Научная статья на тему 'Устойчивость физиологических функций и методы ее оценки'

Устойчивость физиологических функций и методы ее оценки Текст научной статьи по специальности «Математика»

CC BY
791
112
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
УСТОЙЧИВОСТЬ / БИОМОДЕЛИРОВАНИЕ / ТЕОРЕТИЧЕСКАЯ ФИЗИОЛОГИЯ / МАТЕМАТИЧЕСКАЯ МОДЕЛЬ / STABILITY / BIOMODELING / THEORETICAL PHYSIOLOGY / MATHEMATICAL MODEL

Аннотация научной статьи по математике, автор научной работы — Мезенцева Л. В., Перцов С. С.

Проблема устойчивости физиологических функций важный раздел теоретической физиологии. Основные идеи П.К. Анохина теория функциональных систем и системный подход к исследованию физиологических функций положили начало развитию теоретической физиологии и математического моделирования в биомедицине. В статье излагаются методологические аспекты использования различных видов биомоделей для оценки устойчивости физиологических функций. Рассмотрены экспериментальные, генетические, математические и компьютерные биомодели. Практические методики оценки устойчивости проиллюстрированы на примере устойчивости сердечно-сосудистых функций к стрессорным нагрузкам. Приведены примеры различных экспериментальных моделей стресса и методов оценки влияния стрессорных нагрузок на электрическую стабильность сердца. Электрическая стабильность сердца оценивалась по порогам возникновения фибрилляции желудочков. Помимо экспериментальных, приведены примеры математических и компьютерных методов оценки устойчивости сердечно-сосудистых функций к стрессорным нагрузкам. Математическая модель, позволяющая исследовать устойчивость сердечного ритма, основывается на известных принципах экспериментальной электрофизиологии сердца, описывающих распространение электрического возбуждения в его различных структурах. Модель позволяет описать явления, наблюдаемые при постепенном возрастании величины стрессорной нагрузки. Показано существование критической точки перехода кардиодинамики из линейного режима в хаотический. Показано, что наибольшей устойчивостью отличается линейный режим. Для этого режима малые погрешности в значениях начальных условий не способны резко изменить исходную динамику RR интервалов.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STABILITY OF PHYSIOLOGICAL FUNCTIONS AND METHODS OF ITS ESTIMATION

Problem of physiological functions stability is the important part of the theoretical physiology. P.K. Anohin's basic ideas -the theory of functional systems and systemic approach to study of physiological functions have begun the development of theoretical physiology and mathematical modeling in biomedicine. In this paper methodological aspects of using of various biomodels for an estimation of stability of physiological functions are considered. Experimental, genetic, mathematical and computer biomodels are described. Practical techniques of an estimation of stability are illustrated on an example of stability of cardiovascular functions to stressor loads. Examples of different experimental models of stress and methods of estimation of stressor loads influence on cardiac electrical stability are described. Cardiac electrical stability was estimated by thresholds for ventricular fibrillation. Besides experimental, examples of mathematical and computer methods of an estimation of stability of cardiovascular functions to stressor loads are presented. Mathematical model that enables to investigate the stability of heart rate dynamics to stressor loads is based on quantitative characteristics of impulse conduction in heart conducting system. The model describes the phenomena observed at gradual increase of stressor intensity. It was shown the existence of a critical point of transition of heart rate dynamics from linear to chaotic mode. The results show that the greatest stability is notable for the linear regime. For this regime small errors in values of initial conditions can't sharply change the initial dynamics of RR intervals.

Текст научной работы на тему «Устойчивость физиологических функций и методы ее оценки»

mitter. Trends Pharmacol Sci. 2006;27(3):166-76.

6. Fahim MA, Holley JA, Robbins N. Topographic comparison of neuromuscular junctions in mouse "slow" and "fast" twitch muscles. Neuroscience. 1984;13:227-35.

7. Florendo JA, Reger JF, Law PK. Electrophysiologic differences between mouse extensor digitorum longus and soleus. Exp Neurol. 1983;82(2):404-12.

8. Teplov AY, Grishin SN, Mukhamedyarov MA, Zigan-shin AU, Zefirov AL, Palotas A. Ovalbumin-induced sensitization affects non-quantal acetylcholine release from motor nerve terminals and alters contractility of skeletal muscles in mice. Exp Physiol. 2009;94(2):264-68.

9. Mariathasan S, Monack M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat.Rev.Immunol. 2007;7:31-40.

10. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA. Altered cytokine production in mice lacking P2X(7) receptors. J.Biol/Chem. 2001;276:125-32.

