Кадималиев Д.А., Ревин В.В., Атыкян H.A.
ВЛИЯНИЕ ПОЛИМЕРНЫХ СУБСТРАТОВ НА БИОСИНТЕЗ ФЕРМЕНТОВ ЛИГНОЛИТИЧЕСКОГО КОМПЛЕКСА ГРИБОМ P.TIGRINUS
Исследовано влияние полимерных субстратов на процесс биосинтеза ферментов лигнолитического комплекса грибом P.tigrinus BKM F-3616D при глубинном культивировании. Показано, что внесение целлолигнина в среду снижает активность ферментов лигнолитического комплекса. Березовые опилки в концентрации 2% повышают Mn-пероксидазную и глюкозооксидазную, а в концентрации 5% лакказ-ную и пероксидазную активности.
Введение
В настоящее время базидиальные грибы привлекают внимание многих исследователей. Особое место среди них занимают грибы «белой гнили» из-за способности разрушать лигнин и его производные. В литературе имеются данные о том, что эти грибы можно использовать для отбеливания бумаги, получения ферментов и других биологически активных веществ, биоконверсии лигнинсодержащих отходов (7, 12). Еще одним перспективным направлением является использования грибов белой гнили в производстве экологически безопасных композиционных материалов. В результате предыдущих исследований нами было показано, что гриб Р. tigrinus ВКМ Б-3616Б обладает высокой лигнолитической активностью и продуцирует комплекс ферментов - перокси-дазу растительного типа, несколько изоформ лакка-зы, Мп-пероксидазу и глюкозооксидазу (1). Целенаправленная модификация отходов древесины этим грибом позволяет получить пластики без применения токсичных связующих (2, 4). Длительность обработки отходов грибом занимает несколько суток и зависит от многих факторов и прежде всего от лиг-нолитической активности. Повышение активности гриба позволило бы сократить продолжительность биомодификации и снизить себестоимость плит. Одним из наиболее простых путей решения этой проблемы является применение индукторов, в качестве которых могут выступать полимерные субстраты.
Целью работы было подбор индукторов для повышения лигнолитической активности гриба Р^ппш.
Методы исследования
Гриб пилолистник тигровый - Р. (Ь.) tigrinus был выделен на кафедре биотехнологии Мордовского государственного университета имени Н.П. Огарева из сухих плодовых тел, растущих на березовом валежнике в окрестностях Саранска, и депонирован в ВКМ РАН как штамм ВКМ Б-3616 Б (5).
Инокулят Р. tigrinus выращивали на среде Чапе-ка-Докса, содержащей 20 г/л кукурузного экстракта (по сухим веществам). Гриб со скошенного сусло-агара высевали в жидкую питательную среду. Кусочек заросшего агара вносили в конические колбы Эр-
ленмейера объемом 500 мл с 100 мл питательной среды и выращивали 4 сут. при 260 на круговых качалках (235 об/мин). Инокулят объемом 5 мл вносили в экспериментальные питательные среды.
При изучении влияния соотношения азота и углерода на лигнолитическую активность гриб культивировали на жидкой питательной среде следующего состава (на 1 л): глюкоза - 3 г; КН2Р04 - 1 г; ШН2Р04 - 0,26 г; Мв804-7Н20 - 0,5 г; (2ЧН4)2804 -0,317 г; СиБ04 ■ 5Н20 - 0,5 мг; СаС12 -2Н20 - 74 мг;
ZnSO4 -7H2O
мг; FeSO4 -7H2O - 5 мг; MnSO4 -5
H2O - 5 мг; CoCl2 -6 H2O - 1 мг; (9). В средах варьировали концентрацию полимерных субстратов целлолигнина и березовых опилок от 0,5 до 5%. Культуру гриба выращивали глубинным способом при температуре 260C в конических колбах Эрленмейера объемом 500 мл со 100 мл питательной среды в течение 12 сут. на круговых качалках со скоростью 235 об/мин. В процессе культивирования каждые два дня отбирали пробы. Пробы центрифугировали при 6000 об/мин 10 мин. В супернатанте определяли активность пероксидазы, лакказы и Mn-пероксидазы - по окислению ABTS (»ICN», USA) (9). Начальную скорость реакции измеряли на спектрофотометре СФ-46 («Ломо», Россия). За единицу активности принимали количество фермента, катализирующее окисление 1 мкм субстрата в течение 1 мин. при оптимальных условиях. Также определяли концентрацию белка спектрофотометрически по методу Бредфорд, используя в качестве стандарта бычий сывороточный альбумин («BDH biochemicals», England) (8).
Реактивы. В работе использованы реактивы 2,2' -азино-бис(3-этил-бензтиазолин-6-сульфонат) аммония (АБТС) - «ICN» (USA), бычий сывороточный альбумин - «BDH biochemicals» (England). Остальные реактивы - отечественного производства марки х. ч., ч. д. а. и ч.
