Я. Н. Демурин,
доктор биологических наук, профессор
О. М. Борисенко, научный сотрудник
ГНУ ВНИИМК Россельхозакадемии
Россия, 350038, г. Краснодар, ул. Филатова, 17 тел.: (861)274-55-94, факс: (861)254-27-80 e-mail :j akdemurin@j andex.ru
УСТОЙЧИВОСТЬ МУТАЦИИ ВЫСОКООЛЕИНОВОСТИ МАСЛА К ДЕЙСТВИЮ СУПРЕССОРА В СЕМЕНАХ ПОДСОЛНЕЧНИКА
Ключевые слова: мутация высокоолеиновости, супрессор, семена, гибридологический анализ
УДК 633.854.78:575.113
Введение. Изучение гибридных семян в скрещивании образцов мировой коллекции подсолнечника с высокоолеиновыми тестерами показало, что мутация 01 была доминантной в 59 % комбинаций скрещиваний, неполностью доминантной в 38 % и рецессивной в 3 % [1]. Наблюдаемое варьирование содержания олеиновой кислоты в отдельных семенах Б] от мутантного до нормального фенотипов объясняется как неполной пенетрантностью гена 01 в гетерозиготе при наличии супрессора [3], так и потенциальной гетерози-готностью нормальных образцов по супрессору. Предполагается, что гомозиготное состояние супрессора может идентифицироваться и контролироваться только на генотипической среде 0101 гомозиготы, вызывая нормальный фенотип [4].
Наследование мутации высокоолеиновости в семьях F2 при скрещивании высокоолеиновых и супрессорных линий соответствовало различным схемам расщепления: моногенной рецессивной, моногенной доминантной, полигенной и без расщепления. Важно, что доля мутантных семян в популяции Р2 положительно коррелировала с содержанием олеиновой кислоты в исходном семени ?! [2].
У высокоолеинового мутанта в период активного биосинтеза запасного жира в созревающих семенах отсутствует активность фермента микросомальной олеат-десатуразы, катализирующего превращение олеиновой кислоты в линолевую [5]. Позже было установлено существенное уменьшение уровня накопления
в клетках м-РНК этого фермента [6]. Следовательно, с молекулярно-генетической точки зрения, мутация высокоолеиновости вызывается нарушением регуляции транскрипции экспрессирующегося только в клетках зародыша семени ФАД2 гена [7].
Изучение эффекта супрессии мутации высокоолеиновости в ходе гибридологического анализа было целью данной работы.
Материал и методы. В скрещиваниях использованы линии генетической коллекции подсолнечника ВНИИМК: высокоолеиновые ЛГ26 и ВК508; линолевые ЛГ28, 83HR4, RIL100, К1587 и ВИР721. Гибридологический анализ выполнен принятыми в лаборатории генетики ВНИИМК методами.
Определение жирно-кислотного состава масла проводили с помощью газо-жидкостной хроматографии метиловых эфиров жирных кислот на хроматографе Хром-5 с пламенно ионизационным детектором.
Показатель степени доминирования признака рассчитывали как отношение h/d, где h - отклонение фенотипа Fj от среднего (m) между ранжированными родителями Pj и P2, а d - половина разности между родителями Pj и Р2 или модуль разности любого родителя и m.
Результаты и обсуждение. В рамках международной программы изучения генетики мутации высокоолеиновости у подсолнечника нами была получена из INRA (г. Монпелье, Франция) в 2003 г. рекомбинантная инбредная линия RIL100. Эта линия представляла собой F6 (I5) поколение скрещивания 83HR4xRHA345. Главной особенностью RIL100 являлось необычное сочетание мутации высокоолеиново-сти, идентифицируемой по молекулярному маркеру, с нормальным низкоолеиновым фенотипом.
В задачи нашей работы входила проверка присутствия Ol мутации у RIL100 путём гибридологического анализа. В скрещиваниях участвовали три нормальные по жирно-кислотному составу линии: RIL100 (40 % олеиновой кислоты), 83HR4 (42 %) и ЛГ28 (27 %). Все семена F1 двух комбинаций скрещиваний RIL100*83HR4 и ЛГ28xRILШ0 обладали нормальным фенотипом. У семян F2 от скрещивания RIL100*83HR4 и одной семьи ЛГ28^Ш100 наблюдались только нормальные фенотипы (табл. 1). В другой семье ЛГ28^ГЬ100 обнаружено 9 мутантных семян (80-92 % олеиновой кислоты) из 120 штук.
Таблица 1 — Наследование мутации высокоолеиновости в F2 в скрещиваниях с линией RIL100
______________________________________________ВНИИМК, Краснодар, 2003 г.
Число семян F2, шт.
