Научная статья на тему 'Влияние концентрации кислорода на процесс сжигания газообразного топлива'

Влияние концентрации кислорода на процесс сжигания газообразного топлива Текст научной статьи по специальности «Химические технологии»

CC BY
2263
159
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СЖИГАНИЕ ПРИРОДНОГО ГАЗА / ДОБАВЛЕНИЕ ТЕХНИЧЕСКОГО КИСЛОРОДА

Аннотация научной статьи по химическим технологиям, автор научной работы — Павлечко Владимир Никифорович, Францкевич Виталий Станиславович

Приведены результаты расчета процесса горения природного газа с различными количествами добавляемого технического кислорода взамен атмосферного воздуха. Для снижения трудоемкости расчетов использована специально разработанная программа. Расчет выполнен для сжигания 1 нм3 природного газа и для 150 нм3/ч применительно к условиям одной из стекловаренных печей ОАО «Полоцк-Стекловолокно». Добавление каждых 5% кислорода от его количества, необходимого для горения газа, повышает температуру в печи на 41-58оС, снижает расход воздуха на 0,55 нм3/нм3 газа, природного газа на 1,18-1,39%, выбросов оксидов азота на 6%. Экономия 1 нм3 газа достигается при использовании 7 нм3 кислорода.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим технологиям , автор научной работы — Павлечко Владимир Никифорович, Францкевич Виталий Станиславович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INFLUENCE OF OXYGEN CONCENTRATION ON THE PROCESS OF COMBUSTION GAS FUEL

The results of calculating the combustion process of natural gas with various amounts of added oxygen in place of atmospheric air are given. To reduce the complexity of calculations, a specially developed program was used. The calculation was carried out for the combustion of 1 nm3 of natural gas and for 150 nm3/h in relation to the conditions of one of the glass furnaces OJSC Polotsk-Steklovolokno. The addition of every 5% of oxygen from its amount necessary for burning gas raises the temperature in the furnace by 41-58°C, reduces air consumption by 0.55 nm3/nm3 of gas, natural gas by 1.18-1.39%, emissions of nitrogen oxides on 6%. Saving 1 nm3 of gas is achieved when 7 nm3 oxygen is used.

Текст научной работы на тему «Влияние концентрации кислорода на процесс сжигания газообразного топлива»

100

Труды БГТУ, 2018, серия 2, № 2, с. 100-105

УДК 66.02

В. Н. Павлечко, В. С. Францкевич

Белорусский государственный технологический университет

ВЛИЯНИЕ КОНЦЕНТРАЦИИ КИСЛОРОДА НА ПРОЦЕСС СЖИГАНИЯ

ГАЗООБРАЗНОГО ТОПЛИВА

Приведены результаты расчета процесса горения природного газа с различными количествами добавляемого технического кислорода взамен атмосферного воздуха. Для снижения трудоемкости расчетов использована специально разработанная программа. Расчет выполнен для сжигания 1 нм3 природного газа и для 150 нм3/ч применительно к условиям одной из стекловаренных печей ОАО «Полоцк-Стекловолокно». Добавление каждых 5% кислорода от его количества, необходимого для горения газа, повышает температуру в печи на 41-58оС, снижает расход воздуха на 0,55 нм3/нм3 газа, природного газа на 1,18-1,39%, выбросов оксидов азота на 6%. Экономия 1 нм3 газа достигается при использовании 7 нм3 кислорода.

Ключевые слова: сжигание природного газа, добавление технического кислорода.

V. N. Pavlechko, V. S. Frantskevich

Belarusian State Technological University

INFLUENCE OF OXYGEN CONCENTRATION ON THE PROCESS OF COMBUSTION GAS FUEL

The results of calculating the combustion process of natural gas with various amounts of added oxygen in place of atmospheric air are given. To reduce the complexity of calculations, a specially developed program was used. The calculation was carried out for the combustion of 1 nm3 of natural gas and for 150 nm3/h in relation to the conditions of one of the glass furnaces OJSC Polotsk-Steklovolokno. The addition of every 5% of oxygen from its amount necessary for burning gas raises the temperature in the furnace by 41-58°C, reduces air consumption by 0.55 nm3/nm3 of gas, natural gas by 1.18-1.39%, emissions of nitrogen oxides on 6%. Saving 1 nm3 of gas is achieved when 7 nm3 oxygen is used.