11. Supinski GS, Ji X, Wang W, Callahan LA. The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction. J Appl Physiol. 2007;102(4):1649-57.

12. Tsai TL, Chang SY, Ho CY, Kou YR. Role of ATP in the ROS-mediated laryngeal airway hyperreactivity induced by laryngeal acid-pepsin insult in anesthetized rats. J Appl Physiol. 2009;5:1584-92.

13. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Pan-ther E, Di Virgilio F. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176(7):3877-83.

УДК 616. 12-073 DOI: 10.12737/3301

УСТОЙЧИВОСТЬ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ И МЕТОДЫ ЕЕ ОЦЕНКИ Л.В. МЕЗЕНЦЕВА, С.С. ПЕРЦОВ

НИИ нормальной физиологии им. П.КАнохина РАМН, Моховая 11, стр.4, Москва, Россия, 129009

Аннотация. Проблема устойчивости физиологических функций - важный раздел теоретической физиологии. Основные идеи П.К.Анохина - теория функциональных систем и системный подход к исследованию физиологических функций положили начало развитию теоретической физиологии и математического моделирования в биомедицине. В статье излагаются методологические аспекты использования различных видов биомоделей для оценки устойчивости физиологических функций. Рассмотрены экспериментальные, генетические, математические и компьютерные биомодели. Практические методики оценки устойчивости проиллюстрированы на примере устойчивости сердечно-сосудистых функций к стрессорным нагрузкам. Приведены примеры различных экспериментальных моделей стресса и методов оценки влияния стрессорных нагрузок на электрическую стабильность сердца. Электрическая стабильность сердца оценивалась по порогам возникновения фибрилляции желудочков. Помимо экспериментальных, приведены примеры математических и компьютерных методов оценки устойчивости сердечно-сосудистых функций к стрессорным нагрузкам. Математическая модель, позволяющая исследовать устойчивость сердечного ритма, основывается на известных принципах экспериментальной электрофизиологии сердца, описывающих распространение электрического возбуждения в его различных структурах. Модель позволяет описать явления, наблюдаемые при постепенном возрастании величины стрессорной нагрузки. Показано существование критической точки перехода кардиодинамики из линейного режима в хаотический. Показано, что наибольшей устойчивостью отличается линейный режим. Для этого режима малые погрешности в значениях начальных условий не способны резко изменить исходную динамику RR интервалов.

Ключевые слова: устойчивость, биомоделирование, теоретическая физиология, математическая модель.

STABILITY OF PHYSIOLOGICAL FUNCTIONS AND METHODS OF ITS ESTIMATION L.V. MEZENTSEVA, S.S. PERTSOV

P.K. Anokhin Institute of Normal Physiology Russian Academy of Medical Sciences Mokhovaya str., 11, bld. 4, Moscow, Russia, 129009

Abstract. Problem of physiological functions stability is the important part of the theoretical physiology. P.K.Anohin's basic ideas -the theory of functional systems and systemic approach to study of physiological functions have begun the development of theoretical physiology and mathematical modeling in biomedicine. In this paper methodological aspects of using of various biomodels for an estimation of stability of physiological functions are considered. Experimental, genetic, mathematical and computer biomodels are described. Practical techniques of an estimation of stability are illustrated on an example of stability of cardiovascular functions to stressor loads. Examples of different experimental models of stress and methods of estimation of stressor loads influence on cardiac electrical stability are described. Cardiac electrical stability was estimated by thresholds for ventricular fibrillation. Besides experimental, examples of mathematical and computer methods of an estimation of stability of cardiovascular functions to stressor loads are presented. Mathematical model that enables to investigate the stability of heart rate dynamics to stressor loads is based on quantitative characteristics of impulse conduction in heart conducting system. The model describes the phenomena observed at gradual increase of stressor intensity. It was shown the existence of a critical point of transition of heart rate dynamics from linear to chaotic mode. The results show that the greatest stability is notable for the linear regime. For this regime small errors in values of initial conditions can't sharply change the initial dynamics of RR intervals.

Key words: stability, biomodeling, theoretical physiology, mathematical model.

