Научная статья на тему 'Urine transcriptomic profile in terms of malignant ovarian tumors'

Urine transcriptomic profile in terms of malignant ovarian tumors Текст научной статьи по специальности «Клиническая медицина»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
microRNAs / polymerase chain reaction / machine learning / bioinformatics / ovarian serous adenocarcinoma / urine / biomarkers / микроРНК / полимеразная цепная реакция / машинное обучение / биоинформатика / серозная аденокарцинома яичника / моча / биомаркеры

Аннотация научной статьи по клинической медицине, автор научной работы — Denis S. Kutilin

Purpose of the study. Bioinformatic search for transcriptomic markers (based on metabolomic data) and their validation in the urine of serous ovarian adenocarcinoma patients. Materials and methods. The study included 70 patients with serous ovarian adenocarcinoma and 30 conditionally healthy individuals. The search for metabolite regulator genes and gene regulator microRNAs was performed using the Random forest machine learning method. Ribonucleic acid (RNA) was isolated using the RNeasy Plus Universal Kits. The level of microRNA transcripts in urine was determined by real-time PCR. Differences were assessed using the Mann-Whitney test with Bonferroni correction. Results. Using the Random forest method, metabolite-regulator gene (47 genes) and metabolite-regulator microRNA (613 unique microRNA) relationships were established. The identified microRNAs were validated by real-time PCR. Changes in the levels of microRNA transcripts were detected: miR‑382‑5p, miR‑593‑3p, miR‑29a‑5p, miR‑2110, miR‑30c‑5p, miR‑181a‑5p, let‑7b‑5p, miR‑27a‑3p, miR‑370‑3p, miR‑6529‑5p, miR‑653‑5p, miR‑4742‑5p, miR‑2467‑3p, miR‑1909‑5p, miR‑6743‑5p, miR‑875‑3p, miR‑19a‑3p, miR‑208a‑5p, miR‑330‑5p, miR‑1207‑5p, miR‑4668‑3p, miR‑3193, miR‑23a‑3p, miR‑12132, miR‑765, miR‑181b‑5p, miR‑4529‑3p, miR‑33b‑5p, miR‑17‑5p, miR‑6866‑3p, miR‑4753‑5p, miR‑103a‑3p, miR‑423‑5p, miR‑491‑5p, miR‑196b‑5p, miR‑6843‑3p, miR‑423‑5p and miR‑3184‑5p in the urine of patients compared to conditionally healthy individuals. Conclusion. Thus, urine transcriptome profiling allowed both to identify potential disease markers and to better understand the molecular mechanisms of changes underlying ovarian cancer development.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Транскриптомный профиль мочи при злокачественных новообразованиях яичника

Цель исследования. Биоинформатический поиск транскриптомных маркеров (на основании метаболомных данных) и их валидация в моче больных серозной аденокарциномой яичников. Материалы и методы. В исследование было включено 70 пациенток с диагнозом серозная аденокарцинома яичников и 30 условно здоровых индивидуумов. Поиск генов-регуляторов метаболитов и микроРНК регуляторов генов осуществляли с использованием метода машинного обучения Random forest. Выделение рибонуклеиновой кислоты (РНК) производили с помощью набора RNeasy Plus Universal Kits. Уровень транскриптов микроРНК в моче определяли методом полимеразной цепной реакции (ПЦР) в режиме реального времени. Оценку различий проводили с использованием критерия Манна-Уитни с поправкой Бонферрони. Результаты. С использованием метода Random forest были установлены взаимосвязи метаболит-ген регулятор (47 генов) и метаболит-микроРНК регулятор (613 уникальных микроРНК). Выявленные микроРНК были валидированы методом ПЦР в режиме реального времени. Обнаружено изменения уровня транскриптов микроРНК miR‑382‑5p, miR‑593‑3p, miR‑29a‑5p, miR‑2110, miR‑30c‑5p, miR‑181a‑5p, let‑7b‑5p, miR‑27a‑3p, miR‑370‑3p, miR‑6529‑5p, miR‑653‑5p, miR‑4742‑5p, miR‑2467‑3p, miR‑1909‑5p, miR‑6743‑5p, miR‑875‑3p, miR‑19a‑3p, miR‑208a‑5p, miR‑330‑5p, miR‑1207‑5p, miR‑4668‑3p, miR‑3193, miR‑23a‑3p, miR‑12132, miR‑765, miR‑181b‑5p, miR‑4529‑3p, miR‑33b‑5p, miR‑17‑5p, miR‑6866‑3p, miR‑4753‑5p, miR‑103a‑3p, miR‑423‑5p, miR‑491‑5p, miR‑196b‑5p, miR‑6843‑3p, miR‑423‑5p и miR‑3184‑5p в моче пациенток относительно условно-здоровых индивидуумов. Заключение. Таким образом, транскриптомное профилирование мочи позволило как выявить потенциальные маркеры заболевания, так и лучше понять молекулярные механизмы изменений, лежащих в основе развития рака яичников.

Текст научной работы на тему «Urine transcriptomic profile in terms of malignant ovarian tumors»

����-����������

�������������� ������

South Russian

Journal of Cancer..

Vol. 5

No. 3, 2024

����-����������

�������������� ������

South Russian

Journal of Cancer..

Vol. 5

No. 3, 2024

South Russian Journal of Cancer. 2024. Vol. 5, No. 3. P. 76-90

https://doi.org/10.37748/2686-9039-2024-5-3-7

https://elibrary.ru/zovxqo

ORIGINAL ARTICLE

Urine transcriptomic profile in terms of malignant ovarian tumors

D. S. Kutilin1 , F. E. Filippov2, N. V. Porkhanova2, A. Yu. Maksimov1

1 National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

2 Clinical Oncology Dispensary No. 1, Krasnodar, Russian Federation

k.denees@yandex.ru

ABSTRACT

Purpose of the study. Bioinformatic search for transcriptomic markers (based on metabolomic data) and their validation in

the urine of serous ovarian adenocarcinoma patients.

Materials and methods. The study included 70 patients with serous ovarian adenocarcinoma and 30 conditionally healthy

individuals. The search for metabolite regulator genes and gene regulator microRNAs was performed using the Random

forest machine learning method. Ribonucleic acid (RNA) was isolated using the RNeasy Plus Universal Kits. The level of

microRNA transcripts in urine was determined by real-time PCR. Differences were assessed using the Mann-Whitney test

with Bonferroni correction.

Results. Using the Random forest

method, metabolite-regulator gene (47

genes)

and metabolite-regulator microRNA (613

unique

microRNA) relationships were established. The identified microRNAs were validated by real-time PCR. Changes in the levels

of microRNA transcripts were detected: miR-382-5p, miR-593-3p, miR-29a-5p, miR-2110, miR-30c-5p, miR-181a-5p, let-7b-5p,

miR-27a-3p, miR-370-3p, miR-6529-5p, miR-653-5p, miR-4742-5p, miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-875-3p,

miR-19a-3p, miR-208a-5p, miR-330-5p, miR-1207-5p, miR-4668-3p, miR-3193, miR-23a-3p, miR-12132, miR-765, miR-181b-5p,

miR-4529-3p, miR-33b-5p, miR-17-5p, miR-6866-3p, miR-4753-5p, miR-103a-3p, miR-423-5p, miR-491-5p, miR-196b-5p,

miR-6843-3p, miR-423-5p and miR-3184-5p in the urine of patients compared to conditionally healthy individuals.

Conclusion. Thus, urine transcriptome profiling allowed both to identify potential disease markers and to better understand

the molecular mechanisms of changes underlying ovarian cancer development.

