Using of waste Kungrad Soda Plant for solving environmental protection
не только простое электрофильное замещение водорода ароматических колец сульфидными группами, а целый комплекс реакций полимеризации вторичных продуктов сульфидирования бензола, сопровождающийся внутримолекулярной циклизацией фенилен-сульфидных звеньев. Этим и определяется структура и свойства образующихся ПАС с преимущественным содержанием о-фениленовых фрагментов в цепи.
Как следует из полимеризации тиофенола под действием A1C13, свойства продуктов превращения серосодержащих аренов не зависят от присутствия серы в системе, т. е. преимущественно рост полимерных цепей происходит не в результате сульфидирования ароматического сульфида, а в результате реакций их дальнейшего высокотемпературного превращения.
Выводы
1. Исследована реакция электрофильного полисульфидирования бензола элементной серой в присутствии AlCl3 и показано, что основными продуктами реакции являются ПАС циклоцепного строения, содержащие 1,3-1,7 атомов серы на одно бензольное кольцо (35-42% серы), аналогичные по структуре и свойствам полимеру, получаемому из индивидуального ароматического сульфида.
2. Показано, что структуру и свойства образующихся ПАС можно регулировать за счет изменения продолжительности стадий и температуры поликонденсации. Найдены условия получения как растворимых, термопластичных ПАС, так и сшитых полимеров трехмерного строения.
Список литературы:
1. Неделькин В. И., Зачернюк Б. А., Андрианова О. Б. Органические полимеры на основе элементной серы и ее простейших соединений//Российский химический журнал. 2005. Т. XLIX. № 6. С. 3-6.
2. Zachernyuk B. A., Savin E. D., Nedel’Kin V. I. Recent advances in the chemistry of sulfur-containing poly (ar-y1enes)//Po1ymer Science. Series C, 2002, vol. 44, no. 2, pp. 168-184.
3. Корнеева Л. А., Неделькин В. И., Зачернюк Б. А. Высокотемпературные превращения ароматических сульфидов в присутствии кислот Льюиса//Бутлеровские сообщения. 2015. Т. 42. № 4. С. 96-99.
4. Fridel M. C., Crafts J. M.//Ann. Chim. Phys. 1888. Vol.14. No.6. Р.433-437. (Цитир. по Dougerty G., Hammond P. D. The reaction of sulfur with benzene in the presence of aluminium chloride//J. Amer. Chem.Soc. 1935. Vol.57. No.1. Р.117-П8).
Kuldasheva Shakhnoza Abdulazizovna, Ph. D., senior scientist of the laboratory "Colloid Chemistry”, doctoral institute of General and Inorganic Chemistry Institute of the Academy of Sciences of Uzbekistan
E-mail: ecology.shaxnoz@mail.ru Mutalov Shuxrat Axmadjonovich, Ph. D., Senior Research Fellow applicant Tashkent Institute of Chemical Technology, Vice-Rector for Academic institute
E-mail: shuh-gold@mail.ru Agzamkhodjaev Anvarxodja Ataxodjaevich, doctor of chemistry, professor, international academy of ecology and life protection sciences (IAELPS), Head of Laboratory of «Colloid chemistry»Institute of General and Inorganic Chemistry Institute of the Academy of Sciences of Uzbekistan
E-mail: anvar381@rambler.ru Rustamova Sevara Rustamovna, Master of the department «Environmental protection» of the Tashkent State Technical University
Using of waste Kungrad Soda Plant for solving environmental protection
Abstract: In the work for fixing salted sand the dried bottom of the Aral Sea and treating industrial process wastewater used waste Kungrad Soda Plant — distilled liquid contained in the composition of 11-12% of calcium chloride.
55
Section 9. Chemistry
At using this waste as a part of the fixing agent in the process of fixing the salted sand established creation surface crust that has a sufficiently high magnitude strength of the order 2,4-3,02MPa and content of water-stable aggregates in the structure equal to 6.28% vs. 69,91-77,2% of the original sand, in addition using of this waste show that at the purification of industrial waste water of the textile industry water is purified from dyes to 94-98%.
Keywords: saline sands, waste water, waste, reagent, chloride.
Relevance
The environmental situation in the Republic of Uzbekistan strongly put a question about carried out works intended on fastening salted sands of the dried bottom of the Aral Sea with cheap, non-toxic and available reagents-fixers as well as increasing the degree of sewage treatment of various production of republic by import-substituting local adsorbents and reagents [1; 2]. Earlier, we in [3; 4], proposed particular types of reagents in order to create artificial structures tested by cheap industrial wasts and polymers. Fixing sand of coast of the Aral Sea region Kazakhdarya using complex addition of reagents and industrial wasts will contribute to the establishment of a small thicknesses of sand durable waterproof structure.
The most difficult problem in terms of technology and also includes cleaning colored textile industry wastewater, due to the huge volume of this water and a wide, ever-changing range of used dyes. It should be noted that so far no highly effective treatment methods colored wastewater of textile industries.
It is known that the chemical industry, in particular, Kungrad Soda Plant, has a number of wastes used as secondary raw materials in the different branches of national economy. Such wastes have been used by us as a component of the reagent process purification dyed wastewater of textile industry [2].
Aim of this work — the development of methods of fixing saline sands of the Aral Sea and purification of waste water Fergana colored cotton mill — calcium silicate (GSK) received draining dilute solutions of sodium silicate and of calcium chloride.
Objects and methods of research
As objects of study used samples of salted sand coast Kazakhdarya drained bottom of the Aral Sea. Samples were taken at a depth of 0-5 sm. As an additive-fixer was used solution HSC which is not used as a finished product, and at the time of formation of the dilute solutions of sodium silicate and of calcium chloride, as distinguishing the product as haz a colloidal dispersion degree at stages sol-gel of transition. Calcium chloride is obtained Kungrad soda plant, where 10-11% solution of this compound is part of the production waste — distilled liquid that is a waste of soda ash. Distilled liquid composition:
concentration, precipitate, hydrous of calcium, calcium
CaCl2-11-12%, H2O — 83-84%, NaCl — 4,0-4,5%, CaCO3-0,50-0,55%, MgO — 0,08-0,09%. fixing was carried out surface treatment solutions of sand by spraying HSC the desired concentration. Fixing the solutions HSC prepared by draining 0.2, 0.5, 0.8 and 1.1% solutions of sodium silicate and of calcium chloride at the rate of receipt of predetermined amounts of the active product and HSC fixer composition with sawdust.
HSC having a high value of specific surface area an-drespectively the adsorption capacitance for waste water treatment is not used as a finished product, and at the time the diluted solution of sodium silicate and calcium chloride. Thus as well as the first case, distinguishing the product is a colloidal dispersion degree at the stage transition sol-gel. The essence of the method of cleaning colored water is formation of silicate sorption calcium systems at the transition “sol-gel”. Purification of dyed wastewater is performed as follows: to a colored wastewater containing dyes are administered dilute solutions of calcium chloride, sodium silicate and aluminum sulphate and mixed. Occurs flocculation and coagulation slurry. Maximum lighting solution comes practically instantly, so that after 2-5 minutes of slurry possible to separate.
Discussion and research results
Fixing salted sand Kazakhdarya performed by treating their surface with an aqueous solution GSK after making sand crushed and sift through a sieve 0.5mm additives — sawdust in an amount of 0.26 kg/m 2 with vigorous stirring of the mixture. For this purpose, solutions of GSK with concentrations ranging 0.2 to 1.1%.
The research results of the mineralogical and chemical composition of salted sand Kazakhdarya showed that samples of sands Kazakhdarya are more mineralized. The predominant of the soluble salts are chlorides and sodium sulfate. SiO2 content in the sand is 89.24% and the CaO, MgO, K2O and Na2O is 1.11; 0.95; 1.85 and 1.35%, respectively. By particle size distribution in the sample contains predominantly sand particles 0.1-0.05 mm. The results of research of influence of the composition of additives-fixers in the formation ofwater-resistant aggregates (WRA), and the mechanical strength of the surface crust are shown in Table. 1. As seen from Table. 1, the content of water-stable aggregates (WRA) in the initial
56
Using of waste Kungrad Soda Plant for solving environmental protection
and the sand is low — 6.28%. Sprinkling sand surface with an aqueous solution at a concentration of 0.2 HSC and 0.5%, and mixtures thereof with additives — sawdust slightly contributes to the strength of the structure and number of WRA.. In this case the strength created structure and fixed sand with WPA 0.1% solution of HSC is 0,72-0,80 MPa and 28,25-29,36% and fixed sand with 0.5% solution of polymer — 1, 28-1,39 MPa and 44,57-48,41% respectively. When fixing sand with an aqueous solution at a concentration of 0.8 HSC and 1.1%, and their compositions with sawdust strength emerged structure succeeded to increase the concentration of2,04-2,42 MPa for HSC 0.8% to 2,92-3.02 MPa for HSC concentration of 1.1% as well as their number 64,24-69,91% WRA and 71,19-77,72%, respectively.
HSC communicate with sand particles and attending in it salts (anions chlorine, sulfate, etc..) forming a gelled products which as of neoplasms in interfacial are allocated spaces in the contact area of the particles and being exposed adhesive on the surface play a role as an adhesive agent, impart strength and waterproof the formed structure. Last additions dust particles is strengthened, which play the role as the “reinforcement”.
It should also be noted that along with the increase in
the total amount of the WRA., and the redistribution takes place by size. If sand fixed 0.2% solution of GSK characteristic preferential formation of aggregates of
0.25-0.5 mm, the sand fixed 0.8 and 1.1% solution of HSC and its compositions with sawdust on the contrary dominated by large aggregates of size> 2.0 mm (see Table 1). This suggests that the fixing salinized sands complex additive surface layers of sand moving from free-dispersed state in the connected-dispersed by forming the structure of the crust, consisting of water-stable macroaggregates particles.
Thus, the method of fixing sands comprises treating the surface of sand with a solution of 0.8% HSC while previously introduced into the sand of 0.26 kg/m2, shredded sawdust (sieved through a 0.5 mm sieve) and mixed.
It was of interest to choose the adsorbent reagent with a much higher specific surface area and capacity, respectively vysokoyadsorbtsionnoy. We adsorbent such as — of HSC reagent proposed, but not in ready form, and at the time of formation of the dilute solutions of sodium silicate and calcium chloride, as the isolated product is has a degree of colloidal dispersion at stages sol — gel transition.
Table 1. — Influence of solution concentration and composition HSC with sawdust (to) the number of water-stable aggregates (WRA) and the value of the mechanical strength of the surface crust in salted sand of coast Aral Sea
№ п/п Concentration HSC solution Number of WPA (%) fractions, mm The amount of the WRA.,% Strength of crust MPa
> 2,0 2,0-1,0 1,0-0,5 0,5-0,25
1 not processed - - 1,14 5,14 6,28 -
2 HSC 0,2% 0,84 0,86 3,15 23,40 28,25 0,72
3 HSC 0,5% 13,82 8,03 6,90 15,82 44,57 1,28
4 HSC 0,8% 35,00 10,02 10,04 9,18 64,24 2,04
5 HSC 1,1% 42,15 10,94 10,98 7,12 71,19 2,92
6 HSC 0,2% + SD 0,96 1,03 3,27 24,10 29,36 0,80
7 HSC 0,5% + SD 15,56 8,72 7,21 16,92 48,41 1,39
8 HSC 0,8% + SD 38,52 11,24 10,38 10,27 69,91 2,42
9 HSC 1,1% + SD 45,80 14,26 10,58 7,08 77,72 3,02
Comparative data on the purification of sewage Fergana dyes cotton mill using a reagent — calcium silicate and aluminum sulfate are given in Table 2. From the table it can see that the efficiency of color reduction dyed wastewater is much higher than the use of solid mineral adsorbents [2], so that the use of calcium silicate in an amount of 200-600 mg/l in combination with aluminum sulfate (200-400 mg/l) purification degree reaches 94-98%. From the data of
Table 2 also shows that the optimal ratios of reagent components parts — Calcium silicate (3 parts of a 0.05% solution of calcium chloride and 2 parts of a 0.05% solution of liquid glass) color reduction efficiency dyed wastewater much higher than with the solid mineral adsorbents [2].
The proposed method of reagent on the effectiveness color reduction of water exceeds the action of aluminum sulfate.
57
Section 9. Chemistry
From the analysis of the test results of cleaning dyed use of a complex solution consisting of-order Chloris
wastewater for further use as compared with bulky silicate, sodium aluminum sulfate (CaCl2 + Na2SiO3 +
adsorption method is recommended more compact Al2 (SO4)3).
and effective way — the reagent which is based on the
Table 2. — Cleaning dyed wastewater Fergana cotton factory using a reagent hydrosilicate of calcium and aluminum sulfate
№ Dose hydrosilicate of calcium, mg/l dose sulfate aluminum mg/l reduction efficiency of the color intensity, %
Water yellow, cloudy, slightly colored, pH = 7.0
1. 20 300 400 500 65 68 70
2. 100 300 400 500 70 73 75
3. 150 300 400 500 73 75 78
4. 200 300 400 500 80 85 87
5. 250 300 400 500 87 90 94
6. 300 300 400 500 92 94 97
Dark green water, pH = 10.0
1. 20 300 400 500 70 73 75
2. 100 300 400 500 74 78 80
3. 150 300 400 500 80 84 88
4. 200 300 400 500 88 92 94
5. 250 300 400 500 92 93 95
6. 300 300 400 500 94 96 98
Black water, pH = 8. 0
1. 20 300 400 500 76 78 80
2. 100 300 400 500 82 84 88
3. 150 300 400 500 86 88 92
4. 200 300 400 500 90 94 95
5. 250 300 400 500 95 97 97
6. 300 300 400 500 96 97 98
Conclusion
It is shown that the basis of the proposed method of fixing salted sand complex additions is the process of translation their surface layers (up to 5 cm) from the freedispersed state to the connected-dispersed by forming a structure (crust), consisting ofa water-macroaggregates — particles> 1.0 mm, having mechanical strength (to 3.0 MPa). Optimal conditions for the composition of additives, hardeners exhibit the maximum effects of action, as well as the procedure for their introduction into the sand. It is found that a composition consisting of 0,26kg/m 2 sawdust and 0,008kg/m 2 GSK (calculated on a dry product that provided using a 0.8% solution of GSK) is considered optimum and promotes crust having a sufficiently high strength about 2.4 MPa, and the amount ofwater-resistant aggregates (> 0.25 mm) in the structure with equal 69.91% vs. 6.28% in the original.
Using HSC obtained based on a dilute solution (0.05%) waste Kungrad Soda Plant — 10% solution of calcium chloride in combination with a dilute (0.05%) with a solution of17% solution of sodium silicate allows to clean wastewater plants the textile industry of dyes, ie to besiege flaked various colorants present in the the composition ofwastewater. Thus, for example, wastewater treatment Fergana cotton mill found that the use of the reagent — HSC under optimal relationships of its constituent component parts (3 parts of a 0.05% solution of calcium chloride and 2 parts of a 0.05% solution of sodium silicate) in the number 200-600 mg/l in combination with aluminum sulfate (200-400 mg/liter) degree of industrial wastewater reaches 94-98%, and thus the proposed method reagent wastewater treatment helps to improve environment ecology.
References:
1. Kuldasheva Sh. А., Rustamov S. R. Features of the ecological situation on the dried Aral Sea: stabilization of shifting sands//International Conference on social sciences and humanities. Czech. 2015. Р. 60-62.
58
Production of arsenic trisulfide in organic medium
2. Mutalov Sh, A., Agzamhodjaev A. А. Method for purifying colored wastewater of textile manufacturing from dye//Journal of Chemistry and Chemical Technology. Tashkent. 2014. № 3. Р. 72-75.
3. Kuldasheva Sh. Chemical fixation salinized soils by complex additives as method of solving some of the environmental problems of the Aral Sea//Thesis for the degree of PhD. chemical. Sciences. Tashkent. 2001. Р.110.
4. Agzamhodjaev A. A., Shomuradov H. F. Chemical fixation and phytomelioration salted sand ofAral Sea//Eco-logical systems and devices. Moscow. 2008. № 9. Р. 40-45.
Rzaev Bayram Zulfukar oglu, Nakhchivan Department of the Institute of Natural Resources of ANAS, Doctor of chemical sciences Suleymanova Turaj Ibrahim gyzy, Nakhchivan Department of the Institute of Natural Resources of ANAS, doctoral student,
E-mail: teimxkl@gmail.com
Production of arsenic trisulfide in organic medium
Abstract: A method of arsenic trisulfide production by interaction ofmeta-arsenious sodium and sodium sulfide in ethylene glycol medium is developed. Reaction does not occur in alkaline medium. And at pH 1-3 about 91% of As2S3 is precipitated. The thermogravimetric analysis of arsenic trisulfide obtained in organic medium is carried out on the device of NETZSCH STA 449F3. The morphology of nano- and micro-particles of arsenic trisulfide is studied on the device of electron microscope TEM-3000 Hitachi. Thin films are prepared from these samples and optical absorption spectrum of As2S3 is taken.
Keywords: arsenic trisulfide, ethylene glycol, nano- and micro-particles, thermographic analysis, thin film.
Рзаев Байрам Зулфьугар оглы, Нахчыванское Отделение НАНА, Институт Природных Ресурсов, Доктор химических наук Сулейманова Турадж Ибрагим кызы, Нахчыванское Отделение НАНА, Институт Природных Ресурсов, докторант,
E-mail: teimxkl@gmail.com
Получение трисульфида мышьяка в органической среде
Аннотация: Разработан метод получения трисульфида мышьяка взаимодействием метамышьяковистого натрия с сульфидом натрия в этиленгликолевой среде. Реакция при щелочной среде не происходит. А при рН 1-3 As2S3 выделяется около 91%. Проведен термогравиметрический анализ полученного в органической среде трисульфида мышьяка на приборе NETZSCH STA 449F3. Морфология нано- и микрочастицы трисульфида мышьяка изучена на приборе электронного микроскопа TEM-3000 Hitachi. Из полученных проб приготовлены тонкие пленки и снят спектр оптического поглощения As2S3.
Ключевые слова: трисульфид мышьяка, этиленгликоль, нано- и микрочастицы, термографический анализ, тонкая пленка.
В данной работе приводятся результаты получения трисульфида мышьяка в органической среде. Реагенты берутся в виде солей. 130 мг метаарсенит натрия (NaAsO2) и 450 мг Na2S-9H2O помешаются в стеклянную пробирку. В качестве растворителя используется этиленгликоль (CH2OH-CH2OH). Смесь
размешивается и нагревается. Качественная проверка показала, что в щелочной среде реакция не происходит. Поэтому смесь подкисляется соляной кислотой. Для выяснения влияния температуры на течение реакции проведены серии опытов (таблица 1).
59