Научная статья на тему 'Улучшение сигнала электрокардиограммы на основе алгоритма удаления дрейфа его изолинии'

Улучшение сигнала электрокардиограммы на основе алгоритма удаления дрейфа его изолинии Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
961
92
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЛЕКТРОКАРДИОГРАММА / СЕРДЦЕ / ФИЛЬТРАЦИЯ / СИГНАЛ / КУБИЧЕСКИЙ СПЛАЙН / МЕДИЦИНА / ИЗОЭЛЕКТРИЧЕСКАЯ ЛИНИЯ / АЛГОРИТМ / КАРДИОЛОГИЯ / ELECTROCARDIOGRAM / HEART / FILTERING / SIGNAL / CUBIC SPLINE / MEDICINE / ISOELECTRIC LINE / ALGORITHM

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Волосатова Тамара Михайловна, Малышев Александр Павлович

В настоящее время развитие компьютерной техники получило отклик практически во всех отраслях современной науки. Такая ситуация не могла не затронуть и медицинскую промышленность. В условиях растущей смертности от сердечно-сосудистых заболеваний вопросы своевременной и точной диагностики становятся все более актуальными. Наиболее распространённым методом исследования электрической активности сердца является электрокардиография. Применение ЭВМ при анализе электрокардиограмм предоставляет большие возможности и сокращает время, требуемое врачу для постановки диагноза. Статья посвящена вопросам улучшения качества выходного сигнала ЭКГ. Рассмотрены основные требования, предъявляемые к оборудованию и методике проведения исследования. В работе изучены основные методы фильтрации входного сигнала, а также способы обнаружения характерных точек на длительных записях ЭКГ. Кроме того, ниже рассмотрен один из возможных методов повышения качества выходного сигнала, заключающийся в удалении дрейфа изоэлектрической линии цифровой кардиограммы с использованием кубических сплайнов. Проведено исследование выбора характерных точек для построения кубического сплайна, которое позволяет увеличить точность постановки диагноза и сократить время обработки электрокардиограмм. Таким образом проведенное исследование имеет под собой конкретное практическое применение в сфере функциональной кардиодиагностики.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Improved electrocardiogram signal based on its drift removal algorithm isolines

Nowadays the high growth rate of development of computer technology received a great response in modern science. This situation affects the medical industry as well. Due to the growing number of deaths from cardiovascular diseases, accurate and timely diagnosis becomes very important. The most common method of studying the electrical activity of the heart is electrocardiography. The use of computers in the analysis of electrocardiograms provides a great opportunity and reduces the time required for the physician to make a diagnosis. The article is devoted to the following important aspect: improving the quality of the ECG output signal. Here we describe the main requirements for the equipment and the methodology of the study. Common methods of filtering the input signal and the detection of the characteristic points on the long-term ECG records are researched. Moreover, one of the possible methods of improving the quality of the output signal is described. This method is based on the removal of the isoelectric line drift by using cubic splines. An article consists a study of detection of the characteristic points to construct the cubic spline, which allows increasing the accuracy of diagnosis and reducing the time of processing of electrocardiograms. Thus, the study has a certain practical application in the field of functional cardio diagnostic.

Текст научной работы на тему «Улучшение сигнала электрокардиограммы на основе алгоритма удаления дрейфа его изолинии»

Интернет-журнал «Науковедение» ISSN 2223-5167 http ://naukovedenie. ru/

Том 9, №4 (2017) http://naukovedenie.ru/vol9-4.php

URL статьи: http://naukovedenie.ru/PDF/35TVN417.pdf

Статья опубликована 28.07.2017

Ссылка для цитирования этой статьи:

Волосатова Т.М., Малышев А.П. Улучшение сигнала электрокардиограммы на основе алгоритма удаления дрейфа его изолинии // Интернет-журнал «НАУКОВЕДЕНИЕ» Том 9, №4 (2017) http://naukovedenie.ru/PDF/35TVN417.pdf (доступ свободный). Загл. с экрана. Яз. рус., англ.