Понятие «устойчивость». Устойчивость, стабильность - универсальные понятия, используемые в различных сферах человеческой жизни, начиная от бытовых (устойчиво научился ходить ребенок, устойчиво работает та или иная бытовая техника). В медицине понятие «устойчивость» употребляется для обозначения степени тяжести состояния больного: «стабильное», «стабильно тяжелое» и т.д. В психологии - для обозначения людей с «устойчивой» и «неустойчивой» психикой. В физике под «устойчивостью движения» понимается способность движущейся механической системы не отклоняться от траектории при незначительных случайных воздействиях. Устойчивостью движения должны обладать автомобиль, самолет, снаряд, ракета и др. Анализ различных определений понятия «устойчивость» и классификацию систем по типам устойчивости можно найти в монографии В.В. Артюхова [1]. В монографии рассматриваются виды устойчивости, связанные с такими понятиями, как инерционность, симметрия, адаптивность, гомеостаз. Автор приводит 38 различных определений понятия «устойчивость» и дает еще одно, собственное определение: устойчивость - это свойство системы С совпадать по признакам { П } до и после изменений { И } вызванных действием комплекса факторов { Ф }.

Строгие математические определения понятия «устойчивость» берут начало от изучения устойчивости движения механических систем. Движение любой механической системы зависит от действующих сил и начальных условий, исходя из которых, можно теоретически рассчитать, как будет двигаться система. Движение, соответствующее этому расчёту, называется невозмущённым. Но на практике истинные значения начальных условий обычно изменяются из-за влияния внешних случайных возмущений. Движение, которое система будет совершать при наличии этих возмущений, называется возмущённым движением. Если при малых начальных возмущениях характеристики движения всё последующее время мало отличаются от невозмущённых, движение называется устойчивым. Если же характеристики движения со временем будут всё более и более отличаться от невозмущённых, то движение системы называется неустойчивым. Эти определения соответствуют определению устойчивости движения по А.М. Ляпунову, который заложил основы точной математической теории устойчивости механических систем. На практике эта теория может быть применима не только к механическому движению, но и к любым другим сложным системам, поведение которых может быть описано с помощью дифференциальных уравнений. Наиболее широко используется классические методы оценки устойчивости в технических системах, и, в частности, при проектировании систем автоматического управления. Для нормального функционирования таких систем необходимо, чтобы система была устойчивой, так как в противном случае в ней возникнут большие ошибки.

В отличие от механических, в биомедицинских системах мы сталкиваемся с невозможностью применения к ним математических методов оценки устойчивости, так как в большинстве случаев нам не известны дифференциальные уравнения, описывающие их состояние. Для того, чтобы сформулировать дифференциальные уравнения биологической системы, нужно создать математическую модель, которая смогла бы описать всю совокупность известных экспериментальных данных и предсказать новые закономерности. Разработка таких математических моделей -предмет исследования теоретической биологии. Теоретическая биология получила известную парадигму в работах

Ходжкина и Хаксли, которые сформулировали известные уравнения, описывающие проведение электрического импульса по нервному волокну. Проблемам математического моделирования биологических систем посвящена монография А.С. Братуся и соавт., в которой наряду с классическими моделями, такими как хищник-жертва, Лотки-Вольтерры и Гаузе, конкуренции видов, распространения эпидемий Кермака-Маккендрика, рассматриваются модели, которые были предложены совсем недавно: модели эволюции семейств генов, распространения эпидемий в неоднородных популяциях и другие [3]. Изложению существующих математических моделей физиологических процессов посвящена монография Джеймса Кинера и Джеймса Снейда [18]. Книга состоит из двух частей: часть первая -«Клеточная физиология», часть вторая - «Системная физиология». В части «Клеточная физиология» изложены фундаментальные принципы математического описания биохимических процессов, ионных потоков, клеточной возбудимости, нервной проводимости. В части второй -«Системная физиология», излагаются математические модели различных функциональных систем организма - сердечно-сосудистой, дыхательной, мышечной, гормональной, мочевыделительной, а также систем зрения и слуха.