Keywords: microRNAs, polymerase chain reaction, machine learning, bioinformatics, ovarian serous adenocarcinoma, urine,

biomarkers

For citation: Kutilin D. S., Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors. South Russian

Journal of Cancer. 2024; 5(3): 76-90. https://doi.org/10.37748/2686-9039-2024-5-3-7, https://elibrary.ru/zovxqo

For correspondence: Denis S. Kutilin � Cand. Sci. (Biol.), Leading Researcher, Laboratory of Molecular Oncology, National Medical Research Centre for

Oncology, Rostov-on-Don, Russian Federation

Address: 63 14 line str., Rostov-on-Don 344037, Russian Federation

E-mail: k.denees@yandex.ru

ORCID: https://orcid.org/0000-0002-8942-3733

SPIN: 8382-4460, AuthorID: 794680

Scopus Author ID: 55328886800

Compliance with ethical standards: the research study is carried out in compliance with the ethical principles set forth by World Medical Association

Declaration of Helsinki, 1964, ed. 2013. The study was approved by the Committee on Biomedical Ethics at the National Medical Research Center for

Oncology (extract from the minutes of the meeting No. 15 dated 06/14/2022). Informed consent was received from all participants of the study

Funding: this work was not funded. The work was performed with scientific equipment provided by the Central Research Institute of the National Medical

Research Center for Oncology: https://ckp-rf.ru/catalog/ckp/3554742/

Conflict of interest: the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article

The article was submitted 19.07.2024; approved after reviewing 22.08.2024; accepted for publication 27.08.2024

� Kutilin D. S., Filippov F. E., Porkhanova N. V., Maksimov A. Yu., 2024

����-���������� �������������� ������. 2024. �. 5, � 3. �. 76-90

https://doi.org/10.37748/2686-9039-2024-5-3-7

https://elibrary.ru/zovxqo

3.1.6. ���������, ������� �������

������������

������

��������������� ������� ���� ��� ��������������� ���������������� �������..

�. �. �������1 , �. �. ��������2, �. �. ���������2, �. �. ��������1

1 ���� ������������� ����������� ����������������� ����� ���������� ������������ ��������������� ���������� ���������,

�. ������-��-����, ���������� ���������

2 ���� ������������ �������������� ��������� � 1� ������������ ��������������� �������������� ����, �. ���������,

���������� ���������

k.denees@yandex.ru

������

���� ������������.

������������������

����� ��������������� ��������

(�� ���������

������������ ������)

� �� ��������� � ���� ������� �������� ��������������� ��������.

��������� � ������.

� ������������ ���� �������� 70 ��������� � ��������� �������� �������������� ��������

� 30

������� ��������

������������. ����� �����-����������� ����������� � ��������

����������� �����

������������ � �������������� ������ ��������� �������� Random forest. ��������� ��������������� �������

(���) ����������� �

������� ������ RNeasy Plus Universal Kits. ������� ������������ �������� � ���� ����������

������� ������������ ������ ������� (���) � ������ ��������� �������. ������ �������� ���������

� �������������� �������� �����-����� � ��������� ����������.

����������.

� �������������� ������ Random

forest ����

�����������

�����������

���������-��� ���������

(47 �����) � ���������-�������� ��������� (613 ���������� ��������). ���������� �������� ���� ������������

������� ��� � ������ ��������� �������. ���������� ��������� ������ ������������ ��������

miR-382-5p,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

miR-593-3p, miR-29a-5p, miR-2110, miR-30c-5p, miR-181a-5p, let-7b-5p, miR-27a-3p, miR-370-3p, miR-6529-5p, miR-653-5p,

miR-4742-5p, miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-875-3p, miR-19a-3p, miR-208a-5p, miR-330-5p, miR-1207-5p,

miR-4668-3p, miR-3193, miR-23a-3p, miR-12132, miR-765, miR-181b-5p, miR-4529-3p, miR-33b-5p, miR-17-5p, miR-6866-3p,

miR-4753-5p, miR-103a-3p,

miR-423-5p, miR-491-5p, miR-196b-5p,

miR-6843-3p,

miR-423-5p � miR-3184-5p � ���� ���������

������������ �������-�������� ������������.

����������.

�����

�������, ���������������

��������������

���� ��������� ��� ������� �������������

�������

�����������, ��� � �����

������ ������������

��������� ���������, �������

� ������

��������

���� ��������.

�������� �����: ��������, ������������ ������ �������, �������� ��������, ��������������, ��������

�������������� �������, ����, ����������

��� �����������: ������� �. �., �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ���������������

���������������� �������. ����-���������� �������������� ������. 2024; 5(3): 76-90. https://doi.org/10.37748/2686-9039-2024-5-3-7,

https://elibrary.ru/zovxqo

��� ���������������: ������� ����� ��������� � �.�.�., ������� ������� ��������� ����������� ������������ ���������,

���� ������������� ����������� ����������������� ����� ���������� ������������ ��������������� ���������� ���������,

�. ������-��-����, ���������� ���������

�����: 344037, ���������� ���������, �. ������-��-����, ��. 14 �����, �. 63

E-mail: k.denees@yandex.ru

ORCID: https://orcid.org/0000-0002-8942-3733

SPIN: 8382-4460, AuthorID: 794680

Scopus Author ID: 55328886800

���������� ��������� ����������: � ������ ����������� ��������� ��������, ������������� ������������ ����������� ���������

����������� ���������� (World Medical Association Declaration of Helsinki, 1964, ���. 2013). ������������ �������� ��������� ��

�������������� ����� ��� ���� ������������� ����������� ����������������� ����� ���������� ������������ ��������������� ����������

��������� (������� �� ��������� ��������� � 15 �� 14.06.2022 �.). ��������������� �������� �������� �� ���� ���������� ������������

��������������: �������������� ������ ������ �� �����������. ������ ��������� � �������������� �������� ������������

��� ���� ������������� ����������� ����������������� ����� ���������� ������������ ��������������� ���������� ���������:

https://ckp-rf.ru/catalog/ckp/3554742/

�������� ���������:

���

������ �������� ��

����������

����� �

������������� ����������

���������,

��������� � �����������

���������

������

������ ��������� � �������� 19.07.2024; �������� ����� �������������� 22.08.2024; ������� � ���������� 27.08.2024

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

INTRODUCTION

Ovarian cancer (OC) currently takes one of the

leading positions in terms of morbidity and mortality

in the world and the Russian Federation among

gynecological

malignancies

[1, 2]. OC

includes

many

subtypes of tumors, each of which has distinctive

biological and clinical characteristics. According to

the

WHO

classification, serous

carcinoma, endometrioid

carcinoma, mucinous carcinoma, light cell carcinoma,

malignant Brenner tumor, serous-mucinous

carcinoma, undifferentiated carcinoma and mixed

epithelial carcinoma are distinguished [3, 4].

In most patients, rheumatoid arthritis is sporadic,

usually detected late, and the overall 5-year survival

rate is only 30�40 %. Early detection of OC is the

most important factor in improving patient survival

[6]. New methodological

approaches, including

modern molecular biology approaches, are needed

for early detection and improved diagnosis of this

disease. The application of genomics and metabolomics

has opened a new

chapter

of

research,

which will allow the development of new tools for

early diagnosis and monitoring of the course of

oncological diseases. Advances in metabolomic

approaches using liquid or gas chromatography

combined with high-resolution mass spectrometry

(MS) have opened new prospects for simultaneous

detection and identification of biomarkers

in biological

samples [7].

Our earlier study [8] of the

urine

metabolomic

profile by ultrahigh-performance liquid chromatography

with mass spectrometric detection showed

that patients with serous ovarian carcinoma have

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

an imbalance in the content of certain fatty acids

and their derivatives, acylcarnitines, phospholipids,

amino acids and their derivatives, as well as some

derivatives of nitrogenous bases. At the same time,

26 metabolites with abnormal concentrations in

urine may have some potential as non-invasive biomarkers

of breast cancer in women belonging to

high-risk groups.

Thus, it was shown that 14 metabolites (kynurenine,

phenylalanyl valine, lysophosphatidylcholine

(18:3),

lysophosphatidylcholine (18:2),

alanyl

leucine, lysophosphatidylcholine (20:4), L-phenylalanine,

phosphatidylinositol

(34:1), 5-methoxytryptophan,

2-hydroxymyristic acid, 3-oxocholic acid,

lysophosphatidylcholine (14:0), indolacrylic

acid, lys

ophosphatidylserine

(20:4))

have significantly higher

concentrations compared to conditionally healthy individuals.

The content of 12 compounds, on the contrary,

was reduced (L-beta-aspartyl-L-phenylalanine,

myristic acid, decanoyl carnitine, aspartyl-glycine,

malonylcarnitine, 3-hydroxybutyrylcarnitine, 3-methylxanthine,

2,6-dimethylheptanoyl carnitine, 3-oxododecanoic

acid, N-acetylproline, L-octanoylcarnitine,

capriloylglycine) [8].