УДК 004.932

Волосатова Тамара Михайловна

ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана», Россия, Москва1

Доцент кафедры «Системы автоматизированного проектирования»

Кандидат технических наук E-mail: tamaravol@gmail.com РИНЦ: http://elibrary.ru/author_profile .asp?id=521738

Малышев Александр Павлович

ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана», Россия, Москва

Бакалавр кафедры «Системы автоматизированного проектирования»

E-mail: a-lexing@mail.ru

Улучшение сигнала электрокардиограммы на основе алгоритма удаления дрейфа его изолинии

Аннотация. В настоящее время развитие компьютерной техники получило отклик практически во всех отраслях современной науки. Такая ситуация не могла не затронуть и медицинскую промышленность. В условиях растущей смертности от сердечно-сосудистых заболеваний вопросы своевременной и точной диагностики становятся все более актуальными. Наиболее распространённым методом исследования электрической активности сердца является электрокардиография. Применение ЭВМ при анализе электрокардиограмм предоставляет большие возможности и сокращает время, требуемое врачу для постановки диагноза. Статья посвящена вопросам улучшения качества выходного сигнала ЭКГ. Рассмотрены основные требования, предъявляемые к оборудованию и методике проведения исследования. В работе изучены основные методы фильтрации входного сигнала, а также способы обнаружения характерных точек на длительных записях ЭКГ. Кроме того, ниже рассмотрен один из возможных методов повышения качества выходного сигнала, заключающийся в удалении дрейфа изоэлектрической линии цифровой кардиограммы с использованием кубических сплайнов. Проведено исследование выбора характерных точек для построения кубического сплайна, которое позволяет увеличить точность постановки диагноза и сократить время обработки электрокардиограмм. Таким образом проведенное исследование имеет под собой конкретное практическое применение в сфере функциональной кардиодиагностики.

Ключевые слова: электрокардиограмма; сердце; фильтрация; сигнал; кубический сплайн; медицина; изоэлектрическая линия; алгоритм; кардиология

1 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1

Введение

Рост возможностей компьютерной техники в настоящее время позволил интегрировать ее в абсолютное большинство областей практической и научной деятельности. Этот процесс получил отражение и в сфере медицинского оборудования. В условиях растущей смертности от сердечно-сосудистых заболеваний вопросы своевременной и точной диагностики становятся все более актуальными. Наиболее часто применяемым способом проведения диагностики сердечной мышцы является электрокардиография. Использование ЭВМ для анализа кардиограмм значительно уменьшает период времени, необходимый врачу для диагностирования, а также существенно увеличивает возможности медперсонала.

Современные способы анализа электрокардиограмм отличаются большим многообразием, обусловленным не только различием разрешаемых задач, но и специфичностью параметров исследуемого кардиосигнала. Важнейший этап анализа электрокардиосигналов - это распознавание важнейших ее частей: QRS-комплекса, обнаружение характерных точек: вершин зубцов S, R, Q, границ RR-интервала и зубцов Р, Т (см. рис. 1). Также важное место занимает мониторинг смещения сегмента ST относительно изоэлектрической линии, позволяющего диагностировать наличие у пациента предпосылок к тем или иным заболеваниям [4].

Рисунок 1. Разметка ЭКГ (разработан автором)

Отсутствие электрических возмущений позволяет увеличить соотношение сигнал-шум, но создать такие условия невозможно вследствие недостижимости состояния покоя. Можно лишь свести к минимуму их негативное воздействие.

Помехи могут быть увеличены усилительной системой устройства для съема ЭКГ, причем линейная фильтрация не может устранить такие помехи. А они, в свою очередь, приводят к неверной постановке диагноза пациенту. Возникающие помехи могут быть вызваны многими факторами: работой электроприборов в непосредственной близости (см. рис. 2а), плохим контактом электрода с кожей (см. рис. 2б), усталостью мышц или потением (см. рис. 2в). Они различны по интенсивности и спектральному составу [5]. После фильтрации в составе электрокардиосигнала остаются в виде помехи сигнал дрейфа изолинии, так как его спектр находится в полосе частот, занимаемой полезным сигналом.

