Научная статья на тему 'USING THE LINEAR MODELS IN COMPLEX SYSTEMS'

USING THE LINEAR MODELS IN COMPLEX SYSTEMS Текст научной статьи по специальности «Математика»

CC BY
1
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
The Scientific Heritage
Область наук
Ключевые слова
modeling / the standard linear units / frequency characteristics / complex systems

Аннотация научной статьи по математике, автор научной работы — Ognev S.P.

This article is a summary of the standard linear units of the classical theory of automatic control in the form of typical models of dynamic systems, which simplifies the modeling of complex systems in the early stages of their research and the mathematical description.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «USING THE LINEAR MODELS IN COMPLEX SYSTEMS»

pollution from ships", The International Convention MARPOL 73/78 of the IMO, European directives on air protection from vehicle engines EURO - 3,4,5. Moreover, it helps to increase ecological and economic efficiency of the vessel, to obtain the target products on board.

Serdyuk A.D. - the cadet of the Navigation specialty of Kherson State Maritime Academy, Ukraine, is involved in writing this article.

References

1. Zhmur V. N., Leonov V. Ye. The squat-effect and environmental problems at reduction ship's speed in shallow water and harmful emissions. Вестник Государственного Университета Морского и Речного Флота имени адмирала С. О. Макарова СПб. - 2014,. выпуск 4 (26)- c. 176-184.

2. Леонов В.Е. «Санитарная очистка отработавших газов судовых энергетических установок» / В.Е. Леонов // Науковий Вкник ХДМ1. Херсон: ВЦ ХДМ1- 2014 - С. 119-123.

3. Леонов В.Е. Пути повышения энергетической эффективности и экологической безопасности морских грузоперевозок./ В.Е Леонов., М.В Че-пок, Р.А Дробитко. // XI Международная конференция: «Стратегия качества в промышленности и образовании». Болгария, Варна: Тесhniса1 University.-- 2015, Vol.2 , p. 87-93.

4. Leonov V.Ye. Non-Hydrocarbon Energy—a Path Sustainable Development оf Society. East

European Scientific Journal : Warszawa, Polska......

2015, Vol. 1, № 2(2), p. 107—112.

5. Леонов В. £. «Споаб захисту повггряного басейну ввд арчистих сполук» Патент Украши на корисну модель №100295 ввд 27.07.2015, опублжо-вано 27.07.2015. Бюл. №14

6. Леонов В.Е. Ресурсосберегающая технология снижения эмиссии компонентов «парниковых» газов на морском транспорте. /В.Е. Леонов. //Сб. статей VI Межд. НП конф. «Актуальные проблемы науки XXI века». М.: USR --COGNITIO. -

2016, Часть 3. с. 57-63

7. MARPOL Consolidated edition 2011: Articles, Protocols, Annexes and Unified Interpretations of the International Convention for the Prevention of Pollution from Ships, 1973 as modified by the 1978 and 1997 Protocols. - London: CPI Group 2011. - 447 p. -ISBN 978-92-801-1532-1.

8. «Обеспечение экологической безопасности судоходства»: монография / В. Е. Леонов, О. В. Соляков, П. Г. Химич, В. Ф. Ходаковский / под ред. профессора В. Е. Леонова. - Херсон: ХГМА, 2014. - 188с., ил. - 21: рус. яз.

9. «Современные информационные технологии обеспечения безопасности судоходства и их комплексное использование» монография / В. Е. Леонов, В.И. Дмитриев, О.М. Безбах, А.А.Гуров, В.Б.Сыс, В.Ф. Ходаковский / под ред. профессора В. Е. Леонова. - Херсон: ХГМА, 2014. - 324с.

Ognev S.P.

Siberian State Industrial University, Russia Ph.D., Associate Professor, Head of the Department of IT and Programming

USING THE LINEAR MODELS IN COMPLEX SYSTEMS

ABSTRACT

This article is a summary of the standard linear units of the classical theory of automatic control in the form of typical models of dynamic systems, which simplifies the modeling of complex systems in the early stages of their research and the mathematical description.

Keywords: modeling, the standard linear units, frequency characteristics, complex systems.

The vast majority of dynamical systems including control systems are characterized by non-stationary and non-linear processes. Methods of mathematical modeling of such systems are quite complex, it is also aggravated by the presence of many controllable and uncontrollable external factors. Using this approach important in building an adequate model. However, in the early stages of the development of control systems is necessary to form a general idea of the subject area, of the processes in the control object.

Using model-based approach, it becomes reasonable detail of complex systems by function and sub-elements, up to the standard linear units, known in classical control theory. The modeling of the typical processes can only be piecewise into linear intervals for a short duration of time (e.g. equal to the time cycle of the process) where the object has linear portions of the static characteristic.