Однако, несмотря на большое разнообразие существующих в физиологии математических моделей, общая картина теоретической физиологии еще не создана. Причиной тому является отсутствие системного подхода и единой методологии математического моделирования в физиологии, приводящее к многочисленности несвязанных между собой подходов и несравнимости моделей между собой. Несовершенство многих моделей обусловлено также их основным недостатком - отсутствием этапа математической идентификации модели. Это означает, что результаты моделирования проверяются на соответствие реальным экспериментальным данным только качественно, а этап количественного сопоставления отсутствует. В то же время именно этот этап позволяет постоянно уточнять и совершенствовать модель, доводить ее до уровня максимально полного совпадения с экспериментом. Модель должна быть тонким инструментом, позволяющим исследовать то, что недоступно экспериментатору, выявлять механизмы, лежащих в основе изучаемых процессов. Теоретическая физиология в настоящее время еще не создана, она представляет собой множество разрозненных моделей, как правило, не прошедших этап идентификации, не обладающих необходимой общностью, чтобы их можно было рассматривать с системных позиций. По этой причине изучение вопросов устойчивости физиологических функций с применением строгих математическое методов и критериев чрезвычайно ограничено. Несмотря на это, понятие «устойчивость физиологических функций» широко применяется физиологии. Оно получило широкое распространение одновременно с проникновением в физиологию кибернетических идей и сформулированного П.К. Анохиным принципа саморегуляции и системного подхода к изучению физиологических функций. Согласно этому принципу, «отклонение результата деятельности функциональной системы от уровня, обеспечивающего нормальный метаболизм, немедленно вызывает цепь центрально-периферических процессов, направленных на восстановление оптимального уровня данного результата. Именно благодаря динамической са-морегуляторной деятельности различные функциональные системы определяют необходимую для нормальной жизнедеятельности устойчивость метаболических процессов и

их уравновешенность с внешней средой» [17]. Понятие «устойчивость физиологических функций» тесно связано с понятием «гомеостаз». Гомеостаз - это относительное динамическое постоянство состава и свойств внутренней среды, обеспечивающее устойчивость основных физиологических функций [17].

Общие подходы к оценке устойчивости физиологических функций. В отличие от физико-математических наук с их хорошо разработанными математическими методами, позволяющими со сколь угодно большой точностью оценивать устойчивость систем, в биомедицине такой математический аппарат еще не создан и оценка устойчивости биомедицинских систем осуществляется экспериментально с помощью методов биомоделирования.. Для этой цели используются различные виды моделей [5,12,13]: животное-биомодель - лабораторное животное, используемое в эксперименте для изучения закономерностей протекания физиологических процессов; экспериментальная биомодель - создаваемая экспериментально модель того или иного состояния, в том числе патологического (болезнь), частично воспроизводящего функционирование прототипа; генетически обусловленная биомодель - специальные линии животных, имеющие врожденные изменения или патологию, характерную для заболеваний человека; математическая модель -абстрактное воплощение нашего представления о системе или о процессе, представленная виде математических символов, формул, уравнений; компьютерная модель - математическая модель, записанная на каком-либо языке программирования и реализованная в виде программы для ЭВМ.

Примерами использования животных и экспериментальных биомоделей для оценки устойчивости организма к стрессорным воздействиям являются различные экспериментальные модели стресса у животных (крысы, кролики, собаки и др.). Это различные виды иммобилизации, погружение животных в холодную воду, электрическое раздражение отрицательных эмоциогенных ядер гипоталамуса и другие. Оценка стресс-устойчивости и разделение животных по поведенческим критериям на группы «стресс-устойчивых» и «стресс-предрасположенных» осуществляется с помощью показателя «индекс активности» в тесте «открытое поле», рассчитываемого по таким параметрам, как латентные периоды первого движения и выхода в центр, периферические и центральные амбуляции, число исследованных объектов, время грумминга, уринация и дефекация [9]. Устойчивость к стрессорным воздействиям сердечно-сосудистых функций сначала оценивали по ЧСС, виду зубцов ЭКГ-сигнала и появлению различных аритмий. Позднее Макарычевым В.А. и соавт. [10] был предложен количественный критерий, позволяющий оценивать электрическую стабильность сердца по порогам возникновения фибрилляции желудочков (ПФЖ). Чем выше ПФЖ, тем выше электрическая стабильность сердца. Помимо ПФЖ, для оценки электрической стабильности сердца используются и другие критерии [19]. Это ULV (upper limit to the vulnerability) - верхний предел уязвимости миокарда к ФЖ (порог уязвимости) и DF - порог дефибрилляции. Чем выше ULV и DF, тем ниже электрическая стабильность сердца.

Широкое распространение в биомедицинских исследованиях получили методы оценки устойчивости различных функциональных систем организма, основанные на биоинформационном анализе. Так, в работах [6-8] устойчивость протекания патологического процесса при хроническом вирусном поражении печени при оценивалась с помощью информационной энтропии, а в работе [16] с пози-

ций теории «равновесных» и «неравновесных» систем были рассмотрены патогенетические взаимосвязи между системой гомеостаза и процессами свободно-радикального окисления при введении в организм цитостатиков.