Key words: burning of natural gas, addition of technical oxygen.

Введение. Используемый в промышленности в качестве окислителя воздух содержит большое количество азота, который в процессах горения не используется, а является бесполезным балластом, так как для его нагрева необходимо расходовать некоторое количество тепловой энергии, а для его транспортировки по трубопроводам требуется расходовать заметное количество электрической энергии. Балласт, выводимый в атмосферу с дымовыми газами, содержит существенное количество тепла и вызывает тепловое загрязнение окружающей среды. При высокой температуре топки азот частично окисляется с образованием оксидов, которые также загрязняют воздух. Частичное или полное замещение азота необходимым и достаточным количеством кислорода позволяет соответствующим образом уменьшить его расход и отмеченное выше его негативное влияние на процесс горения топлива. Кроме того, при использовании кислорода достигается более высокая температура в топке, появляется возможность использования низкокалорийного топлива и снижения его расхода [1, 2]. В то же время внедрение кислородного дутья сдерживается его высокой стоимо-

стью, необходимостью использования специальных горелок, перенастройки системы управления и автоматизации процесса горения, кроме того, отсутствием отечественного опыта.

Основная часть. По заданию крупнейшего в Республике Беларусь производителя продуктов разделения воздуха ОАО «Крион» проведена работа по определению возможности использования дополнительного количества кислорода в процессе горения газообразного топлива. Целью работы являлось определение влияния концентрации кислорода на процесс сжигания газообразного топлива. Расчет процесса горения необходимо было представить в виде специальной программы. Необходимость разработки программы была обусловлена большим объемом и трудоемкостью вычислительных операций. Программа разработана на основе электронных таблиц Excel. Апробация программы проводилась на примере расчета процесса горения природного газа в одной из стекловаренных печей ОАО «Полоцк-Стекловолокно».

В программе использована общепринятая методика расчета процесса горения топлива [3-5], на основании которой определены температура

В. Н. Павлечко, В. С. Францкевич

101

и теплоемкость продуктов горения, их состав и количество.

Как известно, взаимодействие кислорода и компонентов природного газа при полном сгорании топлива осуществляется в соответствии с формулами:

СН4 + 2О2 = СО2 + 2Н2О;

2С2Н2 + 7О2 = 4 СО2 = 6Н2О;

СэН8 + 5О2 = ЗСО2 + 4Н2О;

2С4Н10 +1ЗО2 = 8СО2 + 1ОН2О;

С5Н10 + 8О2 = 5СО2 + 6Н2О.

Стехиометрический расход кислорода для окисления 1 кг метана

Оо, = °сн4

где M02, Мсн4

МО 64

—= 1 — = 4 кг/кг, (1) Мсн 16

молекулярная масса кислорода и метана соответственно, кг/кмоль.

Объемный расход кислорода для окисления 1 нмЗ метана

Ь02 = ОО2

РСН4 л 0,7143 2 3,3 (2)

-- = 4-= 2 нм /нм , (2)

Ро 1,4286

где рСН4, Ро - плотность соответственно метана

и кислорода при нормальных условиях, кг/м3.

Объемный расход воздуха для окисления 1 нм3 метана

Ьвозд

Ьо

°2-= — 100 = 9,524 нм3/нм3, (3) 21

где X 0 - объемное содержание кислорода в

воздухе, % (об.).

С учетом горения других компонентов природного газа помимо метана стехиометриче-ские удельные расходы кислорода и воздуха

будут несколько меньше (1,9677 нм3/нм3 кислорода и 9,37 нм3/нм3 воздуха).