In classical control theory there are six standard linear circuits to describe linear systems. This paper are generics the standard models based on the relevant

standard linear circuits with display of dynamic characteristics inherent physical processes with the ability to model of processes and systems in various spheres of human activity [1].

1) The transfer model (proportional circuit) describes the ratio of output and input information and material flows without time-consuming processes of transformation:

y(t) = kn • v(t)

where v(t) - input information and material flow;

y(t) - output flow; k - coefficient of the transfer characterizes the change in the output flow to the change of 7 Ay

the input flow, k = —.

n Av

Examples of the typical processes are the ratio of volume of the finished product to the raw materials, the production productivity.

2) The convert model (relaxation circuit) describes the process of information and material flows converting with time-consuming processes of transformation:

dy(t )

^ 1/| / | = ky^

+ y(t) = К ■ v(t)

np dt

where Tnp - the constant time of the process characterizes the time of conversion of input flow (speed of

t

rp _ np

the conversion process) and determined T np = .

Based on the frequency characteristics of the relaxation circuit, the model can describe the processes, the effectiveness of which decreases with increasing production load. With production load (decreasing exposure interval) operating (working) cycle may be increased up to a quarter of the nominal mode.

The physical examples include most processes of transformation of materials, information and energy.

3) Accumulative model (integrating circuit) describes the processes associated with the accumulation

(at kn > 0 ) or the consumption (at kn < 0 ) information and material flows:

T dyO)

nP ' dt

■ +

where the constant accumulation time Th = characterizes the time to reach the level

kn of the output stream.

By the frequency characteristics model is similar to the convert model but at nominal operation mode (interval exposure ra = 0) the effectiveness of the process is unlimited (for example a bank deposit grows at a constant periodic investment).

The physical examples are accumulation (consumption) any material in a container, information in the database, money and other resources.

4) The instant effect model (differentiator) describes the processes associated with abrupt changes in the output information and material flow in a short period of time:

T

nP dt

dy(tt + At) = Кф ■dy(tt

dt

where the coefficient of effect characterizes

an extreme amount of change of the output flow during one period of control.

The dynamic and frequency characteristics of the model are opposite to the cumulative model. With increasing intensity of the load efficiency increases to a

limited value and the operating cycle is reduced

to a quarter of the nominal. However the reaction of the system is completely absent under the constant input impact.

The physical examples are systems with abrupt changes in conditions or parameters such as development of the conflict.

5) The transport model (delay circuit) describes the processes associated with the transfer, handling, transport information and material flows at a distance:

y(t) = v(t — Tmp), where Tmp - the time of

transportation.

Efficiency of the process does not depend on the intensity of the load but the operating cycle increases linearly until the disappearance of distinctiveness of input. The rule is formed about transition from discrete to continuous processes - the interval is determined by the increase legibility of the operating cycle of the system into two nominal cycles.

The physical examples are thread-transport lines, cargo, information transfer over the network.

6) Seasonal model (oscillatory circuit) describes the processes characterized by vibrational (seasonal) changes in the state or parameters:

T2 d2y(t) dy(t)

np dt ç np dt

+y(t)=К ■v(t) •

y{t) = kn .¡v(t)dt = тн-Jv(t)dt

where the time constant transformation in this case is further characterized by periods of seasonal - seasonal coefficient, characterizes the degree of oscillation damping system from season to season with constant input and impact angle is determined by the magnitude of the reaction of decline from maximum to set the value.

Frequency properties similar to those of the convert model. However, the model is characterized by a resonance frequency (intensity input influences) at which the maximum efficiency of the system. With increasing load duty cycle can be increased by half the nominal voltage.

Physical processes are, for example, seasonal production and sales, the development of conflict situations.

Structuring domain to sub-standard and the elements and the use of a generalized representation of typical units allows you to apply a simple linear mathematical methods for the formation of a mathematical model, analysis and research of complex dynamic systems [2].

References

1. Огнев С.П. Применение линейных типовых моделей в сложных системах. - Современные проблемы информатизации в анализе и синтезе технологических и программно-телекоммуникационных систем: Сб. трудов. Вып. 14 / Под ред. О.Я. Кравца. - Воронеж: Научная книга, 2009. С. 327329.

2. Огнев С.П., Огнева А.Г. Количественные показатели сложности объекта управления. - Научные исследования и их практическое применение. Современное состояние и пути развития '2012. Сборник научных трудов SWorld. Том 3. Технические науки - Одесса: Черноморье, 2012, С. 42-44.

i Надоели баннеры? Вы всегда можете отключить рекламу.