Примерами использования генетически обусловленных биомоделей являются работы по изучению устойчивости животных разных генетических линий к стрессорным нагрузкам. Так, работе [2] авторы сопоставляли устойчивость сердца к стрессорным повреждениям с характером нейровегетативной регуляции сердечно-сосудистой системы у крыс линий Август и Вистар. Стрессорную нагрузку вызывали погружением крыс в холодную воду на 30 мин. Устойчивость сердца к стрессорным повреждениям оценивали по нарушению сократительной функции изолированного сердца и активности ферментов антиоксидантной защиты. Результаты исследований показали, что у крыс Август устойчивость сердца к стрессорным повреждениям выше, чем у крыс Вистар, несмотря на пониженную лабильность вегетативной нервной системы.

Математические и компьютерные методы оценки устойчивости физиологических функций. Широкое внедрение математических и компьютерных методов в биомедицинские исследования открывает новые возможности для разработки математических методов оценки устойчивости физиологических функций. Эти методы подразделяются на следующие виды:

• аналитические методы (если модель записана в виде дифференциальных уравнений);

• графические методы (лестничные диаграммы, диаграммы Пуанкаре);

• методы компьютерного моделирования.

Детальное изложение математических методов оценки

устойчивости биологических систем можно найти литературе [14,15], а практическое применение этих методов для оценки влияния стрессорных нагрузок на устойчивость кардиодинамики - в работах [11,12,20]. Авторами была разработана математическая модель, описывающая различные режимы функционирования кардиодинамики в условиях постепенного возрастания стрессорной нагрузки. Модель сформулирована в виде реккурентных уравнений, выражающих зависимости величин последующей задержки атриовентрикулярного (АВ) проведения (Ъ п+1) от предыдущей (Ъп) и последующего ЯЯ интервала (ИИ п+1) от предыдущего (ИИ п):

ИИ п+2 - ИИ п+1 = Ъ п+2 - 2 Ъ п+1 + Ъ п, (2)

где Т - длительность интервала между возбуждениями синоатриального (СА) узла; Ъ - величина задержки в СА или АВ узле; г = г(аЫ) - абсолютный рефрактерный период СА или АВ узла соответственно; Ъ(шт) - минимальное значение СА или АВ задержки; К - постоянная, характеризующая крутизну функции реституции Ъ( ).

Уравнения (1) и (2) позволяют по известным входным

воздействиям £1(1), £2(1),...£к(1), определяющим

длительность интервала Т между возбуждениями синоатриального (СА) узла, известным функциям задержек Ъса(1)=Ъса(ш1п)+Кса/1 и ЪАв(1)=ЪАв(тт)+КАвЛ, а также заданным значениям констант Кса, Кав, Ъса(шш), Ъав(шш), гса , гав определить временной ряд кардиоинтервалов ИЯ[1], 1=1, 2,... N. где N - длина ряда. При Ъп>Т-г имеет место выпадение импульса. На основании сформулированных

уравнений авторы провели графическое исследование устойчивости различных режимов кардиодинамики методом лестничных диаграмм. Предполагалось, что стрессорная нагрузка возрастает пропорционально частоте нервной импульсации, поступающей на вход СА узла. Это предположение основано на известных из физиологии фактах о том, что при стрессорных нагрузках имеет место чрезмерная активация симпатических нервов, приводящая к возрастанию частоты нервной импульсации, поступающей на синоатриальный узел.

2(п+1)

В

Вьгидпііф

імпульсе

2(п I Ц-К/(Т 2^)}

1 Мгугто>ч«ый /'' /

/

2<1) 2(Г) Х(к> 2®>2<1)

Рис. Различные режимы хаотической динамики сердечного ритма соответствующие различным случаям расположения функции задержек относительно биссектрисы координатного угла.

А. Устойчивый (линейный) режим: функция Ъ п+1 = К / (Т - Ъп) проходит ниже биссектрисы координатного угла, пересекая ее в двух точках. Нижняя точка пересечения - устойчивый аттрактор.

Б. Неустойчивый (хаотический) режим: функция Ъ п+1 = К / (Т - Ъп) проходит выше биссектрисы координатного угла, не имея с ней точек пересечения. При любом начальном значении задержки Ъо, все последующие значения задержек Ъ1 Ъ2 Ъз..Ък образуют монотонно возрастающую последовательность, которая, прерывается выпадением очередного (Ък+1) импульса.