The determination of a number

of the above compounds

with high accuracy in urine samples is a procedure

that requires expensive equipment and is feasible

only in

a small

number of medical

institutions.

In this regard, it is extremely important to switch to

more accessible predictive markers, for example,

transcriptomic data. In this regard, the level of microRNA

transcripts

in urine is

of particular interest

[9].

microRNAs are short non-coding RNAs that regulate

gene expression by catalyzing the destruction of

mRNA, or by inhibiting the translation of mRNA into

protein. Mature microRNA is a single-stranded RNA

of the order of 22 nucleotides in size, obtained from

a primary transcript. microRNAs are transcriptional

regulators and modulate gene expression by interacting

with complementary nucleotide sequences of

target mRNAs [10]. microRNAs make a significant

contribution to the initiation and development of

various molecular events, including the initiation of

oncogenesis, progression, and metastasis of tumors,

which makes microRNAs potential biomarkers for

assessing the progression and prognosis of cancer

[11].

The study

of

the microRNA-mRNA

regulatory

network is of great importance both for elucidating

the molecular mechanisms underlying carcinogenesis

and for creating a panel of new biomarkers.

The purpose of the study was the bioinformatic

search for transcriptomic markers (based on metabolomic

data) and their validation in the urine of

patients with serous ovarian adenocarcinoma.

MATERIALS AND METHODS

The prospective study included 70 patients diagnosed

with ovarian cancer (serous adenocarcinoma

of low (n = 30) and high grade malignancy (n = 30),

T1a �4, T1b �3, T1c �5, T2a �3, T2b �5, T3a �14,

T3b �6, T3c � 30) and 30 conditionally healthy volunteers

(without any known pathologies) who make

up the control group.

����-���������� �������������� ������ 2024. �. 5, � 3. �. 76-90

������� �. �. , �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ��������������� ���������������� �������

Urine samples were used as objects of research.

Before the study, the patients gave informed consent

to the

scientific use

of biological

samples. Urine

was

collected before the start of treatment.

Evaluation of microRNA expression

500 .l of urine sample was mixed with 900 .l of

QIAzol reagent (QIAGEN). Further isolation of total

RNA was carried out using the RNeasy Plus Universal

Kits kit according to the manufacturer's protocol. To

identify mature microRNAs and small U6 RNAs, the

method proposed by Balcells I. and co-authors was

used [12]. The isolated total RNA was used in a reverse

transcription reaction, which was performed

simultaneously with polyadenylation of RNA using

specific OC

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

primers. Next, the

obtained complementary

DNA was detected using real-time polymerase

chain reaction (PCR) (PCR-RV).

The

design

of specific oligonucleotide

primers

was

carried

out

using

the

Balcells

I. algorithm [12]. Several

sets of oligonucleotides were selected for each

micro-RNA, from which those characterized by the

highest efficiency of reverse transcription and PCR

were selected. The effectiveness of reverse transcription

was evaluated by the values of threshold cycles

(Ct) obtained by analyzing synthetic analogues of

microRNA and mRNA (Biosan CJSC, Russia) taken at

a known concentration. The efficiency of amplification

(E) for each system was evaluated by constructing

a calibration curve, using the dilution analysis of the

corresponding RNAs isolated from clinical samples

according to the protocol described above (the average

value of E was 2.0). The stability of expression

for the selection of reference genes was evaluated

using the geNorm algorithm [13]. The initial

list

of proposed

normalizers

for microRNAs

included: miR-191

(expression of this microRNA was the most stable in

13 compared tissues [14]);

miR-23a (as a normalizer

suitable for

the analysis of cervical samples [15]

and U6 (traditionally used as a separate standard for

normalization of microRNA expression data). Using

the geNorm algorithm, U6 was selected to normalize

microRNA expression data.

A reverse transcription reaction was performed

separately for each microRNA in one repeat. For re

verse transcription, a reaction mixture containing 1x

poly(A) buffer (BioLabs), 10 U/.l Reverse Transcriptase

MMLV (Synthol), 0.1 mM dNTPs (Synthol), 0.1

mM ATP (BioLabs), 1 .M OC primer, 0.5 U/.l Poly(A)

polymerase (BioLabs) and 1 mcg of total RNA. The

reaction was carried out for 15 minutes. at 16 oC,

15

min. at 42

�C, the reverse transcriptase was

then

inactivated for 2 min. at 95

�C.

The change in the relative expression of micro-

RNA was evaluated by PCR-RV. Amplification was

performed in 20

.l of a PCR mixture containing 1x

PCR buffer, 0.25 mM dNTPs, 2 mM MgCl2, 1 unit act.

Taq-DNA polymerase, 500 nM of direct and reverse

primers. OC-qPCR formulation of each sample was

performed in three repeats. The resulting mixtures

were incubated in a CFX 96

amplifier (Bio-Rad Laboratories,

USA) according to the following program:

2 minutes 94 �C, 50 cycles: denaturation at 95 �C for

10 seconds, annealing and elongation � 63

�C for 30

seconds. The results corresponding to

Ct >

40 were

found to be negative.

The relative expression (RE) was calculated using

the formula RE = 2-..Ct. The normalization of the

results was carried out according to the reference

locus and the expression level of the corresponding

target microRNAs in the samples of the control

group, sequentially according to the scheme given

below:

1. Normalization by reference locus:

.C(t) = C(t � C(t)reference, where C(t)reference is C(t)

target

of the reference locus.

2. Calculation of E-.C(t) for each microRNA for each

patient of the control group and the main group.

3. Calculation of the median E-.C(t) for each locus

for the control group and the main group.

4. Normalization for the control group and the

result as a multiplicity of changes: RE

= E-.C(t)median

of

the main group /E-.C(t)median of the control group (which

is identical to RE = E-..C(t) [16].

Statistical and bioinformatic data processing

The differences were assessed using the Mann-

Whitney criterion

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

for a

threshold

level

of statistical

significance of p < 0.05, and the Bonferroni

correction was used to account for multiple comparisons.

The data analysis was carried out in the

Python programming language using the SciPy

library [17].

The search for metabolite regulatory genes and

microRNA regulators of genes was carried out using

the Random forest machine learning method,

which combines the Breiman bagging method and

the random subset method. The result of the "ran

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

dom forest" model is the predicted probability that programming language in the Rstudio shell, was

the target gene or microRNA is the true regulator of used to select minimal sets of microRNAs The ima

particular metabolite [18].

portance of variables was determined by counting

LASSO (Least Absolute Shrinkage and Selection the

number of bootstrap

models

with

a

non-zero

Operator), a

penalized logistic regression

in

the

R

coefficient of the variable [19].

Table 1. Metabolites and genes regulating metabolic pathways

Metabolites* Regulator genes Enzymes

Kinurenin KYNU, KMO, KYAT3, IDO kynureninase, kynurenine-3-monooxygenase, kynurenine aminotransferase

3, indolamine-pyrrole-2,3-dioxygenase

Phenylalanine-Valine PAH Phenylalanine hydroxylase

Myristic acid

PPARA, PPARGC1A,

CYP4Z1, IYD, FASN,

PLA2G5, LGALS13

fatty acid synthase, beta-ketoacyl synthase domain, calcium-dependent

phospholipase A2, soluble lectin 13 binding galactoside

Lysophosphatidylcholine

(18:3), (18:2), (20:4), (14:0)

PLA2G2A, PLB1,

LPCAT1 phospholipase A2, lysophospholipase, LPC-acyltransferase

Decanoyl carnitine ACADM, ACADS, CROT Acyl-CoA dehydrogenase, Carnitine octanoyltransferase (Carnitine

O-Octanoyltransferase)

Malonyl carnitine CPT1, CPT1A, ACADM palmitoyl-CoA transferase, malonyl-CoA decarboxylase

Alanine-Leucine GAL, PGA3 galanin, pepsinogen A

3-hydroxybutyrylcarnitine ACADM, CRAT 3-hydroxyacyl CoA dehydrogenase, carnitine-O-acetyltransferase

3-methylxanthine PDE4D cAMP-specific 3�,5�-cyclic phosphodiesterase 4D

L-Phenylalanine PAH, DDC phenylalanine hydroxylase, DOPA decarboxylase

Phosphatidylinositol (34:1)