Рисунок 2. Помехи на ЭКГ [5]

Устранение дрейфа изолинии - непростая задача, линейная фильтрация неминуемо приводит к искажению и ослаблению полезного сигнала.

Работа посвящена исследованию основных аспектов электрокардиографии, изучению методов выделения характерных точек на кардиосигнале, а также разработке программного комплекса для удаления дрейфа изолинии.

1. Цели и задачи

Цель работы формулируется следующим образом: требуется разработать алгоритм и программную реализацию удаления дрейфа изолинии. В процессе работы поставлены следующие задачи:

• Провести анализ основных принципов съема ЭКГ и разметки кардиоциклов.

• Создать вычислительные методики фильтрации исходных данных, обнаружения характерных точек и кубической интерполяции результатов обработки.

• Разработать алгоритм удаления дрейфа изолинии.

• Исследовать влияние выбора характерной точки на качество результирующего сигнала.

2. Принцип работы программной части комплекса

Для удаления дрейфа разработан следующий алгоритм (см. рис. 3). Сигнал, полученный из базы данных, фильтруется, затем на "отчищенном" от помех сигнале находятся R-пики, позволяющие на дальнейшем этапе определить местоположение других характерных точек (точек, характеризующих полезную составляющую сигнала). По найденным точкам строится кусочно-полиноминальная интерполяция, моделирующая дрейф изолинии, поэтому при вычитании из исходного сигнала интерполяционной функции будет получен сигнал без помехи, вызванной плохим контактом электрода с кожей.

Получение кардиосигнала из базы данных

JE.

Фипьрация

Определение координат R-пикоб

_±_

Нахождение места пол оженил характерных тючек

*

Построение кубического сплайна

у

Вычитание

кубического сплайна

Рисунок 3. Общий алгоритм удаления дрейфа (разработан автором)

3. Описание шагов алгоритма

На первом этапе производится выборка сигнала из базы данных MIT DB. Запись состоит из трёх файлов: заголовочный файл, файл данных и файл аннотации.

Для доступа и отображения кардиосигнала используется функция библиотеки WFDB rdsamp, которая считывает файлы сигналов для указанной записи и сохраняет образцы в виде десятичных чисел на стандартный вывод. Также функция позволяет вывести сигнал в виде графика, при этом есть возможность выбрать отображаемые отведения и длительность отображаемой записи (см. рис. 4).

Исходный сигнал

62 | | | | | | | I

| 5.4

4.4- 1 11

О 5 10 15 20 25 30 35 40

Время :i

Рисунок 4. Исходный сигнал (разработан автором)

Видно, что сигнал далёк от идеальной формы, присутствуют шумы и дрейф, которые искажают информацию об амплитудах QRS-комплексов, а это непоправимо приведет к неправильной постановке диагноза.

Приём сигнала на фоне шума описывается в виде процедуры фильтрации сигнала посредством фильтра, при этом ставится задача максимально ослабить шумы и помехи, и минимально исказить принимаемый сигнал. На рисунке 5 проиллюстрировано действие фильтра Батерворта верхних и нижних частот, причем можно заметить, что фильтр верхних частот сильно искажает сигнал и приводит к искаженным значениям амплитуд, а фильтр нижних частот, в свою очередь, позволяет избавить сигнал от сетевой помехи, не искажая полезной составляющей сигнала [3].

Рисунок 5. Отфильтрованные сигналы (разработаны автором)

Я-пики являются главным источником информации о кардиосигнале, поэтому важнейшей задачей становится их нахождение. Алгоритм Пана-Томпкинса - это один из способов обнаружения волн ЭКГ. Алгоритм обнаружения QRS, введенный Паном и Томпкинсом наиболее широко используется для извлечения QRS комплексов из электрокардиограммы. Методология алгоритма состоит в том, что ЭКГ пропускают через низкочастотный и высокочастотный фильтры, чтобы удалить шум из сигнала. Затем берется первая производная входного сигнала, и выполняется ограничение максимального значения производной. После усреднения окном обеспечиваются хорошие условия детектирования [2]. При детектировании происходит подстройка уровня детектирования между уровнем шума и полезного сигнала, а также используется зона нечувствительности в 15 мс после обнаружения Я-зубца (см. рис. 6).