В. Локально неустойчивый аттрактор. Кривая задержек касается биссектрисы. В этом случае при небольших значениях начальной

задержки Ъо последовательность Ъ1 Ъ2 Ъз...Ък стремится к точке

касания - локально неустойчивому аттрактору

На рис. показано 3 различных случая расположения функции Ъп+1 (Ъп) относительно биссектрисы координатного угла, отвечающие различным состояниям устойчивости

кардиоритма. Устойчивый (линейный) режим (рис. А) имеет место, если функция Ъ п+1=К/(Т-Ъп) проходит ниже биссектрисы координатного угла, пересекая ее в двух точках. В этом случае при любом значении начальной задержки Ъ0 последующие задержки Ъ1,Ъ2,Ъ3. образуют монотонно убывающую последовательность, стремящуюся к одному устойчивому аттрактору, находящемуся в нижней точке пересечения функций. Эта точка (Ъуст) определяет режим устойчивого равновесия хаотической динамики сердечного ритма. Неустойчивый (хаотический) режим (рис. Б) имеет место в том случае, когда кривая задержек не пересекает и не касается биссектрисы. В этом случае, как это можно видеть из рисунка, при любом начальном значении задержки Ъо, все последующие значения задержек образуют монотонно возрастающую последовательность, которая, при некотором критическом значении задержки прерывается выпадением импульса. Этот режим - нелинейный, характеризуется отсутствием одного устойчивого аттрактора, большой изменчивостью и нерегулярностью кардиодинамики. Рис. В - локально неустойчивый аттрактор. Кривая задержек касается биссектрисы. В этом случае при небольших значениях начальной задержки Ъо последовательность Ъ1,Ъ2,Ъз, ...,Ък стремится к точке касания - локально неустойчивому аттрактору.

Результаты дальнейших исследований показали, что постепенное возрастание величины стрессорной нагрузки сопровождается не только количественными, но и качественными изменениями амплитудно-временной упорядоченности сердечного ритма. Различным диапазонам стрессорных воздействий соответствуют различные режимы функционирования кардиодинамики: линейный режим, режим «хаос 1-й степени» и режим «хаос 2-й степени». Результаты исследований устойчивости различных режимов кардиодинамики, выполненные методом компьютерного моделирования, показали, что наибольшей устойчивостью отличается линейный режим. Для этого режима малые погрешности в значениях начальных условий не способны резко изменить исходную динамику ИИ интервалов. Оба нелинейных режима кардиодинамики являются неустойчивыми, причем степень неустойчивости режима «хаос 2-й степени» более высокая по сравнению с режимом режим «хаос 1-й степени». Результаты вычислительных экспериментов подтверждают экспериментальные данные, свидетельствующие о наличии взаимосвязи между показателями степени упорядоченности сердечного ритма и показателями электрической стабильности сердца.

Заключение. Понимание необходимости математического обобщения большого числа разрозненных экспериментальных данных, накопленных в физиологической науке, и построения основ теоретической физиологии началось в середине прошлого века. Начало развитию теоретической физиологии положили основные идеи П.К. Анохина - теория функциональных систем и системный подход к исследованию физиологических функций. Ученые разных специальностей пришли к убеждению, что системный подход - это «единственный путь соединить в одно целое куски нашего разобщенного мира и достичь упорядоченности вместо хаоса» [4]. Физиология - это наука, которая на основе частных процессов и механизмов строит динамику работы целого организма [17]. Важным направлением теоретической физиологии является разработка методов оценки устойчивости физиологических функций. Основой тому являются положения общей теории устойчивости сложных систем произвольной природы: биологических, социаль-

ных, технических и других. В настоящей работе на конкретных примерах устойчивости сердечно-сосудистой системы изложена лишь часть этих методов. Разработка точных количественных методов и критериев оценки устойчивости других функциональных систем организма - предмет дальнейших совместных исследований математиков, физиологов, врачей, инженеров.

Работа поддержана РФФИ, грант № 13-07-00756 Литература

1. Артюхов В.В. Общая теория систем. Самоорганизация. Устойчивость. Разнообразие. Кризисы. М.: Либроком, 2010. 224 с.

2. Белкина Л.М., Попкова Е.В., Лакомкин В.Л., Кириллина Е.Н., Жукова А.Г., Сазонтова Т.Г., Усачева М.А., Капелько В.И. Вариабельность параметров гемодинамики и устойчивость к стрессорным повреждениям у крыс разных линий // Росс. физиол. журнал им. И.М. Сеченова. 2006. Т. 92. №2. С. 221-31.

3. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии. М.: Физматлит, 2010. 400 с.

4. Гиг Дж. В. Прикладная общая теория систем. М.: Мир, 1981. 733 с.

5. Каркищенко Н.Н. Основы биомоделирования. М.: Межакадемическое издательство ВПК, 2005. 608 с.

6. Исаева Н.М., Савин Е.И., Субботина Т.И., Яшин А.А. Зависимость информационной энтропии от факторов, определяющих течение патологического процесса при хроническом вирусном поражении печени // Междун. журнал прикладных и фундаментальных исследований. 2013. Ч.3. С.464-6.

7. Исаева Н.М., Савин Е.И., Субботина Т.И., Яшин А.А. биоинформационный анализ тяжести морфологических изменений при хроническом поражении печени // Междун. журнал прикладных и фундаментальных исследований. 2013. Ч.2. С. 249-50.

8. Исаева Н.М., Субботина Т.И., Хадарцев А.А., Яшин А.А. Код Фибоначчи и «золотое сечение» в патофизиологии и экспериментальной магнитобиологии. Выпуск 4. Москва-Тула-Тверь: OOO «Издательство «Триада», 2007. 136 с.

9. Коплик Е.В., Горбунова А.В., Салиева Р.М. Тест «открытое поле» как прогностический критерий устойчивости к эмоциональному стрессу у крыс линии Вистар // Ж. ВНД. 1995. №4. С. 775-81.

10. Макарычев В.А., Каштанов С.И., Старинский Ю.Г., Ульянинский Л.С. Изменения порогов возникновения желудочковых аритмий при раздражении отрицательных эмоциогенных центров гипоталамуса // Кардиология. 1979. N7. С. 98-101.

11. Мезенцева Л.В. Анализ устойчивости сердечного ритма к стрессорным нагрузкам методом математического моделирования // Росс.Физиол.Ж.. им. И.М.Сеченова. 2010. T.96. №2. C. 106-14.

12. Мезенцева Л.В., Перцов С.С. Математическое моделирование в биомедицине // Вестник новых медицинских технологий. 2013. №1. С. 11-4.

13. Еськов В.М., Хадарцев А.А., Гудков В.М., Гудкова С.А., Сологуб Л.А. Философско-биофизическая интерпретация жизни в рамках третьей парадигмы // Вестник новых медицинских технологий. 2012. Т.19. №1. С. 38-41.

14. Еськов В.М., Филатова О.Е., Фудин Н.А., Хадар-цев А.А. Новые методы изучения интервалов устойчивости

биологических динамических систем в рамках компар-тментно-кластерного подхода // Вестник новых медицинских технологий. 2004. Т. 11. №3. С. 5-6

15. Ризниченко Г.Ю. Лекции по математическим моделям в биологии. М.: Изд. РХД, 2002. 560 с.

16. Субботина Т.И., Савин Е.И., Исаева Н.М. Распространение законов «золотого сечения» и «золотого вурфа» на патогенетические взаимосвязи между системой гомеостаза и процессами свободно-радикального окисления при введении в организм цитостатиков // Междун. журнал прикладных и фундаментальных исследований. 2013. №3.

С. 155-6.

17. Судаков К.В. Физиология функциональных систем. Иркутск: Изд-во Ирк. Ун-та, 1997. 516 с.

18. Keener J., Sneyd J. Mathematical physiology. Springer, 2001. 766 р.

19. Malkin R.A., Sousa J.J., Ideker R.E. The ventricular defibrillation and upper limit of vulnerability dose-response curves // J. Cardiovasc. Electrophysiol. 1997. V.8. N8. P.895-903.

20. Mezentseva L.V. Analysis of the Nonlinear Heart Rate Dynamics by Two-Contour Mathematical Model // Biophysics. 2011. V.56. №3. P. 510-5.

References

1. Artyukhov VV. Obshchaya teoriya sistem. Samoorgani-zatsiya. Ustoychivost'. Raznoobrazie. Krizisy. Moscow: Libro-kom; 2010. Russian.

2. Belkina LM, Popkova EV, Lakomkin VL, Kirillina EN, Zhukova AG, Sazontova TG, Usacheva MA, Kapel'ko VI. Va-riabel'nost' parametrov gemodinamiki i ustoychivost' k stres-sornym povrezhdeniyam u krys raz-nykh liniy // Ross. fiziol. zhurnal im. I.M. Sechenova. 2006;92(2):221-31. Russian.

3. Bratus' AS, Novozhilov AS, Platonov AP. Dina-micheskie sistemy i modeli biologii. Moscow: Fizmatlit; 2010. Russian.

4. Gig DzhV. Prikladnaya obshchaya teoriya sistem. Moscow: Mir; 1981. Russian.

5. Karkishchenko NN. Osnovy biomodelirovaniya. Moscow: Mezhakademicheskoe izdatel'stvo VPK; 2005. Russian.

6. Isaeva NM, Savin EI, Subbotina TI, Yashin AA. Zavisi-most' informatsionnoy entropii ot faktorov, opredelyayush-chikh techenie patologicheskogo protsessa pri khronicheskom virusnom porazhenii pecheni. Mezhdun. zhur-nal prikladnykh i fundamental'nykh issledovaniy. 2013;3:464-6. Russian.

7. Isaeva NM, Savin EI, Subbotina TI, Yashin AA. bioinfor-matsionnyy analiz tyazhesti morfologicheskikh izmeneniy pri khronicheskom porazhenii pecheni. Mezhdun. zhurnal priklad-nykh i fundamental'nykh issledovaniy. 2013;2:249-50. Russian.

8. Isaeva NM, Subbotina TI, Khadartsev AA, Yashin AA. Kod Fibonachchi i «zolotoe sechenie» v patofi-ziologii i ekspe-rimental'noy magnitobiologii. Vypusk 4. Moscow-Tula-Tver': OOO «Izdatel'stvo «Triada»; 2007. Russian.

9. Koplik EV, Gorbunova AV, Salieva RM. Test «otkrytoe pole» kak prognosticheskiy kriteriy ustoychivo-sti k emotsion-al'nomu stressu u krys linii Vistar. Zh. VND. 1995;4:775-81. Russian.

10. Makarychev VA, Kashtanov SI, Starinskiy YuG, Ul'ya-ninskiy LS. Izmeneniya porogov vozniknoveniya zheludochko-vykh aritmiy pri razdrazhenii otritsatel'nykh emotsiogennykh tsentrov gipotalamusa. Kardiologiya. 1979;7:98-101. Russian.

11. Mezentseva LV. Analiz ustoychivosti serdechnogo rit-ma k stressornym nagruzkam metodom matematiche-skogo modelirovaniya. Ross. Fiziol. Zh. im. I.M. Sechenova. 2010;96(2):106-14. Russian.

12. Mezentseva LV, Pertsov SS. Matematicheskoe mod-elirovanie v biomeditsine [Mathematical modeling in biomedicine]. Vestnik novykh meditsinskikh tekhnologiy. 2013;20(1):11-

4. Russian.

13. Es'kov VM, Khadartsev АА, Gudkov VM, Gudkova SA, Sologub LA. Filosofsko-biofizicheskaya interpretatsiya zhizni v ramkakh tret'ey paradigmy [Philosophical and biophysical interpretation of life within the framework of third paradigm]. Vestnik novykh meditsinskikh tekhnologiy. 2012;19(1):38-41. Russian.

14. Es'kov VM, Filatova OE, Fudin NA, Khadar-tsev AA. Novye metody izucheniya intervalov ustoychivosti biologi-cheskikh dinamicheskikh sistem v ramkakh kompartmentno-klasternogo podkhoda [New methods of investigation of biological dynamic systems' stability according to compartmental-cluster approach]. Vestnik novykh meditsinskikh tekhnologiy. 2004;11(3):5-6. Russian.

15. Riznichenko GYu. Lektsii po matematicheskim mo-

delyam v biologii. Moscow: Izd. RKhD; 2002. Russian.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

16. Subbotina TI, Savin EI, Isaeva NM. Raspro-stranenie zakonov «zolotogo secheniya» i «zolotogo vurfa» na patogene-ticheskie vzaimosvyazi mezhdu sistemoy gomeo-staza i prot-sessami svobodno-radikal'nogo okisleniya pri vvedenii v orga-nizm tsitostatikov. Mezhdun. zhurnal prikladnykh i fundamen-tal'nykh issledovaniy. 2013;3:155-6. Russian.

17. Sudakov KV. Fiziologiya funktsional'nykh sis-tem. Irkutsk: Izd-vo Irk. Un-ta; 1997. Russian.

18. Keener J, Sneyd J. Mathematical physiology. Springer;

2001.

19. Malkin RA, Sousa JJ, Ideker RE. The ventricular defibrillation and upper limit of vulnerability dose-response curves. J. Cardiovasc. Electrophysiol. 1997;8(8):895-903.

20. Mezentseva LV. Analysis of the Nonlinear Heart Rate Dynamics by Two-Contour Mathematical Model. Bio-physics. 2011;56(3):510-5.

i Надоели баннеры? Вы всегда можете отключить рекламу.