Научная статья на тему 'Утилизация отходов литейного производства при изготовлении строительных изделий'

Утилизация отходов литейного производства при изготовлении строительных изделий Текст научной статьи по специальности «Технологии материалов»

CC BY
554
92
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
ЭКОЛОГИЯ В СТРОИТЕЛЬСТВЕ / РЕСУРСОСБЕРЕЖЕНИЕ / ОТРАБОТАННАЯ ФОРМОВОЧНАЯ СМЕСЬ / КОМПОЗИЦИОННЫЕ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ / COMPOSITE BUILDING MATERIALS / ЗАРАНЕЕ ЗАДАННЫЕ ФИЗИКОМЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ / IN ADVANCE SET PHYSICOMECHANICAL CHARACTERISTICS / МЕТОД ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА / METHOD OF PLANNING OF EXPERIMENT / ФУНКЦИЯ ОТКЛИКА / RESPONSE FUNCTION / СТРОИТЕЛЬНЫЕ БЛОКИ / BUILDING BLOCKS / A BIONOMICS IN BUILDING / THE FULFILLED FORMING ADMIXTURE

Аннотация научной статьи по технологиям материалов, автор научной работы — Жариков В. В., Езерский В. А., Кузнецова Н. В., Стерхов П. П.

В настоящих исследованиях рассматривается возможность утилизации отработанной формовочной смеси при использовании ее в производстве композиционных строительных материалов и изделий. Предложены рецептуры строительных материалов, рекомендованные для получения строительных блочков.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Жариков В. В., Езерский В. А., Кузнецова Н. В., Стерхов П. П.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

RECYCLING OF THE WASTE OF FOUNDRY MANUFACTURE AT MANUFACTURING OF BUILDING PRODUCTS

In the present researches possibility of recycling of the fulfilled forming admixture is surveyed at its use in manufacture of composite building materials and products. The compoundings of building materials recommended for reception building блочков are offered.

Текст научной работы на тему «Утилизация отходов литейного производства при изготовлении строительных изделий»

3/2011_МГСу ТНИК

УТИЛИЗАЦИЯ ОТХОДОВ ЛИТЕИИОГО ПРОИЗВОДСТВА ПРИ ИЗГОТОВЛЕНИИ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ

RECYCLING OF THE WASTE OF FOUNDRY MANUFACTURE AT MANUFACTURING OF BUILDING PRODUCTS

B.B. Жариков, B.A. Езерский, H.B. Кузнецова, И.И. Стерхов V. V. Zharikov, V.A. Yezersky, N.V. Kuznetsova, I.I. Sterhov

ТГТУ

В настоящих исследованиях рассматривается возможность утилизации отработанной формовочной смеси при использовании ее в производстве композиционных строительных материалов и изделий. Предложены рецептуры строительных материалов, рекомендованные для получения строительных блочков.

In the present researches possibility of recycling of the fulfilled forming admixture is surveyed at its use in manufacture of composite building materials and products. The compoundings of building materials recommended for reception building блочков are offered.

Введение.

В ходе технологического процесса литейное производство сопровождается образованием отходов, основной объем которых составляют отработанные формовочные (ОФС) и стержневые смеси и шлак. В настоящее время до 70 % этих отходов ежегодно вывозятся в отвал [6]. Экономически нецелесообразным становится складирование промышленных отходов и для самих предприятий, так как вследствие ужесточения экологических законов за 1 тонну отходов приходится платить экологический налог, величина которого зависит от вида складируемого отхода. В связи с этим появляется проблема утилизации накопившихся отходов. Одним из вариантов решения этой проблемы является использование ОФС в качестве альтернативы природному сырью при производстве композиционных строительных материалов и изделий.

Использование отходов в строительной индустрии позволит снизить экологическую нагрузку на территории полигонов и исключить непосредственный контакт отходов с окружающей средой, а также повысить эффективность использования материальных ресурсов (электроэнергии, топлива, сырьевых материалов). Кроме того, производимые материалы и изделия с использованием отходов соответствуют требованиям эколого-гигиенической безопасности, так как цементный камень и бетон являются детоксикантами для многих вредных ингредиентов, включая даже золы от мусоросжи-гания, содержащие диоксины.