PIK3CA, PIK3CB, PIK3C2A,

PLCB1, PIGL

phosphatidylinositol-3-kinase, 1-phosphatidylinositol-4,5-bisphosphate

phosphodiesterase beta-1, N-acetylglucosaminylphosphati-

dylinositol-de-N-acetylase

2,6 dimethylheptanoyl

carnitine ACADM, CRAT 3-hydroxyacyl CoA dehydrogenase, carnitine-O-acetyltransferase

5-methoxytryptophan TPH1 tryptophanhydroxylase

3-oxododecanoic acid FASN, OXSM 3-oxoacyl synthase, fatty acid synthase

2- hydroxymyristic acid NMT1 n-myristoyl transferase 1

3-oxocholic acid FABP6 gastropine

Indolylacrylic acid KYAT1 kynurenine aminotransferase 1 (kynurenine aminotransferase 1)

N-acetylproline APEH N-acylpeptide hydrolase

L-octanoylcarnitine CROT, COT, CPT2, CPT1

Carnitine-O-octanoyltransferase, carnitine-O-palmitoyltransferase

2(Carnitine O-octanoyltransferase, Carnitine O-palmitoyltransferase

2)

Capriloyl glycine ACADM, ODC1,

GLYATL1

3-hydroxyacyl CoA dehydrogenase, ornithine decarboxylase 1,

Glycine N-acyltransferase

Lysophosphatidylserine GPR34, PLA1A lysophosphatidylserine new receptor 1, phospholipase a1

Note: * � the list of metabolites based on the data of the article [8]

����-���������� �������������� ������ 2024. �. 5, � 3. �. 76-90

������� �. �. , �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ��������������� ���������������� �������

Table 2. Metabolites, regulatory genes of metabolic pathways and microRNAs interacting with them

Metabolites Regulator

genes microRNA

KYNU,

KMO,

Kinurenin

KYAT3,

IDO1

KMO:miR-30b-3p, miR-153-5p, miR-149-3p, miR-363-5p, miR-624-3p, miR

937-5p, miR-1233-3p, miR-1238-3p, miR-1972, miR-3200-5p, miR-4319,

miR-3689a-5p, miR-3689b-5p, miR-4478, miR-3689e, miR-4695-5p, miR4724-

5p, miR-664b-3p, miR-5684, miR-6758-5p, miR-6780a-5p, miR-67995p,

miR-6856-5p, miR-6867-5p, miR-6883-5p, miR-6894-5p, miR-6894-5p,

miR-7106-5p, miR-7106-5p, miR-1273h-5p, miR-12122. KYNU:miR-30a3p,

miR-200c-3p, miR-382-5p, miR-382-5p, miR-2117, miR-3654, miR-46523p,

miR-4743-3p, miR-6739-3p, miR-6879-3p, miR-6885-3p, miR-10397-5p,

miR-4638-5p, miR-30a-3p, miR-200c-3p, miR-382-5p, miR-382-5p, miR2117,

miR-3654, miR-4652-3p, miR-4743-3p, miR-6739-3p, miR-6879-3p,

miR-6885-3p, miR-10397-5p. KYAT3: miR-5692c, miR-5692b, miR-5692c,

miR-5692b, miR-5692c, miR-5692b. IDO1: miR-593-3p, miR-891a-3p, miR5683,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

miR-6728-3p

2 Phenylalanine-Valine PAH miR-23a-3p, miR-4502, miR-12132

3 Myristic acid

PPARA,

PPARGC1A,

CYP4Z1,

IYD,

FASN,

PLA2G5,

LGALS13

IYD: miR-760, miR-29a-5p, miR-208a-5p, miR-30b-3p, miR-184, miR-195-3p,

miR-320a-3p, miR-373-5p, miR-483-3p, miR-551b-5p, miR-643, miR-646,

miR-1224-5p, miR-320b,miR-922, miR-1202, miR-1205, miR-1287-3p, miR-

513c-3p, miR-1321, miR-3144-3p, miR-3152-5p, miR-3185, miR-3191-5p,

miR-3199, miR-514b-5p, miR-4279, miR-3663-5p, miR-3681-5p, miR-3689a3p,

miR-3689b-3p, miR-4429, miR-4452, miR-3689c, miR-4531, miR-4533,

miR-3972, miR-3976, miR-451b, miR-4731-5p, miR-4796-3p, miR-47993p,

miR-5003-3p, miR-5195-3p, miR-5588-5p, miR-6509-3p, miR-6737-5p,

miR-6737-3p, miR-6752-3p, miR-6764-3p, miR-6779-5p, miR-6780a-5p,

miR-6824-3p, miR-6829-5p, miR-6830-5p, miR-6849-5p, miR-6849-3p, miR6882-

5p, miR-6894-3p, miR-7106-5p, miR-7844-5p, miR-8052, miR-8069,

miR-8078, miR-146a-5p, miR-607, miR-3614-5p, miR-4482-3p, miR-197-3p,

miR-744-3p, miR-3187-3p, miR-3652, miR-4420, miR-4430, miR-4633-5p,

miR-4642, miR-4781-3p, miR-5698, miR-6499-3p, miR-6787-3p, miR-68433p,

miR-6848-3p, miR-588, miR-4423-5p, miR-6501-5p.

CYP4Z1: miR-2110, FASN: miR-30c-5p, LGALS13: miR-4650-3p.

PLA2G5: miR-765, miR-3682-3p, miR-4533,miR-2467-3p,miR-4786-3p,miR1253,

miR-3191-5p,miR-6847-5p,miR-11181-3p,miR-3916.

PPARA:miR-181a-5p, miR-181b-5p, miR-20b-5p, miR-181d-5p, miR-22-3p,

miR-140-5p, miR-372-3p, miR-330-5p, miR-331-3p, miR-345-3p, miR-520d3p,

miR-551b-5p, miR-619-5p, miR-622, miR-2113, miR-665, miR-939-3p,

miR-1976, miR-3116, miR-3183, miR-4251, miR-3690, miR-550b-2-5p,

miR-4436a, miR-4443, miR-4515, miR-4717-5p, miR-4723-5p, miR-47455p,

miR-4749-5p, miR-4755-3p, miR-5591-5p, miR-6126, miR-6131, miR6134,

miR-6505-3p, miR-6734-3p, miR-6744-3p, miR-6753-3p, miR-67665p,

miR-6791-5p, miR-6805-3p, miR-6817-5p, miR-6852-5p, miR-6873-3p,

miR-6880-5p, miR-7151-3p, miR-8071, let-7b-5p, let-7e-5p, miR-224-3p,

miR-302a-3p, miR-326, miR-335-3p, miR-429, miR-511-5p, miR-8085, miR10394-

5p, miR-10524-5p, miR-9851-5p, miR-7107-3p, miR-7110-3p, miR7155-

3p, miR-7158-3p, miR-7976, miR-1233-5p, miR-4651, miR-6757-5p,

miR-6778-5p, miR-27a-5p, miR-34a-5p, miR-130b-5p, miR-196b-5p, miR607,

miR-1249-5p, miR-3689d, miR-5006-5p, miR-6756-5p, miR-6788-5p,

miR-6797-5p, miR-6851-5p.

PARGC1A: let-7a-5p, let-7b-5p, let-7c-5p, let-7e-5p, miR-23b-3p, miR-1385p,

miR-409-5p, miR-487a-3p, miR-193b-3p, miR-4458, miR-6884-5p, miR23a-

3p, miR-193a-3p, miR-485-3p, miR-3666, miR-3681-3p, miR-211-5p,

miR-485-5p, miR-342-5p, miR-452-5p, miR-511-5p, miR-508-5p, miR-573,

miR-659-3p, miR-764, miR-1825, miR-2116-3p, miR-2682-3p, miR-3929,

miR-4436a, miR-4649-5p, miR-4664-5p, miR-4713-5p, miR-4728-3p,

miR-122b-3p, miR-4768-5p, miR-4769-3p, miR-5003-5p, miR-5006-3p,

miR-5011-5p, miR-5591-3p, miR-5685, miR-6124, miR-6740-3p, miR-68183p,

miR-6833-3p, miR-6845-3p, miR-6892-3p, miR-7110-5p, miR-7703,

miR-7850-5p, miR-8075, miR-8485, miR-148a-5p, miR-214-3p, miR-222-3p,

miR-9898, miR-6083

4 Lysophosphatidylcholine PLA2G2A,

PLB1, LPCAT1

LPCAT1: miR-27a-3p, miR-370-3p, miR-4739, miR-4768-3p, miR-4783-3p.