Рисунок 6. Работа алгоритма Пана-Томпкинса (разработаны автором)

Когда известны положения R-пиков, опираясь на информацию о разметке кардиосигналов, можно найти координаты характерных точек. Для этого рассматривается

доверительный интервал, в пределах которого ожидается нахождение характерной точки, далее находится глобальный минимум (максимум) на интервале, затем отсекаются варианты, не соответствующие нормальным значениям амплитуды для каждой характерной точки (см. рис.

7).

Рисунок 7. Характерные точки вершинp и R-пиков ЭКС (разработан автором)

Кубический сплайн, построенный по характерным точкам позволяет интерполировать линию дрейфа изолинии. Линейно-кусочная интерполяция не даёт нужной точности, а кубический сплайн обеспечивает требуемую гладкость [1]. Но необходимо помнить, что использование сплайнов более высоких порядков замедляет процесс вычисления. Для получения кубической интерполяции кардиосигнала в Matlab была использована функция spline, которая возвращает вектор интерполированных значений. Так, например, при построении кубического сплайна на основе характерных точек конца р-интервала получена следующая интерполяция (см. рис. 8).

Рисунок 8. Интерполяция кубическими сплайнами (разработан автором)

Финальный этап программы заключается в вычитании кубического сплайна из исходного сигнала, это позволит избавить сигнал от дрейфа изолинии (см. рис. 9).

Рисунок 9. Сигнал без дрейфа (разработан автором)

4. Следование точности диагностирования заболевания в зависимости от выбора характерных точек

Программный модуль wire.exe в качестве входных данных использует файл с загруженными в него амплитудами R-пиков и величинами RR-интервалов (см. рис. 10).

El BI< 5.txt — Блокнот

Файл Правка Формат Вид С

|233

1154 276 257 249

1146 294 322 220

1157 764 271 257

1149 240 239 322

1148 258 274 271

1146 309 246 239

1144 277 299 274

1149 382 305 246

1140 367 166 299

1145 274 238 238

1144 299 249 249

1134 259 270 270

Рисунок 10. Пример входного файла (разработан автором)

Результатом работы программного модуля является выходной файл (см. рис. 11) со списком прогнозируемых заболеваний, он включает в себя код заболевания, наименование и данные об активности заболевания.

Wire — □ X

Filepatt Idat.M Number of chani 1 Z Output : Test Servei Diagnose

Diagnostics:

•Channel 1:

5 Сахарный диабет (синдром гипергликемии) 0.5

55 Асептический некроз ГБК 0.166667

25 Бронхит хронический 0.166667

15 Полип/полипоз желчного пузыря О

26 Туберкулёз О 24 Осгеопороз О

23 Гиперплазия в яичниках (аднексит, кисты) О

21 Мочекаменная болезнь (камни, микролиты) О

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20 Гиперплазия в щитовидной железе (дифф., узловая, кисты) О

19 Хронический колит, в т.ч. полип/полипоз толстой кишки О

17 Хронический гастрит (гипоанацидный) О

16 Язвенная болезнь (хр. гастрит эроз., хр. гасгродуоденит) О

1 Здоров О

14 Полип/полипоз желудка О

2 Язва желудка О

12 Гиперплазия в матке: миома, эндометриоз, полип(оз) О

11 Мастопатия О

10 Анемия О

9 Вегетативно-сосудистая дистония (гипотония, гипертензия) О

8 Хронический простатит (аденома) О

7 Гиперплазия в желудке (гиперацидный)О

Рисунок 11. Пример выходного файла (разработан автором)

С помощью программного модуля производится прогноз на основе большого числа кардиограмм с установленным диагнозом. При проведении исследований проанализировано влияние удаления дрейфа на точность постановки диагноза на основе данных об активности заболеваний.