В расчете принята средняя температура воздуха, подаваемого на горение, 1в = 600°С и кислорода О = 600°С с учетом того, что газовая смесь, состоящая из воздуха и добавляемого кислорода, проходит через рекуператор, в котором частично утилизируется тепло отходящих дымовых газов.

Первоначально расчет выполнен для 1 м3 природного газа, состав и характеристика которого приведены в табл. 1, параметры воздуха, используемого для горения, - в табл. 2. Параметры кислорода, используемого для горения, приняты в соответствии с ГОСТ 6331-78 (табл. 3). Необходимые для расчета технологические параметры одной из стекловаренных печи ОАО «Полоцк-Стекловолокно» приведены в табл. 4.

Выход дымовых газов (диоксида углерода, водяного пара, азота и остаточного кислорода) принят пропорциональным расходу топлива. При высокой температуре печи азот атмосферного воздуха частично окисляется с образованием оксидов. Образование диоксидов зависит от множества факторов, которые при выполнении работы не учитывались, но логически следует, что с уменьшением азота, вводимого в топку, выход его оксидов должен снижаться.

Приход тепла в печь определен по формуле

о,=V (вр+вв+в+во,),

(4)

где Уг - расход природного газа, нм /с; вр -низшая теплота сгорания природного газа, кДж/кг; 0в - физическое тепло, вносимое в топку воздухом, кДж/кг; 0г - физическое тепло, вносимое в топку природным газом, кДж/кг; во2 - физическое тепло, вносимое в топку добавляемым техническим кислородом, кДж/кг.

Таблица 1

Состав и характеристика природного газа

Наименование показателя Размерность Величина

Метан (СН4) % (об.) 95,6

Этан (С2Н6) % (об.) 0,7

Пропан (С3Н8) % (об.) 0,4

Бутан (С4Н10) % (об.) 0,2

Пентан (С5Н12) % (об.) 0,2

Диоксид углерода (С02) % (об.) 0,1

Азот (N2) % (об.) 2,8

Плотность природного газа, рг кг/нм3 0,7312

Температура природного газа, /г °С 0

Удельная теплоемкость природного газа, сг кДж/(нм3-град) 1,55

Теплота сгорания природного газа, в|р кДж/нм3 33 948

Таблица 2

Параметры воздуха для горения

Наименование показателя Размерность Величина

Плотность воздуха, рв кг/нм3 1,293

Удельная теплоемкость воздуха, св кДж/(нм3-град) 1,350

Температура воздуха, 4 °С 600

Влагосодержание воздуха, х кг/кг 0,01

Коэффициент избытка воздуха, а — 1,1455

Содержание кислорода в воздухе, х02 % (об.) 21

Содержание азота в воздухе, х^ % (об.) 79

Параметры кислорода, используемого для горения Таблица 3

Наименование показателя Размерность Величина

Содержание кислорода, х'02 % (об.) 99,7

Содержание диоксида углерода, Х'С02 % (об.) 0,2

Плотность чистого кислорода, р02 кг/нм3 1,4286

Удельная теплоемкость кислорода, с0 02 кДж/(нм3-град) 1,300

Температура кислорода, 10 °2 °С 600

Таблица 4

Некоторые технологические параметры стекловаренной печи

Наименование параметра Размерность Величина

Низшая теплота сгорания топлива, О кДж/нм3 33 948

Расход природного газа, Уг нм3/ч 150

Расход воздуха, Ь'а нм3/ч 1650

Температура воздуха, 4 °С 500—700

Температура газового пространства, 4 °С 1550

При расчете реальной температуры топки значение пирометрического коэффициента принято равным 0,8. Удельные теплоемкости компонентов дымовых газов приняты из справочников при рабочей температуре топки.

В результате расчета установлено, что при добавлении кислорода снижается расход воздуха и, соответственно, расход азота. Суммарный приход кислорода не изменяется, так как добавочный кислород полностью компенсирует снижение прихода кислорода вследствие уменьшения количества воздуха, подаваемого на горение. Следовательно, при добавлении кислорода снижаются затраты тепла на нагрев балластного азота от температуры 600°С после рекуператора до температуры газового пространства печи (1550°С), уменьшается количество тепла, вносимого воздухом в печь, но повышается тепло, вносимое добавляемым кислородом, нагретым до температуры 600°С в рекуператоре. Расчет некоторых параметров печи

выполнен исходя из одинакового количества тепла, которое должно быть внесено в печь с учетом потерь тепла.

Результаты расчета разработанной программой процесса горения 1 нм3 природного газа приведены в табл. 5, в одной из стекловаренных печей - в табл. 6.

Анализ результатов показал, что каждые 5% добавляемого кислорода (0,0989 нм3/нм3), используемого взамен воздуха для горения природного газа, позволяют повысить рабочую температуру процесса горения на 41-58°С (меньшие цифры соответствуют меньшим добавкам кислорода), а также снижают расход воздуха на 0,55 нм3/нм3 газа. Количество тепла, вносимого в топку, определено без учета снижения потерь тепла на нагрев азота до температуры топки. Замещение воздуха на 20% кислородом приводит к снижению объемов дымовых газов на 18% и в первом приближении к пропорциональному уменьшению выбросов оксидов азота.

Результаты расчета процесса сгорания 1 нм природного газа

Таблица 5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Наименование показателя Размерность Величина

Расход технического кислорода, Уо? нм3/нм3 0,0000 0,0989 0,1978 0,2966 0,3955 0,4944 0,5933 0,6922 1,9776

Удельный расход чистого кислорода от расхода воздуха, у = Уо/ / Ь0/теор об. доли 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 1,00

Расход чистого кислорода, У02 нм3/нм3 0,0000 0,0984 0,1968 0,2952 0,3935 0,4919 0,5903 0,6887 1,9677

Снижение расхода влажного воздуха, ДЬвозд нм3/нм3 0,0000 0,2436 0,4872 0,7309 0,9745 1,2181 1,4617 1,7053 4,8724

Теоретический расход сухого воздуха, Ь0 нм3/нм3 9,4510 8,9784 8,5059 8,0333 7,5608 7,0882 6,6157 6,1431 0,0000

Теоретический расход влажного воздуха, Ьа нм3/нм3 9,6022 9,1221 8,6420 8,1619 7,6818 7,2016 6,7215 6,2414 0,0000

Действительный расход сухого воздуха, Ь0' нм3/нм3 10,8261 10,2848 9,7435 9,2022 8,6609 8,1196 7,5783 7,0370 0,0000

Действительный расход влажного воздуха, Ьа' нм3/нм3 10,9993 10,4493 9,8994 9,3494 8,7995 8,2495 7,6995 7,1496 0,0000

Расход избыточного количества сухого воздуха, (а - 1) Ь0' нм3/нм3 1,5752 1,4964 1,4177 1,3389 1,2602 1,1814 1,1026 1,0239 0,0000

Расход избыточного количества влажного воздуха, (а - 1) Ьа' нм3/нм3 1,6004 1,5204 1,4404 1,3603 1,2803 1,2003 1,1203 1,0403 0,0000

Выход диоксида углерода, УС02 нм3/нм3 1,0010 1,0012 1,0014 1,0016 1,0018 1,0020 1,0022 1,0024 1,0049

Выход водяного пара, УН?о нм3/нм3 1,9727 1,9726 1,9726 1,9725 1,9724 1,9723 1,9722 1,9721 1,9710

Выход азота, У^ нм3/нм3 8,5806 8,1530 7,7254 7,2977 6,8701 6,4425 6,0148 5,5872 0,0280

Выход кислорода, У02 нм3/нм3 0,2888 0,2743 0,2599 0,2455 0,2310 0,2166 0,2021 0,1877 0,0000

Суммарный выход дымовых газов, Удг нм3/нм3 11,8431 11,4012 10,9592 10,5172 10,0753 9,6333 9,1914 8,7494 3,0039

Влагосодержание дымовых газов, хдг кг/кг сух. газа 0,1208 0,1262 0,1320 0,1384 0,1454 0,1532 0,1619 0,1716 0,7838