PLB1: miR-3162-5p, miR-4529-3p, miR-4740-5p. PLA2G2A: miR-765, miR3652,

miR-6134, miR-6745, miR-6756-5p, miR-6769a-5p, miR-6785-5p,

miR-6769b-5p, miR-7847-3p

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

Table 2. (�ontinuation) Metabolites, regulatory genes of metabolic pathways and microRNAs interacting with them

Metabolites Regulator

genes microRNA

CROT: miR-33a-5p, miR-373-3p, miR-33b-5p, miR-17-5p, miR-500a-5p,

ACADM, miR-501-5p, miR-1250-3p, miR-4659b-3p, miR-219b-5p, miR-4795-3p,

5 Decanoyl carnitine ACADS, miR-6807-3p, miR-6867-5p, miR-522-3p, miR-4325, miR-5004-3p, miR-

CROT 6833-5p, miR-221-3p. ACADM: miR-4437, miR-5580-3p, miR-6529-5p,

miR-3184-5p, miR-4704-3p. ACADS: miR-484

6 Malonyl carnitine CPT1A,

ACADM

ACADM: miR-4437, miR-5580-3p, miR-6529-5p, miR-3184-5p, miR-47043p.

CPT1A: miR-653-5p, miR-328-3p, miR-6866-3p, miR-1296-3p, miR1322,

miR-6883-5p, miR-7-2-3p, miR-335-3p, miR-520a-3p, miR-4310, miR4287,

miR-6718-5p, miR-6785-5p, miR-6869-3p, miR-7856-5p, miR-93-5p,

miR-4293, miR-4322, miR-4707-3p, miR-24-3p, miR-6849-3p

7 Alanine-Leucine GAL,

PGA3

GAL: miR-922, miR-4742-5p, miR-4753-5p, miR-4436b-3p, miR-5004-5p,

miR-5089-3p, miR-15b-5p, miR-138-1-3p, miR-302d-5p, miR-6810-5p,

miR-3976. PGA3: miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-1913,

miR-2115-5p, miR-4646-5p, miR-5006-5p, miR-6857-5p, miR-11399,

miR-5008-5p, miR-4649-3p,miR-423-5p, miR-3679-5p, miR-423-3p, miR1296-

3p, miR-3126-5p, miR-6759-3p, miR-3180, miR-6763-5p, miR-769-3p,

miR-3139, miR-5571-5p, miR-6768-5p, miR-761, miR-3151-5p, miR-18a-5p,

miR-4672, miR-6873-3p, miR-6875-3p, miR-3156-5p, miR-6771-5p, miR6879-

5p, miR-3945

8

9

10

3-hydroxybutyrylcarnitine

3-methylxanthine

L-Phenylalanine

ACADM,

CRAT

PDE4D

PAH, DDC

ACADM: miR-4437, miR-5580-3p, miR-6529-5p, miR-3184-5p, miR-47043p.

CRAT: miR-936, miR-1207-5p, miR-6764-5p, miR-7150, miR-10392-3p

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

PDE4D: miR-18a-5p, miR-31-5p, miR-148a-3p, miR-301a-3p, miR-148b-3p,

miR-875-5p, miR-6766-3p, miR-26a-5p, miR-103a-3p, miR-107, miR-1395p,

miR-362-3p, miR-339-5p, miR-18b-5p, miR-448, miR-487a-3p, miR4429,

miR-203a-3p, miR-211-3p, miR-124-3p, miR-149-5p, miR-99b-3p,

miR-372-3p, miR-373-5p, miR-520a-3p, miR-520d-3p, miR-625-5p, miR641,

miR-1301-3p, miR-449c-5p, miR-1266-5p, miR-1321, miR-1912-3p,

miR-2114-5p, miR-3125, miR-3187-5p, miR-4261, miR-4280, miR-3646,

miR-3689a-5p, miR-3689b-5p, miR-3922-5p, miR-4446-3p, miR-3689d,

miR-3689e, miR-4492, miR-4502, miR-4511, miR-3977, miR-4646-5p,

miR-4675, miR-4698, miR-4741, miR-4756-5p, miR-4768-3p, miR-5193,

miR-1295b-5p, miR-5589-3p, miR-6500-3p, miR-548az-5p, miR-6504-5p,

miR-6511a-5p, miR-6512-5p, miR-6809-5p, miR-6809-3p, miR-6829-5p,

miR-6839-5p, miR-6859-5p, miR-5787, miR-6077, miR-6796-3p, miR-6860,

miR-7114-5p, miR-7151-3p, miR-8080, miR-8081, miR-8086, miR-195-5p,

miR-3136-5p, miR-6080, miR-6888-5p, miR-340-5p, miR-4439, miR-3148,

miR-6857-3p, miR-497-5p

PAH: miR-23a-3p, miR-4502, miR-12132. DDC: miR-875-3p, miR-3166,

miR-4502, miR-3158-3p

STUDY RESULTS

Bioinformatic analysis of the relationship of the

urine metabolomic profile with gene and microRNA expression.

Using the Random forest machine learning

method implemented in the R programming language,

the analysis of the metabolomic data from the article

[8] was carried out,

as well as the Human Metabolome

Database (HMDB, https://hmdb.ca/metabolites).

At the first stage, the metabolite-enzyme and enzyme-

gene regulator relationships were established.

The results are presented in table 1.

The results of the metabolite-gene-microRNA relationship

are presented in Table 2 and Fig. 1�2. It

can be seen that the content of metabolites detected

in

urine

is

regulated by a complex

network

of rna

and microRNA interactions. For two metabolites,

myristic acid and phosphatidylinositol, 237 and 143

micro-RNAs were detected, respectively, regulating

the

content

of these

substances

in

biological

fluids.

Thus, bioinformatic analysis

has

determined

a

list

of 613 unique microRNAs involved in the regulation

of the concentration of 21 metabolites. Of the 613

microRNAs, only the microRNAs with the maximum

����-���������� �������������� ������ 2024. �. 5, � 3. �. 76-90

������� �. �. , �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ��������������� ���������������� �������

Table 2. (�ontinuation) Metabolites, regulatory genes of metabolic pathways and microRNAs interacting with them

Metabolites Regulator

genes microRNA

PIK3CA,

11 Phosphatidylinositol

(34:1)

PIK3CB,

PIK3C2A,

PLCB1,

PIGL

PIGL: miR-4651, miR-5087, miR-6499-3p, miR-6739-3p, miR-6764-5p,

miR-212-5p, miR-659-3p, miR-3189-3p, miR-3934-3p, miR-378g, miR-4519,

miR-6819-5p.

PIK3C2A: miR-503-5p, miR-301b-3p, miR-6838-5p, miR-23a-5p, miR-29a

5p, miR-23b-5p, miR-510-5p, miR-1264, miR-2113, miR-1286, miR-36193p,

miR-4423-3p, miR-4436a, miR-4484, miR-1343-3p, miR-6074, miR6760-

3p, miR-6867-5p, miR-212-5p, miR-150-5p, miR-378a-5p, miR-518a5p,

miR-1224-3p, miR-764, miR-6821-3p.

PIK3CA: let-7i-5p, let-7e-5p, miR-19a-3p, miR-19b-3p, let-7g-5p, miR-152

3p, miR-202-5p, miR-4429, miR-198, miR-548e-5p, miR-548o-3p, miR2114-

5p, miR-4430, miR-4493, miR-4659b-3p, miR-122b-5p, miR-4803,

miR-5006-3p, miR-6797-3p, miR-1972, miR-2116-5p, miR-3157-5p, miR3191-

5p, miR-514b-5p, miR-4303, miR-4277, miR-3606-5p, miR-3614-3p,

miR-3679-3p, miR-676-5p, miR-378g, miR-4446-5p, miR-4477b, miR-4486,

miR-4652-3p, miR-6819-5p, miR-6857-5p, miR-6868-3p, miR-6893-3p,

miR-7162-3p, miR-10526-3p, miR-12126, miR-139-5p, miR-422a.