Скрещивание нормальных мутантных
(27-71 % С18:1*) (77-93 % С18:1)
RIL100x83HR4 30 0
ЛГ28xRILI00 80 0
111 9
* - С18:1 - олеиновая кислота
Факт появления рекомбинантных высокоолеиновых семян в F2 при скрещивании обычных по жирно-кислотному составу линий был обнаружен впервые и доказывает наличие мутации Ol у RIL100 в гипоста-тическом состоянии. Данные гибридологического анализа подтвердили предположение, высказанное французскими учёными в молекулярно-генетическом исследовании мутации [4].
Второй аспект изучения особенностей супрессорного эффекта был связан с проведением гибридологического анализа мутации в скрещивании с предварительно отобранными из мировой коллекции подсолнечника линиями, существенно снижающими содержание олеиновой кислоты у гетерозиготных семян.
Так, в скрещивании высокоолеиновой ВК508 с двумя супрессорными линиями К1587 и ВИР721 в F1 доминировал признак нормального содержания олеиновой кислоты со значениями h/d 0,05 и 0,25. Этот факт подтвердил ингибиторный эффект супрессорных линий. Тем не менее, высокоолеиновая ЛГ26 в скрещивании с супрессорами показала полное доминирование мутации в Fj с h/d, равным 1,12 и 0,96 (табл. 2).
Таблица 2 - Степень доминирования высокоолеиновости в семенах Fl
ВНИИМК, Краснодар, 2003 г.
Скрещивание Содержание олеиновой кислоты, % (n = 20) Степень доминирования, h/d НСР05
? Fi S
К1587хВК508 53 71 91 -0,05 5
ВИР721хВК508 32 54 91 -0,25 6
К1587хЛГ26 53 89 87 1,12 2
ВИР721хЛГ26 32 86 87 0,96 3
НСР05 4 8 1
Смена доминирования признака в различных скрещиваниях может объясняться взаимодействием супрессора и мутации 01 по типу доминантного эпистаза. Более парадоксальным представляется феномен отсутствия единообразия гибридов заключающийся в существенном варьировании содержания олеиновой
кислоты в отдельных семенах по всем фенотипическим классам от нормального до мутантного для двух первых комбинаций скрещиваний. Очевидно, что дигетерозиготное состояние мутации Ol и супрессора может сопровождаться неопределенностью значений признака у семян Fb тогда как гомозигота по супрессору приводит во всех случаях к нормальному фенотипу (RIL100).
В шести семьях F2 с участием ВК508 наблюдалось дигенное расщепление на фенотипические классы нормальный и высокоолеиновый в модельном отношении 13 (9 Ol-Sup-, 3 olol Sup-, 1 olol supsup): 3 (Ol- sup-sup). Кроме того, в одной корзинке все семена оказались фенотипически нормальными. При скрещивании ЛГ26 с супрессорами, однако имело место моногенное расщепление 1 нормальный : 3 высокоолеиновых (табл. 3).
Таблица 3 — Расщепление в F2 по мутации высокоолеиновости масла в отдельных семенах при скрещивании с супрессорными линиями
ВНИИМК, Краснодар, 2003-2004 гг.
Скрещивание Фенотип F1, % Число семян F2, шт. Доля мутантов х2
норма мутация 13:3 1:3
ВИР721хВК508 29 40 0 0,00 - -
35 34 6 0,15 0,37* 76,80
35 37 3 0,08 3,32* 97,20
72 34 6 0,15 0,37* 76,80
85 33 7 0,18 0,04* 70,53
К1587хВК508 55 33 7 0,18 0,04* 70,53
70 30 10 0,25 1,03* 53,33
ВИР721хЛГ26 85 10 30 0,75 83,08 0,00*
85 15 25 0,63 50,25 3,33*
85 5 35 0,88 124,10 3,33*
85 14 26 0,65 56,16 2,13*
К1587хЛГ26 85 8 32 0,80 98,50 0,53*
85 9 31 0,78 90,62 0,13*
* - р > 0,05, x2st = 3,84
В полевых условиях 2005 г. из отдельных семян Б2 с известным жирно-кислотным составом получено 79 семей Б3 в трёх комбинациях скрещиваний ВИР721*ЛГ26, К1587*ВК508 и ВИР721*ВК508. В каждой корзинке проанализировано по 10 отдельных семян для оценки гомогенности потомства (табл. 4).
Первое скрещивание ВИР721*ЛГ26 характеризовалось в Б3 классическим типом моногенного наследования 1:2:1 по числу нормальных, расщепляющихся и мутантных семей. Кроме того, мутантные семена Б2 дали потомство в Б3 двух видов: или мутантное, или расщепляющееся, тогда как нормальные семена Б2 -только нормальное. Следовательно, мутация 01 наследовалась в Б3, как моногенный доминантный признак.
Во втором скрещивании К1587*ВК508 не обнаружено ни одной гомогенной семьи Б3 с мутантными семенами. При этом расщепление в Б2 на 30 нормальных : 10 мутантных соответствовало схеме 13:3, согласно которой класс мутантных семян должен давать в самоопылённом потомстве два вида семей Б3 - мутантные и расщепляющиеся в отношении 1:2. Из шести полученных семей Б3 четыре показали расщепление, а две были гомогенными, но с нормальными семенами. Следовательно, в Б3 не удалось получить рекомбинантный гомозиготный мутантный фенотип после пребывания мутации 01 в гетерозиготном сочетании с супрессором.
