. № 16. P. 43314336.
БЛАГОДАРНОСТИ: Работа выполнена при финансовой поддержке РФФИ (грант № 16-38-50119 мол_нр).
Поступила в редакцию 7 сентября 2016 г.
Лукьянова Ольга Александровна, Белгородский государственный национальный исследовательский университет, г. Белгород, Российская Федерация, аспирант, кафедра теоретической и математической физики, инженер научно-технического Центра конструкционной керамики и инженерного прототипирования, e-mail: [email protected]
Федоров Виктор Александрович, Тамбовский государственный университет им. Г.Р. Державина, г. Тамбов, Российская Федерация, доктор физико-математических наук, профессор, профессор кафедры теоретической и экспериментальной физики, e-mail: [email protected]
Новиков Всеслав Юрьевич, Белгородский государственный национальный исследовательский университет, г. Белгород, Российская Федерация, аспирант, кафедра теоретической и математической физики, младший научный сотрудник Центра коллективного пользования научным оборудованием «Диагностика структуры и свойств наноматериалов», e-mail: [email protected]
Красильников Владимир Владимирович, Белгородский государственный национальный исследовательский университет, г. Белгород, Российская Федерация, доктор физико-математических наук, профессор кафедры материаловедения и нанотехнологий, старший научный сотрудник, e-mail: [email protected]
Сирота Вячеслав Викторович, Белгородский государственный национальный исследовательский университет, г. Белгород, Российская Федерация, кандидат физико-математических наук, руководитель научно-технического Центра конструкционной керамики и инженерного прототипирования, e-mail: [email protected]
2169