PIK3CB: miR-23b-3p, miR-362-5p, miR-3666, miR-3064-5p, miR-4465,

miR-199a-3p, miR-199b-3p, miR-212-5p, miR-150-5p, miR-6504-5p, miR204-

3p, miR-671-5p, miR-1263, miR-3646, miR-4430, miR-4682, miR-5093,

miR-6165, miR-6715a-3p, miR-7850-5p, miR-9500, miR-130b-5p, miR3619-

5p, miR-32-3p, miR-623, miR-542-5p, miR-548j-5p, miR-544b, miR3614-

5p, miR-3652, miR-548aw, miR-5703, miR-8077, miR-2117.

PLCB1: miR-103a-3p, miR-107, miR-423-5p, miR-3129-5p, miR-139-5p,

miR-124-3p, miR-138-1-3p, miR-302c-5p, miR-876-5p, miR-1244, miR1322,

miR-548s, miR-4267, miR-3692-3p, miR-4433a-3p, miR-4436a, miR3978,

miR-4647, miR-4659a-3p, miR-4670-3p, miR-5194, miR-548az-3p,

miR-6783-3p, miR-6860, miR-7151-5p, miR-8056, miR-8063, miR-502-3p

12 2,6 dimethylheptanoyl

carnitine

ACADM,

CRAT

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ACADM: miR-4437, miR-5580-3p, miR-6529-5p, miR-3184-5p, miR-47043p.

CRAT: miR-936, miR-1207-5p, miR-6764-5p, miR-7150, miR-10392-3p

13 5-methoxytryptophan TPH1 TPH1: miR-320a-3p, miR-450a-2-3p, miR-320b, miR-2110, miR-4435, miR5693,

miR-5702, miR-6830-5p, miR-12118

14 3-oxododecane acid FASN miR-30c-5p

15 2-hydroxymyristic acid NMT1

NMT1: miR-181a-5p, miR-214-3p, miR-491-5p, miR-432-5p, miR-922,

miR-1202, miR-1205, miR-1972, miR-2110, miR-2682-3p, miR-3160-5p,

miR-3176, miR-4303, miR-4291, miR-4447, miR-3972, miR-4667-5p, miR4690-

3p, miR-4700-5p, miR-23b-3p, miR-615-3p

16 3-oxocholic acid FABP6

FABP6: miR-208a-5p, miR-330-5p, miR-196b-5p, miR-3180-3p, miR-3181,

miR-4278, miR-3689f, miR-4754, miR-4786-3p, miR-5190, miR-5195-3p,

miR-6745, miR-6751-5p, miR-6769a-5p, miR-6771-5p, miR-6792-5p, miR6821-

5p, miR-7156-3p, miR-10226, miR-10392-5p

17 Indolylacrylic acid KYAT1 KYAT1: miR-423-5p, miR-6842-5p, miR-597-3p, miR-4710, miR-6741-5p,

miR-6796-5p, miR-4447, miR-193b-3p

18 N-acetylproline APEH miR-1289

19 L-octanoylcarnitine CROT,

CPT2

CROT: miR-33a-5p, miR-373-3p, miR-33b-5p, miR-17-5p, miR-500a-5p,

miR-501-5p, miR-1250-3p, miR-4659b-3p, miR-219b-5p, miR-4795-3p,

miR-6807-3p, miR-6867-5p, miR-522-3p, miR-4325, miR-5004-3p, miR6833-

5p, miR-221-3p. CPT2: miR-433-3p, miR-6843-3p, miR-6848-3p, miR208a-

5p, miR-6742-3p, miR-34a-5p

20 Capriloyl glycine

ACADM,

ODC1,

GLYATL1

ACADM: miR-4437, miR-5580-3p, miR-6529-5p, miR-3184-5p, miR-47043p.

ODC1: miR-423-5p, miR-3184-5p, miR-7973, miR-193b-3p. GLYATL1:

miR-1207-5p, miR-4668-3p, miR-4742-3p, miR-4999-5p, miR-664b-3p, miR6846-

3p, miR-6893-3p

21 Lysophosphatidylserine

(20:4)

GPR34,

PLA1A

PLA1A: miR-3153, miR-7110-3p, miR-6754-5p, miR-6887-3p. GPR34: miR3193,

miR-2909, miR-4738-5p, miR-486-3p, miR-6808-5p

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

interaction strength with the mRNA of the genes regulating

the content of metabolites were selected. The final

list contained 91 microRNAs, presented in Table 3.

Features of the content of microRNA

transcripts in the urine of patients with serous

ovarian adenocarcinoma

The generated list of 91 microRNAs regulating

the activity of 37 genes was used for validation by

real-time PCR on urine samples of patients and conditionally

healthy volunteers.

A statistically significant (p < 0.005) change in the

transcript level of 47 microRNAs relative to conditionally

healthy volunteers was found in the urine of

patients

with

serous

ovarian

adenocarcinoma (Fig. 3).

A

significant increase (p

<

0.05) in the level of

miR-382-5p by 1.9 times, miR-593-3p by 3.4 times,

miR-29a-5p by 2.6 times, miR-2110 by 2.5 times,

Table 3. The final list of microRNAs involved in the regulation of the concentration of metabolites

Metabolites microRNA

1 Kinurenin

KMO: miR-30b-3p, miR-153-5p, miR-149-3p, miR-363-5p. KYNU: miR-30a-3p,

miR-200c-3p, miR-382-5p, miR-382-5p. KYAT3: miR-5692c, miR-5692b, miR5692c.

IDO1: miR-593-3p, miR-891a-3p.

2 Phenylalanine-Valine PAH: miR-23a-3p, miR-4502, miR-12132

3 Myristic acid

IYD: miR-760, miR-29a-5p. CYP4Z1: miR-2110, FASN: miR-30c-5p, LGALS13:

miR-4650-3p. PLA2G5: miR-765, miR-3682-3p. PPARA: miR-181a-5p, miR-181b5p,

miR-20b-5p. PPARGC1A: let-7a-5p, let-7b-5p, let-7c-5p

4 Lysophosphatidylcholine LPCAT1: miR-27a-3p, miR-370-3p, miR-4768-3p. PLB1: miR-3162-5p, miR-45293p.

PLA2G2A: miR-765, miR-3652

5 Decanoyl carnitine CROT: miR-33a-5p, miR-373-3p, miR-33b-5p, miR-17-5p. ACADM: miR-4437,

miR-5580-3p, miR-6529-5p. ACADS: miR-484

6 Malonyl carnitine ACADM: miR-4437, miR-5580-3p, miR-6529-5p. CPT1A: miR-653-5p, miR-3283p,

miR-6866-3p

7 Alanine-Leucine GAL: miR-922, miR-4742-5p, miR-4753-5p. PGA3: miR-2467-3p, miR-1909-5p,

miR-6743-5p

8 3-hydroxybutyrylcarnitine ACADM: miR-4437, miR-5580-3p, miR-6529-5p

9 3-methylxanthine PDE4D: miR-18a-5p, miR-31-5p, miR-148a-3p

10 L-Phenylalanine PAH: miR-23a-3p. DDC: miR-875-3p, miR-3166

11 Phosphatidylinositol (34:1)

PIGL: miR-4651, miR-5087, miR-6499-3p. PIK3C2A: miR-503-5p, miR-301b-3p.

PIK3CA: let-7i-5p, let-7e-5p, miR-19a-3p. PLCB1: miR-103a-3p, miR-107,

miR-423-5p

12 2,6 dimethylheptanoyl carnitine ACADM: miR-4437, miR-5580-3p, miR-6529-5p� CRAT: miR-936, miR-1207-5p

13 5-methoxytryptophan TPH1: miR-320a-3p, miR-450a-2-3p, miR-320b

14 3-oxododecanoic acid FASN: miR-30c-5p

15 2-hydroxymyrystine acid NMT1: miR-181a-5p, miR-214-3p, miR-491-5p

16 3-oxocholic acid FABP6: miR-208a-5p, miR-330-5p, miR-196b-5p

17 Indolylacrylic acid KYAT1: miR-423-5p, miR-6842-5p, miR-597-3p

18 N-acetylproline APEH: miR-1289

19 L-octanoylcarnitine CROT: miR-33a-5p, miR-373-3p, miR-33b-5p, miR-17-5p. CPT2: miR-433-3p, miR6843-

3p

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20 Capriloyl glycine ACADM: miR-4437, miR-5580-3p, miR-6529-5p. ODC1: miR-423-5p, miR-31845p.

