Научная статья на тему 'Влияние натрия на качество сплавов 5ХХХ серии'

Влияние натрия на качество сплавов 5ХХХ серии Текст научной статьи по специальности «Технологии материалов»

CC BY
36
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Влияние натрия на качество сплавов 5ХХХ серии»

Влияние натрия на качество сплавов 5ХХХ серии

Снигирева Ольга Александровна

Студент,

Сибирский федеральный университет, Россия, Красноярск E-mail: tsirinskaya.olya@yandex.ru

Научный руководитель: Баранов Владимир Николаевич

кандидат технических наук, доцент Сибирский федеральный университет, Россия, Красноярск

Технический алюминий и сплавы на его основе содержат различные примеси. Многие из них присутствуют в сплавах в сотых или тысячных долях процента. Тысячные доли процента натрия существенно снижают пластические свойства алюминия, увеличивают его окисляемость и обуславливают более высокое содержание в нем водорода и окисных включений. При более высоком содержании натрий вызывает интеркристаллитную коррозию.

Совместное присутствие натрия и кальция отрицательно сказывается на коррозийной стойкости алюминия, так как кальций способствует удержанию в металле большего количества натрия. На поверхности расплава они образуют рыхлые пленки окислов, легко замешивающиеся в металл. Наличие таких пленок вызывает появление неслитин на слитках. Эти элементы усиливают газопоглощение при выдержке расплавов в атмосфере, содержащей пары воды.

Натрий влияет на структуру алюминиевых расплавов — уменьшает их плотность, увеличивает коэффициент объемного термического сжатия (усадка в жидком состоянии) и объемные изменения сплавов при кристаллизации, что способствует увеличению склонности их к образованию усадочной пористости.

Большое влияние на свойства сплавов системы Al-Mg оказывают ничтожно малые количества натрия (тысячные доли процента). Натрий может переходить в металл при плавке из криолитсодержащих флюсов.

Особенно вредное влияние натрий оказывает на горячеломкость слитков и пластические характеристики алюминиевомагниевых сплавов при горячей деформации. Горячие трещины при литье слитков образуются при содержании № > 0,0015%.

Растрескивание слитков, содержащих натрий, при прокатке связано с межзеренным разрушением металла [1].

Растворимость натрия в жидком и твердом алюминии практически равна нулю. При кристаллизации натрий оттесняется растущими ветвями дендритов алюминия в междендритные пространства, которые сильно обогащаются натрием. На границах дендритов возникают прослойки из чистого натрия с температурой плавления 96оС. Поэтому сплавы системы Al-Mg, загрязненные натрием, оказываются склонными к горячеломкости.

Натрий можно нейтрализовать кремнием, который образует тройное соединение AlxSiyNaz. Однако в сплавах с большим содержанием магния нет свободного кремния, он связан в соединение Mg2Si. Поэтому сплавы системы Al-Mg наиболее чувствительны к примеси натрия [2].

Склонность к образованию трещин можно снизить путем изменения химического состава сплава, способствующего улучшению его пластических свойств при комнатных температурах.

Помимо криолитсодержащих флюсов, натрий в сплав может попасть с чушковым алюминием, где

его содержание колеблется в пределах 0,001-0,005%, с магнием, где он допускается до 0,01%, при введении в плавку отходов сплавов с высоким содержанием натрия. Необходимо ограничивать его содержание в первичном алюминии до 0,001%.

Влияние примесей на горячеломкость следует связывать с изменением пластичности сплава в твердожидком состоянии и эффективного интервала кристаллизации.

При содержании в металле натрия в количестве 0,0006-0,0007% брак при горячей прокатке может достигать 15-20%, но уже концентрация натрия 0,0008-0,0009% приводит к 100%-ному браку по трещинам.

Резкое снижение технологичности и брак по трещинам при горячей прокатке слитков алюминиевомагниевых сплавов обусловили регламентацию содержания натрия в них.

Высокое содержание натрия при температурах горячей прокатки резко ослабляет границы зерен, и признаки пережога наблюдаются при более низких температурах, чем это свойственно данному сплаву.

Горячеломкость сплавов алюминия с магнием объясняют выделением свободного натрия по границам зерен. Находясь при температурах горячей деформации в жидком состоянии, натрий ослабляет границы зерен. Возможно также наличие по границам зерен легкоплавкой эвтектики с магнием. С целью устранения вредного влияния натрия целесообразно вводить в сплав элементы, которые связывали бы натрий в соединения, температура плавления которых выше температуры горячей деформации сплава. Наиболее эффективной является добавка висмута (~0,005%) [3].

Сплавы с содержанием магния более 5% отливают с обязательной подливкой алюминия на поддон. Слитки данных сплавов весьма склонны к поверхностным трещинам при несоблюдении требований к соотношению содержания железа и кремния. Превышение содержания железа над содержанием кремния не менее чем на 0,05% практически полностью устраняет брак по поверхностным трещинам. Из-за повышенной окисляемости этих сплавов необходимо следить за поверхностью расплава в кристаллизаторе, не допуская разрывов и заворотов окисной плены.

При загрязнении расплава натрием сплавы рафинируют и покрывают для предотвращения угара магния карналлитовым и бариевым флюсами.

Процесс рафинирования является важным этапом при достижении необходимого качества расплава для продукции литья и предполагает процесс улучшения состава сплава путем удаления из расплава таких примесей, как натрий. Конечное качество металла в плане концентрации вредных примесей оказывает огромное влияние на поведение продукции литья при последующей обработке.

Структура и свойства слитка должны обеспечить получение после деформации заданных характеристик изделий. При этом для различных видов обработки предпочтительна та или другая структура, обеспечивающая формирование текстуры деформации с максимальными эксплуатационными характеристиками готового изделия.

Для алюминиевых сплавов существует ряд общих проблем наследственности расплавов, это, прежде всего, газонасыщенность, наличие окислов металлов или их соединений не растворимых в алюминии. При разработке технологических процессов, направленных на повышение качества расплавов алюминиевых сплавов, необходимо знать и планировать наследственные параметры расплавов. Например, для алюминиевых деформируемых сплавов, особенно систем А1-Мд, присутствие в расплаве натрия в концентрациях выше 0,0005% крайне не желательно. Для ряда расплавов свариваемых с высокой удельной прочностью ставится задача снижения натрия до 0,00002%, то есть необходимо значительно снизить наследственное от электролиза глинозема в расплаве криолитовых солей количество растворенного натрия в первичном алюминии [4].

Исследование наследственности строения жидких расплавов на структуру и свойства твердых металлов позволяют в значительной степени облегчить решение задачи получения отливок

с регламентируемой структурой. Список литературы:

1. Флюсовая обработка и фильтрование алюминиевых расплавов / А.В. Курдюмов, С.В. Инкин, В.С. Чулков [и др.] // М.: Металлургия, 1980. С. 68-72.

2. Металловедение и термическая обработка цветных металлов и сплавов: Учебник для вузов, — 4-е изд., перераб. и доп. / Б.А. Колачев [и др.] — М.: МИСИС, 2005. С. 81-82.

3. Производство литых заготовок из деформируемых алюминиевых и медных сплавов: учебное пособие / Р. К. Мысик [и др.] — Екатеринбург: УрФУ, 2011. С. 118-119.

4. Черепок Г.В., Федоров М.В. Влияние наследственности на структуру и свойства слитков из алюминиевых деформируемых сплавов // Известия Самарского научного центра РАН. 1999. № 2. 295 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.