Таблица 4 — Гомогенность семей Г3 по мутации высокоолеиновости масла в отдельных семенах при скрещивании с супрессорными линиями
ВНИИМК, Краснодар, 2005 г.
Скрещивание Число семей F3 , шт.
нормальных, без расщепления расщепляющихся мутантных, без расщепления всего
ВИР721хЛГ26 7 15 7 29
К1587хВК508 18 7 0 25
ВИР721хВК508 25 0 0 25
В третьем скрещивании ВИР721*ВК508, начиная с нормального семени Рь у 40 нормальных семян Б2 и 25 гомогенных семей Б3 с 250 нормальными семенами наблюдалось полное отсутствие семян с мутантным фенотипом. Это "исчезновение" мутации не может быть отнесено к артефакту за счёт отсутствия гибридизации отдельного трубчатого цветка корзинки материнской формы ВИР721 и его самоопыления. Прямым доказательством успешной гибридизации явилось моногибридное расщепление в Б2 по гену антоциановой окраски всего растения Т (121 антоциановых : 36 зелёных, х2(31)=0,36; р > 0,05) и дигибридное расщепление
по гену T и гену-локализатору антоциановой окраски в лепестках язычковых цветков G (78 антоциановых : 79 не антоциановых, х2(9:7)=2,75; р > 0,05). Рецессивные аллели этих маркерных генов находились у отцовской формы ВК508.
Заключение. В результате гибридологического анализа установлено наличие у нормальной по жирно-кислотному составу линии RIL100 мутации Ol в гипостатическом состоянии. При скрещивании нормальных линий ЛГ28^ГЬ100 в F2 обнаружены рекомбинантные высокоолеиновые фенотипы с частотой около 8 %.
Наследование мутации высокоолеиновости в скрещивании линии ЛГ26 с супрессорами К1587 и ВИР721 соответствовало моногенной доминантной схеме в Fb F2 и F3. Это явление указывает на устойчивость мутации Ol в генотипической среде линии ЛГ26 к действию супрессора. С другой стороны, наследование мутации высокоолеиновости в скрещивании линии ВК508 с супрессорами в Fj и F2 описывалось дигенной моделью по типу доминантного эпистаза Sup над Ol в отношении 13 нормальных : 3 мутантных. Комбинация К1587*ВК508 показала в F3 отсутствие гомозиготных высокоолеиновых семей, а ВИР721*ВК508 - отсутствие не только гомозиготных высокоолеиновых, но и расщепляющихся семей, т.е. полное исчезновение мутантных семян. Подобное явление реверсии признака к дикому типу, вероятно, может объясняться репарационным механизмом действия супрессора.
Благодарности. Данная работа поддержана грантом № 08-04-99109 регионального конкурса РФФИ.
Литература
1. Демурин, Я. Н. Поиск супрессорных генотипов по мутации высокоолеиновости масла семян подсолнечника / Я. Н. Демурин, О. М. Борисенко, С. Г. Ефименко // НТБ ВНИИМК, Краснодар, 2004. - Вып. 2 (131). - С.31-34.
2. Демурин, Я. Н. Наследование мутации высокоолеиновости в семенах F2 у подсолнечника / Я. Н. Демурин, О. М. Борисенко // Наука Кубани. - 2005. - № 4. - С. 108-111.
3. Demurin, Ya. Unstable expression of Ol gene for high oleic acid content in sunflower seeds / Ya. Demu-rin, D. Skoric // In: Proc. 14th Int. sUnflower Conf., Beijing. Shenyang, China, 12-20 June 1996. - 1996. - Р. 145150.
4. Lacombe, S. An oleat desaturase and a suppressor loci direct high oleic acid content of sunflower (Helianthus annuus L.) oil in the Pervenets mutant / S. Lacombe, F. Kaan, S. Leger, A. Berville // Life Sciences (Paris). -2001. - 324. - Р. 1-7.
5. Garces, R. In vitro oleate desaturase in developing sunflower seeds / R. Garces, M. Mancha // Phytochemistry. - 1991. - Vol. 30. - No.7. - Р. 2127-2130.
6. Lacombe, S. Analysis of desaturase transcript accumulation in normal and in high oleic oil sunflower development seeds / S. Lacombe, A. Berville // In: Proc. 15th Int. Sunflower Conf., 12-15 June 2000, Toulouse, France: A1-A6.
7. Martinez-Rivas, J. M. Spatial and temporal regulation of three different microsomal oleat desaturase genes (FAD2) from normal-type and high oleic varieties of sunflower (Helianthus annuus L.) / J. M. Martinez-Rivas, P. Sperling, W. Luhs, E. Heinz // Molecular Breeding. - 2001. - 8. - Р. 159-168.