GLYATL1: miR-1207-5p, miR-4668-3p

21 Lysophosphatidylserine (20:4)

PLA1A: miR-3153, miR-7110-3p. GPR34: miR-3193, miR-2909

����-���������� �������������� ������ 2024. �. 5, � 3. �. 76-90

������� �. �. , �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ��������������� ���������������� �������

Fig. 1. Metabolites, regulatory genes of metabolic pathways and microRNAs interacting with them

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

Fig. 2. Metabolites, regulatory genes of metabolic pathways and microRNAs interacting with them

����-���������� �������������� ������ 2024. �. 5, � 3. �. 76-90

������� �. �. , �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ��������������� ���������������� �������

miR-30c-5p by 2.9 times, miR-181a-5p by 2.6

times was found, let-7b-5p 2.6 times, miR-27A-3p

1.9 times, miR-370-3p 2.6 times, miR-6529-5p 2.5

times, miR-653-5p 2.2 times, miR-4742-5p 2.4

times, miR-2467-3p 2.6 times, miR-1909-5p 3.5

times, miR-6743-5p 4.9 times, miR-875-3p 2.3

times, miR-19a-3p 4.9 times, miR-208a-5p 2.6 times,

miR-330-5p 3.2 times, miR-1207-5p by 3.5 times,

miR-4668-3p by 4.2 times, miR-3193 is 2.6 times

higher than their level in the urine of conditionally

healthy individuals.

There was also a significant decrease (p < 0.05)

in the level of miR-23a-3p by 20.0 times, miR-12132

by 4.0 times, miR-765 by 1.8 times, miR-181b-5p by

4.0 times, miR-4529-3p by 1.8 times, miR-33b-5p by

3.1 times, miR-17-5p by 4.6 times, miR-6866-3p by

1.7 times, miR-4753-5p by 14.3 times, miR-103a-3p

by 19.6 times, miR-423-5p by 3.0 times, miR-491-5p

by 1.7 times, miR-196b-5p by 5.0 times, miR-6843-3p

2.3 times, miR-423-5p 4.6 times and miR-3184-5p

2.6 times relative to their urine levels in conditionally

healthy individuals.

Thus, the microRNA profile miR-382-5p,

miR-593-3p, miR-29a-5p, miR-2110, miR-30c-5p,

miR-181a-5p, let-7b-5p, miR-27a-3p, miR-2110,

miR-30c-5p, miR-181a-5p, let-7b-5p, miR-27a-3p,

miR-370-3p, miR-6529-5p, miR-653-5p, miR-4742-5p,

miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-875-3p,

miR-19a-3p, miR-208a-5p, miR-330-5p, miR-1207-5p,

miR-4668-3p, miR-3193, miR-23a-3p, miR-12132,

miR-765, miR-181b-5p, miR-4529-3p, miR-33b-5p,

miR-17-5p, miR-6866-3p, miR-4753-5p, miR-103a-3p,

miR-423-5p, miR-491-5p, miR-196b-5p, miR-6843-3p,

miR-423-5p and miR-3184-5p are differential for patients

and conditionally healthy individuals.

DISCUSSION

In our study, using machine learning methods,

links were established between metabolites that

changed the concentrations of relatively healthy

donors and genes encoding proteins involved in the

synthesis and degradation of these metabolites, as

well as links between metabolite regulatory genes

and microRNA regulators of these genes.

Bioinformatics

analysis

has

identified a list

of 613

unique micro-RNAs involved in the regulation of the

concentration of 21 metabolites. Of the 613 microR-

NAs, only the microRNAs with the maximum interaction

strength with the mRNA of the genes regulating

the content of

metabolites were selected.

The final list

contained 91 micro-RNAs, of which 47 changed the

level of their transcripts in urine (validated by PCR).

Fig. 3. Changes in the level of 91 micro-RNA transcripts in the urine of patients with serous ovarian adenocarcinoma

Note: * � statistically significant (p < 0.05) change in the transcript level relative to the control group

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

The level of transcripts miR-382-5p, miR-593-3p,

miR-29a-5p, miR-2110, miR-30c-5p, miR-181a-5p,

let-7b-5p, miR-27a-3p, miR-370-3p changed most

significantly in patients with OC miR-6529-5p,

miR-653-5p, miR-4742-5p, miR-2467-3p, miR-1909-5p,

miR-6743-5p, miR-875-3p, miR-19a-3p, miR-208a-5p,

miR-330-5p, miR-1207-5p, miR-4668-3p, miR-3193,

miR-23a-3p, miR-12132, miR-765, miR-181b-5p,

miR-4529-3p, miR-33b-5p, miR-17-5p, miR-6866-3p,

miR-4753-5p, miR-103a-3p, miR-423-5p, miR-491-5p,

miR-196b-5p, miR-6843-3p, miR-423-5p and

miR-3184-5p relative to their urine levels in conditionally

healthy individuals.

According to a number of authors, changes in

the expression level of some of these microRNAs

are associated with serous

ovarian

cancer: hsa

miR-382-5p, hsa-miR-27a-3p, hsa-miR-1207-5p,

hsa-miR-423-5p [20], hsa-miR-593-3p [21], hsamiR-

29a-5p [22, 23] and hsa-miR-30c-5p [24, 25] and

hsa-miR-30a-5p [26].

Nevertheless, the micro-RNA panel we identified

(miR-382-5p, miR-593-3p, miR-29a-5p, miR-2110,

miR-30c-5p, miR-181a-5p, let-7b-5p, miR-27a-3p,

miR-370-3p, miR-6529-5p, miR-653-5p, miR-4742-5p,

miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-875-3p,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

miR-19A-3p, miR-208a-5p, miR-330-5p, miR-1207-5p,

miR-4668-3p, miR-3193, miR-23A-3p, miR-12132,

miR-765, miR-181b-5p, miR-4529-3p, miR-33b-5p,

miR-17-5p, miR-6866-3p, miR-4753-5p, miR-103a-3p,

miR-423-5p, miR-491-5p, miR-196b-5p, miR-6843-3p,

miR-423-5p and miR-3184-5p) is unique and in this

combination in literary sources not represented.

Obviously, transcriptomic imbalance begins in

tissues and leads to a metabolic imbalance, which

eventually affects the composition of body fluids,

including urine.

Modern

clinical

oncogynecology has

a serious

need for effective biomarkers, changes in the levels

of which can serve as evidence of the occurrence of

a malignant process. Non-invasive and inexpensive

PCR analysis of micro-RNA in urine makes it a particularly

attractive screening tool. The application

of this approach may allow for frequent testing of

women belonging to high-risk groups and ensure

long-term patient monitoring.

CONCLUSION

Bioinformatics

analysis

revealed a list of 613

unique microRNAs involved in the regulation of 21

metabolites. At the same time, the level of transcripts

of 38 microRNAs (miR-382-5p, miR-593-3p,

miR-29a-5p, miR-2110, miR-30c-5p, miR-181a-5p,

let-7b-5p, miR-27a-3p, miR-370-3p, miR-6529-5p,

miR-653-5p, miR-4742-5p, miR-2467-3p,

miR-1909-5p, miR-6743-5p, miR-875-3p,

miR-19a-3p, miR-208a-5p, miR-330-5p, miR-1207-5p,

miR-4668-3p, miR-3193, miR-23a-3p, miR-12132,

miR-765, miR-181b-5p, miR-4529-3p, miR-33b-5p,

miR-17-5p, miR-6866-3p, miR-4753-5p, miR-103a-3p,

miR-423-5p, miR-491-5p, miR-196b-5p, miR-6843-3p,

miR-423-5p and miR-3184-5p) urine has diagnostic

potential in ovarian cancer and is the basis for

further research.. Thus, transcriptomic profiling

of

urine made it possible both to identify potential

markers of the disease and to better understand

the molecular mechanisms of changes underlying

the development of OC.

References

1.

Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017 Feb;14(1):9�32.

https://doi.org/10.20892/j.issn.2095-3941.2016.0084

2. Malignant neoplasms in Russia in 2018 (morbidity and mortality). Edited by A. D. Kaprin, V. V. Starinsky, G. V. Petrova. Moscow:

P. A. Herzen MNIOI � Branch of the National Medical Research Radiological Center, 2019, 250 p.

3.

Tsandekova M.R., Porkhanova N.V., Kutilin D.S. Molecular characterization of serous ovarian adenocarcinoma: implications

for diagnosis and treatment. Modern problems of science and education. 2020;(1):55. (In Russ.).

https://doi.org/10.17513/spno.29428, EDN: LTMXTL

5.

Meinhold-Heerlein I, Fotopoulou C, Harter P, Kurzeder C, Mustea A, Wimberger P, et al. The new WHOclassification of ovarian,

fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet. 2016

Apr;293(4):695�700.

https://doi.org/10.1007/s00404-016-4035-8

6.

Rooth C. Ovarian cancer: risk factors, treatment and management. Br J Nurs. 2013 Sep 12;22(17):S23�30.

https://doi.org/10.12968/bjon.2013.22.Sup17.S23

����-���������� �������������� ������ 2024. �. 5, � 3. �. 76-90

������� �. �. , �������� �. �., ��������� �. �., �������� �. �. ��������������� ������� ���� ��� ��������������� ���������������� �������

7.

Swiatly A, Plewa S, Matysiak J, Kokot ZJ. Mass spectrometry-based proteomics techniques and their application in ovarian

cancer research. J Ovarian Res. 2018 Oct 1;11(1):88. https://doi.org/10.1186/s13048-018-0460-6

8.

Veenstra TD. Metabolomics: the final frontier? Genome Med. 2012

Apr 30;4(4):40. https://doi.org/10.1186/gm339

9.

Guskova ON, Alliluev IA, Verenikina EV, Polovodova VV, Rogozin MA, Myagkova TYu, et al. Changes in urine metabolite

concentration as a minimally invasive marker of ovarian serous adenocarcinoma. Russian Journal of Biotherapy.

2023;22(3):43�50. (In Russ.). https://doi.org/10.17650/1726-9784-2023-22-3-43-50, EDN: KRLBXC

10. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging

applications in clinical oncology. CA Cancer J Clin. 2021 Jul;71(4):333�358. https://doi.org/10.3322/caac.21670

11. Dimitriadi TA, Burtsev DV, Dzhenkova EA, Kutilin DS. MicroRNAs as markers of progression of precancerous lesions to

cervical

cancer.

Modern

problems

of

science

and

education.

2020;(1):99.

(In

Russ.).

https://doi.org/10.17513/spno.29529,

EDN: SPESSH

12.

Abdelsattar ZM, Wong SL, Regenbogen SE, Jomaa DM, Hardiman KM, Hendren S. Colorectal cancer outcomes and treatment

patterns in patients too young for average-risk screening. Cancer. 2016 Mar 15;122(6):929�934.

https://doi.org/10.1002/cncr.29716

13.

Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol.

2011

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Jun 25;11:70. https://doi.org/10.1186/1472-6750-11-70

14. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time

quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034.

https://doi.org/10.1186/gb-2002-3-7-research0034

15.

Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable

reference RNA targets in normal and cancerous human solid tissues. RNA. 2008

May;14(5):844�852.

https://doi.org/10.1261/rna.939908

16.

Shen Y, Li Y, Ye F, Wang F, Wan X, Lu W, et al. Identification of miR-23a as a novel microRNA normalizer for relative quantification

in

human

uterine

cervical

tissues.

Exp

Mol

Med.

2011

Jun

30;43(6):358�366.

https://doi.org/10.3858/emm.2011.43.6.039

17. Kutilin DS, Dimitriadi SN, Vodolazhsky DI, Frantsiyants EM, Kit OI. Effect of thermal ischemia-reperfusion on expression

of apoptosis-regulating genes in the renal tissue of patients with renal cell carcinoma. Nephrology (Saint-Petersburg).

2017;21(1):80-86. (In Russ.). https://doi.org/10.24884/1561-6274-2017-21-1-80-86, EDN: XVGWWP

18.

Jones E, Oliphant E, Peterson P. SciPy: Open source scientific tools for python. 2001.

19.

Ding J, Li X, Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics. 2016

Sep 15;32(18):2768�

2775.

https://doi.org/10.1093/bioinformatics/btw318

20. Tsandekova MR, Porkhanova NV, Kit OI, Kutilin DS. Minimally invasive molecular diagnosis of high-grade and low-grade

serous adenocarcinoma of the ovary. Oncogynecology. 2021;(4(40):35�50. (In Russ.).

https://doi.org/10.52313/22278710_2021_4_35,

EDN:

ACKKXS

21.

Li Y, Yao L, Liu F, Hong J, Chen L, Zhang B, et al. Characterization of microRNA expression in serous ovarian carcinoma. Int

J Mol Med. 2014 Aug;34(2):491�498. https://doi.org/10.3892/ijmm.2014.1813

22.

Han Y, Zheng Y, You J, Han Y, Lu X, Wang X, et al. Hsa_circ_0001535

inhibits the proliferation and migration of ovarian cancer

by sponging miR-593-3p, upregulating PTEN expression. Clin Transl Oncol. 2023 Oct;25(10):2901�2910.

https://doi.org/10.1007/s12094-023-03152-2

23. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs

from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009

Jan;112(1):55�59.

https://doi.org/10.1016/j.ygyno.2008.08.036

24.

Kwon JJ, Factora TD, Dey S, Kota J. A Systematic Review of miR-29 in Cancer. Mol Ther Oncolytics. 2019 Mar 29;12:173�

194. https://doi.org/10.1016/j.omto.2018.12.011

25.

Wu Q, Li G, Gong L, Cai J, Chen L, Xu X, et al. Identification of miR-30c-5p as a tumor suppressor by targeting the m6

A reader

HNRNPA2B1 in ovarian cancer. Cancer Med. 2023 Feb;12(4):5055�5070. https://doi.org/10.1002/cam4.5246

26.

Zhou J, Gong G, Tan H, Dai F, Zhu X, Chen Y, et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma.

Oncol Rep. 2015 Jun;33(6):2915�2923. https://doi.org/10.3892/or.2015.3937

27.

Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, et al. Beyond circulating microRNA biomarkers: Urinary

microRNAs in ovarian and breast cancer. Tumour Biol. 2017

May;39(5):1010428317695525.

https://doi.org/10.1177/1010428317695525

South Russian Journal of Cancer 2024. Vol. 5, No. 3. P. 76-90

Kutilin D. S. , Filippov F. E., Porkhanova N. V., Maksimov A. Yu. Urine transcriptomic profile in terms of malignant ovarian tumors

Information about authors:

Denis S. Kutilin � Cand. Sci. (Biol.), Leading Researcher, Laboratory

of Molecular Oncology, National Medical Research Centre for Oncology,

Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-8942-3733, SPIN: 8382-4460, AuthorID: 794680, Scopus Author ID: 55328886800

Fedor E. Filippov � MD, oncologist of the Department of Oncogynecology, Clinical Oncology Dispensary No. 1, Krasnodar, Russian Federation

Natalya V. Porhanova � Dr. Sci. (Med.), Associate Professor of the Department of Oncology, oncologist, Clinical Oncology

Dispensary

No. 1,

Krasnodar, Russian Federation

SPIN: 2611-4840, AuthorID: 589928

Aleksey

Yu. Maksimov � Dr. Sci. (Med.), Professor, Deputy

General Director, National Medical Research Centre for Oncology, Rostov-on-Don, Russian

Federation

ORCID: https://orcid.org/0000-0002-9471-3903, SPIN: 7322-5589, AuthorID: 710705, Scopus Author ID: 56579049500

Contribution of the authors:

Kutilin D. S. � concept and design of the study, conducting the experiment, bioinformatics analysis, writing the manuscript;

Filippov F. E. � conducting the experiment, writing the manuscript;

Porkhanova N. V. � statistical data processing;

Maksimov A. Yu. � editing the manuscript.

i Надоели баннеры? Вы всегда можете отключить рекламу.