Результаты и их обсуждение
Введение целлолигнина в культуральные среды оказало неблагоприятное действие на синтез лигно-литических ферментов грибом Panus tigrinus. Синтез Mn-пероксидазы на средах с варьированием концентрации целлолигнина был в 2,5 раза ниже, чем в контрольной среде (рис. 1). При этом на среде с мак-
Кадималиев ДА. и др.
Влияние полимерных субстатов на биосинтез ферментов..
симальным содержанием целлолигнина - 5% активность не детектировалась. Аналогичная картина наблюдалась и при изучении влияния целлолигнина на синтез пероксидазы и лакказы грибом. Как общая, так и удельная активность (рис. 2) была выше на среде без целлолигнина, а при максимальном содержании его пероксидаза детектировалась на низком уровне, а лакказа не определялась. Неблагоприятное воздействие введения целлолигнина в питательные среды на биосинтез пероксидаз и лакказы грибом, вероятно, обусловлено наличием ингибирующих веществ, например остатков фурфурола, переходящих в куль-туральную среду из целлолигнина. Однако введение целлолигнина в среды для культивирования стимулировало биосинтез глюкозооксидазы грибом. Максимальный уровень биосинтеза глюкозооксидазы наблюдался на среде, содержащей 1% целлолигнина, что связано с наличием дополнительного источника углерода - целлюлозы, при гидролизе которой образуются большие количества глюкозы - субстрата глю-козооксидазы.
Иное влияние на биосинтез ферментов оказало добавление в питательные среды различных концентраций березовых опилок. При низких концентрациях растительного субстрата (0,5 и 1%) увеличения пе-роксидазной и лакказной активности в надосадочной жидкости не наблюдалось (рис. 3). Более высокие концентрации березовых опилок вызывали увеличение как пероксидазной, так и лакказной активности, что, вероятно, связано с индукцией низкомолекулярными продуктами деградации лигнина, например, ве-ратровым спиртом, олиго- и дилигнолами и др., образующимися при биодеградации лигнинового компонента опилок грибом.
Вопрос о роли индукторов в проявление лигно-литической активности грибами до конца не выяснен. Несмотря на то, что лигнолитическая активность грибов белой гнили носит конститутивный характер и ее проявление не зависит от наличия лигнина или
его производных, уровень активности, включая титр отдельных ферментов, может быть повышен внесением лигнина или его аналогов. В литературе имеются достаточно сведений о том, что введение в среды вератрового спирта (он является одним из метаболитов гриба и продуцируется им в фазу вторичного роста) увеличивает лигниназную активность (9, 13, 15). При этом он не столько индуцирует синтез, сколько, вероятно, защищает фермент от инактивации (10). Добавление вератровой кислоты или нефе-нольного р -О-4 димера в среды культивирования гриба РЫеЫа гай1а1а также оказывало стимулирующий эффект на синтез внеклеточных ферментов (14), а анисовый спирт в 2,5 раза увеличивал синтез Мп-пероксидазы грибом Р. tigrinus 8/18 (3). Возможно также, что присутствие достаточного количества целлюлозы, кометаболизируемого субстрата, энергетически обеспечивает дополнительный синтез лигно-литических ферментов, образование возможных эффекторов лигнолитической системы, медиаторов электронного транспорта и перкиси водорода, необходимой для функционирования большинства лиг-нолитических ферментов.
Наиболее высокие пероксидазная и лакказная активности наблюдались на восьмые сутки культивирования на среде, содержащей 5% березовых опилок. Синтез Мп-пероксидазы увеличился почти в 5 раз при росте гриба в присутствии 2% березовых опилок. На этой среде была отмечена и максимальная удельная Мп-пероксидазная активность (рис. 4), т. е. введение лигноцеллюлозного субстрата оказало стимулирующее действие именно на синтез фермента, а не только увеличило общую активность культуры. Биосинтез глюкозооксидазы также повысился при введении в среду березовых опилок. Оптимальным вариантом, стимулирующим синтез данного фермента, была среда, содержащая 2% березовых опилок.
Различия в величинах оптимальных концентраций березовых опилок, вероятно, могут быть связа-
2,5
1,5
0,5
ь
й
тл - п
контроль 0,5 1 2 5
Концентрация, %
□ пероксидаза □ Мп-пероксидаза □ лакказа □ глюкозооксидаза Рисунок 1.
45
40
л 35
.5
ч 30
е
ь, ст 25
ос ЕВ 20
Я
кт 15
<
10
5
0
|Ь
т 111-п
п.
л
контроль 0,5 1 2 5
Концентрация, %
□ пероксидаза □ Мп-пероксидаза □ лакказа □ глюкозооксидаза
Рисунок 2.
2
1
0
Естественные науки
и <
l"L Н
r^T^l rt
ГП-п Г
Я 4
й
М
ш.
ГП-п Г
ii
контроль 0,5 1 2 5
Концентрация, %
□ пероксидаза □ Ыи-пероксидаза Шлакказа □ глюкозооксидаза Рисунок 3.
ны с тем, что чувствительность отдельных ферментов к образующимся продуктам деградации полимера зависит как от количества этих продуктов, так и от химической структуры. Например, исследование субстратной специфичности лакказы по отношению к метоксифенольным соединениям, в том числе к ванилиновому спирту, о-ванилину - продуктам биодеградации березы, показало существенные различия в значениях кинетических констант (15).
контроль 0,5 1 2 5
Концентрация, %
□ пероксидаза □ Ыи-пероксидаза □ лакказа □ глюкозооксидаза Рисунок 4.
Таким образом, добавление березовых опилок в среду повышает лигнолитическую активность гриба Р. tigrinus и дает возможность регулировать синтез ферментов. Уровень биосинтеза отдельных ферментов лигнолитического комплекса гриба зависит от количества внесенного полимерного субстрата. Максимальная Мп-пероксидазная и глюкозооксидазная активность наблюдается при концентрации опилок 2%, а лакказная и пероксидазная - 5%.
8
8
4
0
0
Список использованной литературы:
1. Атыкян Н.А., Ревин В.В., Кадималиев Д.А., Лафуткина Т.Т. Изучение роли ферментов лигнолитического комплекса гриба P.tigrinus BKM F-3616 D в биомодификации древесный отходов./Интеграция фундаментальной науки и высшего лесотехнического образования по проблемам ускоренного воспроизводства, использования и модификации древесины: Мат-лы Междун. Научно-практ. Конф (13-16 июня 2000 г.)-Воронеж, Воронеж.гос.лесотехн.акад., 2000 г.-С.109-113.
2. Кадималиев Д.А., Ревин В.В., Шутова В.В. Влияние прессования на свойства лигнина древесины сосны, обработанной грибом P. tigrinus//Химия раст.сырья., 2001.-№3.-С.111-118.
3. Мясоедова Н.М. Влияние условий культивирования на лигнолитическую активность гриба Phanerochoate chrysosporium и Panus tigrinus.//Дис.на соиск.уч.степени канд.биол.наук, Пущино, 1997.-132с.
4. Ревин В.В., Кадималиев Д.А., Шутова В.В., Самуилов В.Д. Модификация лигнина древесины грибом Panus tigrinus .//Прикл.био-хим. и микроб.,2002.-№38.-В.5.-С.450-453.
5. Ревин В.В., Прыткова Т.Н., Лияськина Е.В., Черкасов В.Д., Соломатов В.И. Свидетельство о депонировании микроорганизма Panus (Lentinus) tigrinus (Bulliard:Fries) Fries,317. Регистрационный номер BKM F-3616D присвоен 5 марта 1998г.
6. Смирнов С.А., Королева О.В., Гаврилова В.П., Белова А.Б., Клячко Н.Л. Лакказы базидиальнык грибов: физико-химические характеристики и субстратная специфичность по отношению к метоксифильным соединениям.//Биохимия., 2001.-Т.66.-В.7.-С.952-958.
7. Элисашвили В.И. Биоконверсия растительного сырья высшими базидиомицетами.//Микол. и фитопатол., 1993.-Т.27.-В.6.-С.83-92.
8. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein-drye binding.//Anal.Biochem.,1976.-V72.-P.248-254.
9. Cancel A.M., Orth A.B., Tien M. Lignin and veratryl alcohol are not inducers of the lignolytic system of Phanerochoate chrysosporium.// Appl.Environ.Microbiol.,1993.-V.59.-№9.-P2909-2913.
10. Eggert C., Temp U., Eriksson K.E. The lignolytic system of the white-rot fungus Pycnoporus cinnabarinus: Purification and characterization of laccase.//Appl.Environ.Microbiol.,1996.-V.62.-№4.-P 1151-1158.
11. Faison B.D., Kirk T.k., Farrell R.L. Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium.// Appl.Environ. Microbiol., 1986.-V.52.-P.251-254.
12. Jie I., Guanying W. Antitumor polysaccharides from a chinese mushroom, «Juhuagmo», the fruiting body of Pleurotus citrinopillatus.// Biosci.Biotechnol and Biochem.,1994.-V.58.-№7.-P.1195-1201.
13. Kirk T.K., Croan S., Tien M., Murtagh K.-E., Farrell R.L. Production of multiple ligninases by Phanerochaete chrysosporiun: effect of selected growth conditions and use of mutant strain.//Enzyme Microb.Technol.,1986.-V8.-P.27-32.
14. Niku-Paavola M.-L., Karhunen E., Kantelinen A., Viikari L., Lundel T., Hatakke A. The effect of culture conditions on the production of lignin modifyling enzymes by the white-rot fungus Phlebia radiate.//J.Biotech.,1990.-V.13.-P.211-221.
15. Tonon F., Odier E. Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium.//Appl.Environ.Microbiol.,1988.-V.54.-P.466-472.