Задаваемая удельная теплоемкость дымовых газов, сдг кДж/(нм3-°С) 1,6123 1,6231 1,6348 1,6476 1,6614 1,6765 1,6931 1,7113 2,4283

Пирометрический коэффициент, Г| - 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80

Приход тепла, 0т кДж/нм3 34323 34032 33740 33449 33158 32866 32575 32283 28496

Рабочая температура печи, 4 °С 1798 1839 1883 1930 1981 2035 2093 2156 3906

Удельная теплоемкость дымовых газов при 1„, сдт, кДж/(нм3-°С) 1,6123 1,6231 1,6348 1,6476 1,6614 1,6765 1,6931 1,7113 2,4283

Н. П

03 >

п

■С

В.

С.

Ф

■а

№ I

с

П

03

Таблица 6

Результаты расчета некоторых параметров стекловаренной печи

Наименование показателя Размерность Величина

Расход газа, Уг нм3/ч 150,00 147,92 145,89 143,92 142,00 140,13 138,31 136,54 117,0

Расход добавляемого кислорода, У02 об. доли 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 1,00

Расход добавляемого кислорода, У0? нм3/ч 0,000 14,626 28,851 42,691 56,163 69,280 82,056 94,507 231,4

Расход воздуха, Ув нм3/ч 1650 1546 1444 1346 1250 1156 1065 976 0

Температура газового пространства, ^ оС 1550 1550 1550 1550 1550 1550 1550 1550 1550

Выход дымовых газов, Удг нм3/ч 1776 1686 1599 1514 1431 1350 1271 1195 352

Удельная теплоемкость дымовых газов при ^ сдг, кДж/(нм3-°С) 1,5827 1,5883 1,5944 1,6010 1,6082 1,6160 1,6246 1,6341 2,010

Приход тепла, впр кВт 1430,1 1398,3 1367,3 1337,2 1307,9 1279,3 1251,5 1224,4 926,3

Расход тепла на нагрев азота воздуха до температуры печи, 0^ кВт 505,1 473,2 442,3 412,1 382,8 354,3 326,5 299,4 1,3

Экономия тепла на нагрев азота, Д0^ кВт 0,0 31,8 62,8 92,9 122,3 150,8 178,6 205,7 503,8

Расход тепла на нагрев и плавление шихты, 0ш кВт 286 286 286 286 286 286 286 286 286

Расход тепла с дымовыми газами, 0дг кВт 1144 1112 1081 1051 1022 993 965 938 640

Снижение расхода газа, ДУг нм3/ч 0,00 2,08 4,11 6,08 8,00 9,87 11,69 13,46 32,97

Снижение расхода газа, ДУг % 0,00 1,39 2,74 4,05 5,33 6,58 7,79 8,97 21,98

р л £

№ У

Сери

5

Л 2

№ 2 2

О

—А

8

О

(-о

Графическая иллюстрация зависимости температуры процесса горения от количества добавляемого кислорода приведена на рис. 1.

/р,°С 2200 2000 1800 1600 1400 1200 1000

нм3/ч

А ч п )

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

у, об. доли

Рис. 1. Зависимость температуры процесса горения газа от расхода добавочного кислорода

Апробация программы при расчете процесса горения в одной из стекловаренных печей ОАО «Полоцк-Стекловолокно» (табл. 6) показала, что каждые 5% добавляемого кислорода (12,45—14,62 нм3/ч) снижают расход природного газа на 1,77—2,08 нм3/ч (рис. 2) и расход воздуха на 88,7—104,3 нм3/ч (рис. 3) (большие величины соответствуют меньшим добавкам кислорода). Экономия тепла на нагреве азота составляет 63 кВтч на каждые 10% введенного кислорода. Выход дымовых газов снижается на 80—90 нм3/ч при добавлении каждых 5% кислорода.

ДГг, нм3/ч

100

Г С>2- НМ3/ч

Рис. 3. Зависимость расхода воздуха от расхода добавочного кислорода

Разработанная программа проста в использовании и позволяет значительно снизить трудоемкость и продолжительность вычислений.

Заключение. Таким образом, разработанная программа при своей простоте использования позволяет определять основные параметры продуктов горения природного газа при различных долях введения технического кислорода и сравнивать полученные значения с горением только при использовании атмосферного воздуха.

Результаты апробации программы показали, что добавление каждых 5% кислорода (0,0989 нм3/нм3) в топку для горения природного газа позволяет снизить расход воздуха на 0,55 нм3/нм3 газа и повысить рабочую температуру процесса горения на 41—58°С.

Добавление каждых 5% кислорода в одну из стекловаренных печей ОАО «Полоцк-Стекловолокно» позволяет снизить расход воздуха в среднем

3

и природного газа на нм3 кислорода нм3 природного

100

нм3/ч

на 100 нм /ч 2 нм3/ч. Причем добавление 7 приводит к экономии всего 1 газа, что на первый взгляд представляется экономически нецелесообразным.

Но с учетом снижения выбросов оксидов азота и взвешенных твердых частиц в атмосферу, а также уменьшения затрат на транспортировку дымовых газов и рекуперацию тепла данное техническое решение может оказаться оправданным.

Литература

1. Лешина В. А., Пулина И. А. Эффективные способы сжигания топлива в производстве стекла // Труды Владимирского государственного университета. 2014. Вып. 10. С. 97-99.

2. Передовые технологии сжигания топлива. URL: http://www.techgaz.ru/page/232.html (дата обращения: 01.01.2018).

3. Левченко П. В. Расчеты печей и сушил силикатной промышленности. М.: АльянС, 2007. 366 с.

Рис. 2. Зависимость снижения расхода газа от расхода добавочного кислорода

В. H. Павлечко, В. С. Францкевич

105

4. Новый справочник химика и технолога. Процессы и аппараты химических технологий / под общ. ред. Г. М. Островского. СПб.: НПО «Профессионал», 2006. Ч. II. 916 с.

5. Исламов М. Ш. Печи химической промышленности. Л.: Химия, 1975. 432 с.

References

1. Leshina V. A., Pulina I. A. Effective methods of burning fuel in the production of glass. Trudy Vladimirskogo gosudarstvennogo universiteta [Proceedings of Vladimir State University], 2014, issue 10, pp. 97-99 (In Russian).

2. Peredovyye tekhnologii szhiganiya topliva [Advanced combustion technologies]. Available at: http://www.techgaz.ru/page/232.html (accessed 01.01.2018).

3. Levchenko P. V. Raschety pechey i sushil silikatnoy promyshlennosti [Calculations of furnaces and dried silicate industry]. Moscow, Al'yanS Publ., 2007. 366 p.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4. Ostrovskiy G. M. Novyy spravochnik khimika i tekhnologa. Protsessy i apparaty khimicheskikh tekhnologiy [A new directory of chemist and technologist. Processes and apparatus of chemical technologies. Part II]. St. Petersburg, NPO "Professional" Publ., 2006. 916 p.

5. Islamov M. Sh. Pechi khimicheskoy promyshlennosti [The furnaces of the chemical industry]. Leningrad, Khimiya Publ., 1975. 432 p.

Информация об авторах

Павлечко Владимир Никифорович - кандидат технических наук, доцент, доцент кафедры машин и аппаратов химических и силикатных производств. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: pavlechko@tut.by

Францкевич Виталий Станиславович - кандидат технических наук, доцент, заведующий кафедрой машин и аппаратов химических и силикатных производств. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: fvs2@tut.by

Information about the authors

Pavlechko Uladimir Nikiforovich - PhD (Engineering), Associate Professor, Assistant Professor, the Department of Machines and Apparatus for Chemical and Silicate Production. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: pavlechko@tut.by

Frantskevich Vitaliy Stanislavovich - PhD (Engineering), Associate Professor, Head of the Department of Machines and Apparatus for Chemical and Silicate Production. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: fvs2@tut.by

Поступила 18.04.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.