Целью настоящей работы является подбор составов многокомпонентных композиционных строительных материалов, обладающих физико-техническими параметра-

ВЕСТНИК 3/2011

ми, сопоставимыми с материалами, производимыми с использованием природного сырья.

Экспериментальное исследование физико-механических характеристик композиционных строительных материалов.

Компонентами композиционных строительных материалов являются: отработанная формовочная смесь (модуль крупности Мк=1,88), которая представляет из себя смесь вяжущего (Этилсиликат-40) и заполнителя (кварцевый песок различных фракций), используемая для полной или частичной замены мелкого заполнителя в смеси композиционного материала; портландцемент М400 (ГОСТ 10178-85); кварцевый песок с Мк=1,77; вода; суперпластификатор С-3, способствующий снижению водопо-требности бетонной смеси и улучшению структуры материала.

Экспериментальные исследования физико-механических характеристик цементного композиционного материала с использованием ОФС проводились с применением метода планирования эксперимента.

В качестве функций отклика были выбраны следующие показатели: прочность на сжатие (У), водопоглощение (У2), морозостойкость (!з), которые определялись по методикам [2, 3, 1] соответственно. Этот выбор обусловлен тем, что при наличии представленных характеристик получаемого нового композиционного строительного материала можно определить область его применения и целесообразность использования.

В качестве влияющих факторов рассматривались следующие: доля содержания измельченной ОФС в заполнителе (х1); отношение вода/вяжущее (х2); отношение заполнитель/ вяжущее (х3); количество добавки пластификатора С-3 (х4).

При планировании эксперимента диапазоны изменения факторов принимались исходя из максимальных и минимальных возможных значений соответствующих параметров (табл. 1).

Таблица 1. - Интервалы варьирования факторов

Факторы Диапазон изменения факторов

-1 0 +1

х, 100% песок 50% песок+ 50% измельченная ОФС 100% измельченная ОФС

х2 0,4 0,5 0,6

х3 3 4,5 6

х4, % масс. вяжущего 0 1,5 3

Изменение смесевых факторов позволит получать материалы с широким диапазоном строительно-технических свойств.

Предполагалось, что зависимость физико-механических характеристик может быть описана приведенным полиномом неполного третьего порядка, коэффициенты которого зависят от значений уровней смесевых факторов (х1, х2, х3, х4) и описываются, в свою очередь, полиномом второго порядка.

В результате проведения экспериментов были сформированы матрицы значений функций отклика Уь У2, У3. С учетом значений повторных опытов для каждой функции было получено 24*3=72 значения.

Оценки неизвестных параметров моделей находились при помощи метода наименьших квадратов, то есть минимизируя сумму квадратов отклонений значений У от вычисленных по модели [5]. Для описания зависимостей У=Дхь х2, х3, х4) использовались нормальные уравнения метода наименьших квадратов:

X ■ X )<э=

)=Хт ■ У , откуда: <0 = [хт • X• ХтУ,

где 0- матрица оценок неизвестных параметров модели; X - матрица коэффициентов; X - транспонированная матрица коэффициентов; У - вектор результатов наблюдений.

Для вычисления параметров зависимостей У=Дхь х2, х3, х4) использовались формулы, приведенные в [4] для планов типа N.

В моделях при уровне значимости а=0,05 с помощью ¿-критерия Стьюдента выполнялась проверка значимости коэффициентов регрессии. Исключением незначимых коэффициентов определялся окончательный вид математических моделей.

Анализ физико-механических характеристик композиционных строительных материалов.