Таблица 1

Код Наименование заболевания Исходный ЭКС ЭКС после фильтрации R- пики Вершины p-пика Вершины p и t-пиков Конец t-пика Середина RR-интервала Середина Pt-интервала

4 Ишемическая болезнь 0.55 0.57 0.33 0.43 0.48 0.55 0.61 0.70

26 Туберкулёз 0.58 0.505 0.47 0.614 0.55 0.495 0.593 0.523

5 Сахарный диабет 0.416 0.35 - 0.403 0.51 0.504 0.455 0.423

24 Остеопороз 0.375 0.35 - 0.108 0.411 0.23 0.25 0.234

25 Бронхит 0.166 0.24 0.28 0.221 0.254 - - -

7 Гиперплазия в желудке 0.1428 0.1 0.29 - 0.109 0.12 0.09 0.12

Составлена автором

По результатам эксперимента (см. таблица 1) выявлено, что наилучшего качества ЭКС удаётся добиться при использовании в качестве точек для корректирующего сплайна середин ЯЯ-интервалов и середин р^интервалов. Именно, они позволили добиться наивысших значений активности заболевания с кодом 4 (сигнал взят из базы данных больных ишемической болезнью). Обратный результат дал кубический сплайн на основе R-пиков, который диагностирует ишемическую болезнь как заболевание не в активной фазе. Также видно, что фильтрация сигналов позволяет улучшить результат, но не так существенно, как удаление дрейфа изолинии с использованием сплайнов.

Заключение

Исключение влияния дрейфа изоэлектрической линии является одной из первоочередных задач современной функциональной диагностики в области кардиологии с чисто практической точки зрения, так как указанный дефект ЭКГ может оказать существенное

Интернет-журнал «НАУКОВЕДЕНИЕ» Том 9, №4 (июль - август 2017)

http://naukovedenie.ru publishing@naukovedenie.ru

влияние на эпикриз, и как следствие стать причиной пропуска фатальных отклонений работы сердечной мышцы.

В рамках данной работы был проведен комплексный анализ предметной области. Результатом проведенного исследования стала разработка программного комплекса, осуществляющего удаление дрейфа изоэлектрической линии с использованием кубических сплайнов. Основываясь на возможностях программного обеспечения, было произведено исследование точности определения амплитуд, результаты которого позволили установить какие характерные точки QRS-комплекса нужно выбирать, чтобы добиться наиболее точных результатов.

Основные проблемы, возникшие и решенные при реализации программного комплекса, таковы:

• Необходимость преждевременной классификации записей ЭКГ, имеющих нетипичные характеристики (перевернутый p-пик или его отсутствие).

• Отслеживание неправильно найденных характерных точек.

Внедрение полученного алгоритма на практике позволит существенно повысить качество диагностики и как следствие улучшить уровень медицинского обслуживания.

ЛИТЕРАТУРА

1. Волосатова Т.М., Спасёнов А.Ю., Логунова А.О. Автоматизированная система анализа и интерпретации электрокардиосигнала [Электронный ресурс] // Радиооптика. МГТУ им. Н.Э. Баумана. 2016.

2. Сергиенко А.Б. Цифровая обработка сигналов. - СПб: БХВ-Петербург, 2008, 753 с.

3. Дроздов Д.В. Влияние фильтрации на диагностические свойства биосигналов // Функциональная диагностика. - 2011. С. 75 - 78.

4. Bauer A., Kantelhardt J., Barthel P., Schneider R. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study // Lancet. - 2006. P. 1674 - 1681.

5. Дубровин В.И., Твердохлеб Ю.В., Харченко В.В. Автоматизированная система анализа и интерпретации ЭКГ // Радиоэлектроника, информатика, управление. -2014. C. 150 - 157.

Volosatova Tamara Mikhailovna

Bauman Moscow state technical university, Russia, Moscow

E-mail: tamaravol@gmail.com

Malyshev Aleksandr Pavlovich

Bauman Moscow state technical university, Russia, Moscow

E-mail: a-lexing@mail.ru

Improved electrocardiogram signal based on its drift removal algorithm isolines

Abstract. