Научная статья на тему 'Влияние ионизирующего излучения на свойства скрытых оксидов КНИ-структур'

Влияние ионизирующего излучения на свойства скрытых оксидов КНИ-структур Текст научной статьи по специальности «Физика»

CC BY-NC
111
28
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
КРЕМНИЙ НА ИЗОЛЯТОРЕ / ГЕТЕРОСТРУКТУРА / ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ / ОКСИД КРЕМНИЯ / НИТРИД КРЕМНИЯ / ТОНКИЕ ПЛЕНКИ / ПОЛУПРОВОДНИК / РАДИАЦИОННАЯ СТОЙКОСТЬ / ЗАРЯД / ГРАНИЦА РАЗДЕЛА

Аннотация научной статьи по физике, автор научной работы — Мустафаев Арслан Гасанович, Мустафаев Гасан Абакарович, Черкесова-Калинина Наталья Васильевна

Полупроводниковые гетероструктуры лежат в основе конструкций современных транзисторов, приборов квантовой электроники, СВЧ-техники, электронной техники для систем связи, телекоммуникаций, вычислительных систем и светотехники. В работе описаны процессы формирования радиационно-стойких гетероструктур с требуемым набором структурных и электрофизических параметров с учетом влияния воздействий ионизирующих излучений, позволяющих расширить область их применения и повысить надежность радиоэлектронной аппаратуры. Проведено исследование влияния облучения на параметры гетерои полупроводниковых структур, изготовленных по различным конструктивно-технологическим вариантам. Исследования проводились в том числе с использованием метода напряжения плоских зон и определения времени релаксации. Показано, что с увеличением дозы ионизирующих частиц плотность заряда в диэлектрике растет, достигает насыщения при дозе 108109 рад, а величина встроенного заряда и механические напряжения в многослойных диэлектрических системах снижаются за счет образования промежуточного заряда на границе раздела диэлектриков и наличием потенциального барьера между ними.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Влияние ионизирующего излучения на свойства скрытых оксидов КНИ-структур»

Влияние ионизирующего излучения на свойства скрытых оксидов КНИ-структур

Мустафаев Арслан Гасанович

доктор технических наук

профессор, ГАОУ ВО "Дагестанский государственный университет народного хозяйства" 367015, Россия, Республика Дагестан, г. Махачкала, ул. Алаева, 5, каб. 4.5

И arslan_mustafaev@hotmail.com Мустафаев Гасан Абакарович

доктор технических наук

профессор, ФГБОУ ВО "Кабардино-Балкарский государственный университет" 360004, Россия, Республика Кабардино-Балкарская, г. Нальчик, уп. Чернышевского, 173, каб. 122

ЕЗ arslan_mustafaev@hotmail.com

Черкесова Наталья Васильевна

кандидат технических наук доцент, ФГБОУ ВО "Кабардино-Балкарский государственный университет" 360004, Россия, Республика Кабардино-Балкарская, г. Нальчик, уп. Чернышевского, 173, оф. 122

ЕЗ natasha07_2002@mail.ru

Статья из рубрики "Физика"

Аннотация.

Полупроводниковые гетероструктуры лежат в основе конструкций современных транзисторов, приборов квантовой электроники, СВЧ-техники, электронной техники для систем связи, телекоммуникаций, вычислительных систем и светотехники. В работе описаны процессы формирования радиационно-стойких гетероструктур с требуемым набором структурных и электрофизических параметров с учетом влияния воздействий ионизирующих излучений, позволяющих расширить область их применения и повысить надежность радиоэлектронной аппаратуры. Проведено исследование влияния облучения на параметры гетеро- и полупроводниковых структур, изготовленных по различным конструктивно-технологическим вариантам. Исследования проводились в том числе с использованием метода напряжения плоских зон и определения времени релаксации. Показано, что с увеличением дозы ионизирующих частиц плотность заряда в диэлектрике растет, достигает насыщения при дозе 108- 109 рад, а величина встроенного заряда и механические напряжения в многослойных диэлектрических системах снижаются за счет образования промежуточного заряда на границе раздела диэлектриков и наличием потенциального барьера между ними.

Ключевые слова: кремний на изоляторе, гетероструктура, ионизирующее излучение, оксид кремния, нитрид кремния,тонкие пленки, полупроводник, радиационная стойкость, заряд, граница раздела

DOI:

10.7256/2453-8884.2018.3.27423

Дата направления в редакцию:

06-11-2018

Дата рецензирования:

08-11-2018

I. Введение

Полупроводниковые гетероструктуры лежат в основе конструкций современных транзисторов, приборов квантовой электроники, СВЧ-техники, электронной техники для

систем связи, телекоммуникаций, вычислительных систем и светотехники [1-2]. Возможность изменять на границах гетероперехода ширину запрещённой зоны и диэлектрическую проницаемость позволяет с помощью гетероструктуры эффективно управлять движением носителей заряда, их рекомбинацией, а также световыми потоками

внутри них [3-6]. Эти свойства гетероструктур и определяют область их применения. Одна из важных проблем современной микро- и наноэлектроники - это создание элементов схем с пониженной чувствительностью к воздействию радиации. В связи с этим проведены исследования влияния различных видов излучения на свойства гетероструктур [7-10].

Исследуемые гетероструктуры представлены. на рис. 1. В качестве металла был выбран алюминий.

Мс

зю2

$1

Ме

ЕЮ,

31

б)

Ме в)

А^О,

яю.

51

Ме г)

Рис. 1. Исследуемые структуры II. Эксперимент и результаты

Исследования показали, что двухслойные системы обеспечивают стабильность заряда даже в том случае, если каждый диэлектрик в отдельности зарядовой стабильностью не обладает. В качестве примера стабилизации можно рассмотреть сочетание диэлектриков оксид кремния-нитрид кремния (рис.1г), в котором нитрид кремния обладая электронной проводимостью, представляет собой барьер для примесных ионов в оксиде кремния. Нанесение слоя нитрида кремния поверх маскирующего слоя оксида улучшает рабочие характеристики структур. Основной эффект влияния слоя, нитрида кремния, на параметры структур заключается в уменьшении механических напряжений на границе оксид кремния-нитрид кремния.

В связи с увеличением требований к параметрам гетероструктур и приборов на их основе большой интерес представляется способам получения диэлектрика в присутствии галогенов, особенно хлора.

Введение в поток сухого кислорода небольших добавок хлора при окислении кремния

приводит к существенному возрастанию времени жизни неосновных носителей [9,10]. Высокая стабильность таких структур на основе хлорных окислов связана со связыванием в нейтральные комплексы на основе хлора ионов щелочных металлов.

На рис. 2 представлена зависимость времени формирования инверсионного слоя гетероструктуры от процентного содержания хлора в кислороде.

На рис. 3 представлена зависимость термостабильности гетероструктур (изменения напряжения плоских зон) от состава окислительной среды.

Из полученных зависимостей следует, что с увеличением процентного содержания хлора

в окислительном среде увеличивается время жизни и снижается скорость поверхностной генерации неосновных носителей, увеличивается термостабильность.

На рис. 4 представлены зависимости плотности поверхностных состояний в гетероструктуре от дозы для разных диэлектриков. Из рис. 4 видно, что с увеличением потока ионизирующих частиц, плотность объемного заряда в оксиде растет, достигая насыщения при потоке 108- 109 рад.

Исследование распределения заряда в диоксиде кремния, подвергнутой бомбардировке электронами с энергией 4 МэВ (поток 1014 см-2), методом послойного травления показало, что весь положительный заряд сконцентрирован на расстоянии порядка 10 нм от поверхности раздела диэлектрик-полупроводник.

В гетероструктуре при облучении происходит накопление объемного положительного заряда, что приводит к сдвигу порогового напряжения и деградации параметров приборов в целом. Основным направлением остаются работы, связанные с созданием диэлектрика с пониженной чувствительностью к радиации.

Улучшение свойств диэлектрика проводят различными методами: ионной имплантацией, легированием, изменением технологических процессов выращивания и т.д. Показано, что легирование диэлектрика атомами фосфора, бора, хрома и алюминия уменьшает вероятность накопления положительного заряда за счет изменения числа и природы ловушек и тем самым способствует снижению чувствительности диэлектрика к радиации.

Рис. 2. Зависимость времени формирования инверсионного слоя в гетероструктуре от содержания хлора в процессе получения оксида кремния

Рис. 3. Сдвиг напряжения плоских зон гетероструктуры в зависимости от содержания хлора в процессе осаждения.

Как видно из рис. 5 величина заряда, накапливаемого в нитриде кремния при д-облучении, меньше, чем в диоксиде кремния. Основной эффект влияния слоя нитрида кремния на параметры полупроводниковых структур заключается в уменьшении механических напряжений на границе кремний-диоксид кремния.

Рис. 4. Зависимость плотности поверхностных состояний в гетероструктуре от дозы: 1-сухой SiO2, 2- влажный SiO2, 3- SiзN4

2.5

г*

х

■У

5 1.5

О

0.5

-0,5

ЗЮ2 ^^Л __*--

55эМ<

А1:03 '

---------* 8Ю2+81зИ4

Основной Основной Основной Основной

О, 10;Р

Основной

Рис. 5. Зависимость плотности заряда в пленках от дозы д-облучения

При облучении однослойных гетероструктур возникающие в них заряды не компенсируются в двухслойных системах происходит уменьшение встроенного

заряда, за счет компенсации положительного заряда в диоксид кремния, отрицательным зарядом, накопленным в нитриде кремния.

Зависимость плотности заряда от дозы при облучении структур в двухслойных системах, представлена на рис. 6. Как видно из рис. 6, в результате облучения величина заряда

возрастает и при дозах превышающих 2х107 рад, изменяется незначительно.

Это приводит к увеличению электрического поля у электрода с отрицательным потенциалом (катода), что улучшает эмиссионные свойства контактов металл-диэлектрик или полупроводник-диэлектрик.

Для дальнейшего улучшения параметров гетероструктур в качестве маскирующего оксида использовали оксид алюминия. Приборы с оксидом алюминия обладают более высокой радиационной стойкостью. В оксиде алюминия наряду с дырочными ловушками,

имеются также ловушки для электронов, что обеспечивает одновременный захват обоих типов носителей. Так как сечение захвата электронов и дырок на соответствующих ловушках мало, по сравнению с сечением их рекомбинации, то при этом значительная часть образованных радиацией носителей рекомбинирует до их захвата, и накопление объемного заряда не происходит.

Относительное изменение плотности заряда в оксидных пленках алюминия в результате облучения показано на рис. 7. При облучении наблюдалось образование положительного заряда, что свидетельствует о преимущественном захвате дырок, имеющимися в оксиде ловушками. Захват ловушками электронов с одной стороны, компенсирует заряд захваченных дырок, а с другой, уменьшает ток через диэлектрик. Оксидные пленки алюминия практически не содержат ионы щелочных металлов Na + , обладают низкой плотностью поверхностных состояний и стабильны к образованию ионизирующей радиацией дефектов. Радиационная стойкость пленочных диэлектриков играет важную роль при проектировании многих типов приборов, работающих при повышенных уровнях ионизирующего излучения.

Регулируя скорость введения и характеристики радиационных центров при облучении, тип, метод выращивания и уровень легирования материалов, интегральный поток и плотность облучения, температура образцов при облучении возможно целенаправленно изменять электрофизические свойства гетероструктур и электрические параметры приборов и интегральных схем.

Рис. 6. Зависимость плотности заряда в диэлектрике А1- SiO2- Si от дозы

облучения

Рис. 7. Изменение плотности заряда в пленках А12О3 от дозы облучения

Разработанные методы формирования радиационно-стойких гетероструктур, снижают образование заряда на границе раздела кремний-оксид кремния [12-141. Сверхбольшие интегральные схемы, изготовленные по КНИ технологии по оптимизированной структуре, показывает хорошие результаты, даже при высоких дозах радиации. Устойчивость к накопленной дозе излучения повышается на три порядка.

Результаты исследования показывают, что:

- при воздействии ионизирующих излучений в диэлектрическом слое и на границе кремний - диэлектрик проявляются эффекты накопления положительного заряда в диэлектрике, роста плотности поверхностных состояний на границе кремний- диэлектрик. При интегральных потоках электронов менее 1012 см-2, в основном, проявляются радиационные эффекты в объеме диэлектрика, а при больших потоках начинает заметно сказываться влияние процессов увеличения плотности поверхностных состояний на границе раздела кремний- диэлектрик.

- стойкость пленок оксида алюминия AI2O3 к воздействию ионизирующих излучений обусловлена захватом на ловушки не только дырок, но и электронов. При малых дозах облучения преобладает влияние положительного заряда, а при насыщении

положительных ловушек и дозах >106 рад начинает влиять отрицательный заряд, скапливающийся в оксиде алюминия AI2O3. Чем тоньше окисел, тем сильнее влияние

заряда в оксиде алюминия AI2O3 и тем большим оказывается изменение суммарного

заряда в диэлектрике.

- с увеличением дозы ионизирующих частиц плотность заряда в диэлектрике растет, достигает насыщения при дозе 108- 109 рад, а величина встроенного заряда и механические напряжения в двухслойных диэлектрических системах снижаются за счет образования промежуточного заряда на границе раздела диэлектриков и наличием поте нциа льного ба рье ра ме ж ду ними.

Оптимизация технологии и структуры элементов БИС с учетом воздействия ионизирующих излучений обеспечивает снижение влияния радиационных эффектов на параметры полупроводниковых структур и повышения радиационной стойкости.

Библиография

1. Соколов Е.Б., Рыгалин Б.Н., Смирнов В.В. и др. Кремний и широкозонные нитриды -основа полупроводниковой энергетики // Известия высших учебных заведений. Электроника. 2005. № 4-5. С. 52- 57.

2. Комащенко А.В., Колежук К.В., Горбик П.П. и др. Высокоэффективные фотопреобразователи на основе полукристаллических гетероструктур соединений AIIBVI // Письма в Журнал технической физики. 2000. Т. 26. № 5. С. 1- 6.

3. Lee C.S., Hsu W.C., Liu H.Y. et al. Al2O3-Dielectric In0.18Al0.82N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors With Backside Substrate Metal-Trench Structure // IEEE Journal of the Electron Devices Society. 2018. V. 6. №1. P. 68- 73.

4. Петросянц К.О., Самбурский Л.М., Харитонов И.А. Влияние различных видов радиации на характристики кремний- германиевых гетеропереходных транзисторов // Электронная техника. Серия 2: Полупроводниковые приборы. 2014. № 1 (232). С. 3- 18.

5. Герасименко Н.Н., Мордкович В.Н. Радиационные эффекты в системе

полупроводник - диэлектрик // Поверхность. Физика, химия, механика. 1987. №6. С. 5 19.

6. Z. He, S. Liu, J. Hu, H. Xu et al. Influence of the low-temperature AlN interlayers on the electrical properties of AlGaN/GaN heterostructure on Si substrate // IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an. 2016. P. 1298- 1301.

7. Мустафаев А.Г., Кумахов А.М., Мустафаев А.Г. Основные процессы, происходящие при воздействии ионизирующего излучения на полупроводниковые структуры, и способы повышения их радиационной стойкости // Вестник ДНЦ РАН. 2003. №13. С. 22- 28.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8. Мустафаев А.Г., Мустафаев Г.А. Радиационная стойкость КНИ МОП транзисторов к накопленной дозе ионизирующего излучения // Нано и микросистемная техника. №12. 2007. С. 47- 49.

9. Мустафаев А.Г., Мустафаев А.Г. Влияние накопленной дозы излучения на КМОП-транзисторы изготовленные по КНС технологии // Нано и микросистемная техника. №9. 2008. С. 44-46.

10. Мустафаев А.Г. Технология формирования кремниевых пластин со скрытым слоем // Нано и микросистемная техника. №10. 2007. С. 11- 14.

11. Першенков В.С., Попов В.Д., Шальнов А.В. Поверхностные радиационные эффекты в ИМС. М. - 1988. 255 с.

12. Мустафаев А.Г., Шаваев Х.Н., Мустафаев А.Г., Мустафаев Г.А Способ повышения радиационной стойкости полупроводниковых приборов // Пат. РФ №2308785. Бюл. №29. 2007.

13. Мустафаев А.Г., Тешев Р.Ш., Мустафаев А.Г. Способ повышения быстродействия полупроводниковых приборов // Пат. РФ №2197766. Бюл. №3. 2003.

14. Мустафаев А.Г., Тешев Р.Ш., Мустафаев А.Г. Способ изготовления полупроводникового прибора с низкой плотностью дефектов // Патент РФ № 2210141, 2002.

i Надоели баннеры? Вы всегда можете отключить рекламу.