Наибольший практический интерес представляют зависимости прочности на сжатие, водопоглощения и морозостойкости композиционных строительных материалов при следующих фиксированных факторах: В/Ц отношение - 0,6 (х2=1) и количество заполнителя по отношению к вяжущему - 3:1 (х3=-1). Модели исследуемых зависимостей имеют вид: прочность на сжатие

у1 = 85,6 + 11,8 • х1 + 4,07 • х4 + 5,69 • х1 - 0,46 • х1 + 6,52 • х1 • х4 - 5,37 • х4 +1,78 • х4 -

-1,91- х2 + 3,09 • х42 водопоглощение

у3 = 10,02 - 2,57 • х1 - 0,91-х4 -1,82 • х1 + 0,96 • х1 -1,38 • х1 • х4 + 0,08 • х4 + 0,47 • х4 +

+ 3,01- х1 - 5,06 • х4 морозостойкость

у6 = 25,93 + 4,83 • х1 + 2,28 • х4 +1,06 • х1 +1,56 • х1 + 4,44 • х1 • х4 - 2,94 • х4 +1,56 • х4 + + 1,56 • х2 + 3,56 • х42

Для интерпретации полученных математических моделей были построены графические зависимости целевых функций от двух факторов, при фиксированных значениях двух других факторов.

■АО^ОО

«2Л-40 ПЛ-М

Рисунок - 1 Изолинии прочности на сжатие композиционного строительного материала, кгс/см2, в зависимости от доли ОФС (Х1) в заполнителе и количества суперпластификатора (х4).

• 16-1 в

□ и-тб

■ Т2-Н

клгмг

■ Я-Ю

1 Ш«

■ 2-4

а о-7

I Ц|1и|Мк1^|Ь1||ми..1 |||(| 9 ^ ______1|ЫИ<1ФС

с-з

Рисунок - 2 Изолинии водопоглощения композиционного строительного материала, % по массе, в зависимости от доли ОФС (х\) в заполнителе и количества суперпластификатора (х4).

ВТГ^

«■.пи

40

35

30

&

го

10

5

0 ■

л

о

£ -

о

.ць^и

Щ40-45

□змо ■зо-Э5

■2025

□ 15-го

□ 1ЕИ5 ■ ЫН) В 0-5

Рисунок - 3 Изолинии морозостойкости композиционного строительного материала, циклы, в зависимости от доли ОФС (хх) в заполнителе и количества суперпластификатора (х4).

Анализ поверхностей показал, что при изменении содержания ОФС в заполнителе от 0 до 100 % наблюдается в среднем рост прочности материалов на 45 %, снижение водопоглощения на 67 % и увеличение морозостойкости в 2 раза. При изменении количества суперпластификатора С-3 от 0 до 3 (% масс.) наблюдается в среднем рост прочности на 12 %; водопоглощение по массе изменяется в пределах от 10,38 % до 16,46 %; при заполнителе, состоящим из 100 % ОФС, морозостойкость увеличивается на 30 %, но при заполнителе, состоящим из 100 % кварцевого песка, морозостойкость уменьшается на 35 %.

Практическая реализация результатов экспериментов.

Анализируя полученные математические модели, можно выявить не только составы материалов с повышенными прочностными характеристиками (таблица 2), но и определить составы композиционных материалов с заранее заданными физико-механическими характеристиками при уменьшении в составе доли вяжущего (таблица 3).

После проведенного анализа физико-механических характеристик основных строительных изделий было выявлено, что рецептуры полученных составов композиционных материалов с использованием отходов литейной промышленности подойдут для производства стеновых блоков. Данным требованиям соответствуют составы композиционных материалов, которые приведены в таблице 4.

Х1(состав заполнителя,%) х2(В/Ц) Х3 (заполнитель/ вяжущее) х4 (супер пласти фикатор, %) ^сж, кгс/см2 Ш, % Морозостойкость, циклы

песок ОФС

- 100 % 0,4 3 1 3 93 10,28 40

- 100 % 0,6 3 1 3 110 2,8 44

- 100 % 0,6 3 1 - 97 6,28 33

50 % 50 % 0,6 3 1 - 88 5,32 28

50 % 50 % 0,6 3 1 3 96 3,4 34

- 100 % 0,6 3 1 - 96 2,8 33

- 100 % 0,52 3 1 3 100 4,24 40

- 100 % 0,6 3,3:1 3 100 4,45 40

Таблица 3 - Материалы с заранее заданными физико-механическими _характеристиками_

х! (состав заполнителя, %) х2 (В/Ц) х3 (заполнитель/ вяжущее) х4 (суперпластификатор, %) Лсж, кгс/см2

песок ОФС

100 % - 0,4 3:1 2,7 65

50 % 50 % 0,4 3,3:1 2,4 65

- 100 % 0,6 4,5:1 2,4 65

- 100 % 0,4 6:1 3 65

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Таблица 4 Физико-механические характеристики строительных композиционных

материалов с использованием отходов литейной промышленности

х1 (состав заполнителя,%) х2(В/Ц) х3 (заполнитель/ вяжущее) х4 (супер пласти фикатор, %) ^сж, кгс/см2 ш, % Р , гр/см3 Морозостойкость, циклы

песок ОФС

- 100 % 0,6 3:1 3 110 2,8 1,5 44

- 100 % 0,52 3:1 3 100 4,24 1,35 40

- 100 % 0,6 3,3:1 3 100 4,45 1,52 40

Таблица 5 - Технико-экономические характеристики стеновых блоков

Строительные изделия Технические требования к стеновым блокам по ГОСТ 19010-82 Цена, руб/шт

Прочность на сжатие, кгс/см2 Коэффициент теплопро водности, X , Вт / м •0 С Средняя плотность, кг/м3 Водопогло-щение, % по массе Морозостойкость, марка

100 по ТУ производителя >1300 по ТУ производителя по ТУ производителя

Пескобетонный блочок ООО «Там-бовБизнесСтрой» 100 0,76 1840 4,3 И00 35

Блочок 1 с использованием ОФС 100 0,627 1520 4,45 Б200 25

Блочок 2 с использованием ОФС 110 0,829 1500 2,8 Б200 27

ВЕСТНИК 3/2011

Выводы:

- предложен способ вовлечения техногенных отходов взамен природных сырьевых ресурсов в производство композиционных строительных материалов;

- исследованы основные физико-механические характеристики композиционных строительных материалов с использованием отходов литейного производства;

- разработаны составы равнопрочных композиционных строительных изделий с уменьшенным расходом цемента на 20 %;

- определены составы смесей для изготовления строительных изделий, например, стеновых блоков.

Литература

1. ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости.

2. ГОСТ 10180-90 Бетоны. Методы определении прочности по контрольным образцам.

3. ГОСТ 12730.3—78 Бетоны. Метод определения водопоглощения.

4. Зажигаев Л.С., Кишьян А.А., Романиков Ю.И. Методы планирования и обработки результатов физического эксперимента.- М.: Атомиздат, 1978.- 232 с.

5. Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента.- Мн.: Изд-во БГУ, 1982. -302 с.

6. Малькова М.Ю., Иванов А.С. Экологические проблемы отвалов литейного производства// Вестник машиностроения. 2005. №12. С.21-23.

References

1. GOST 10060.0-95 Concrete. Methods of definition of frost resistance.

2. GOST 10180-90 Concrete. Methods durability definition on control samples.

3. GOST 12730.3—78 Concrete. A method of definition of water absorption.

4. Zajigaev L.S., Kishjan A.A., Romanikov JU.I. Method of planning and processing of results of physical experiment. - Mn: Atomizdat, 1978. - 232 p.

5. Krasovsky G.I, Filaretov G.F. Experiment planning. - Mn.: Publishing house BGU, 1982. - 302

p.

6. Malkova M. Ju., Ivanov A.S. Environmental problem of sailings of foundry manufacture//the mechanical engineering Bulletin. 2005. №12. p.21-23.

Ключевые слова: экология в строительстве, ресурсосбережение, отработанная формовочная смесь, композиционные строительные материалы, заранее заданные физико-механические характеристики, метод планирования эксперимента, функция отклика, строительные блоки.

Keywords: a bionomics in building, ресурсосбережение, the fulfilled forming admixture, the composite building materials, in advance set physicomechanical characteristics, method of planning of experiment, response function, building blocks.

E-mail авторов: nata-kus@yandex.ru, SeverS75@yandex.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.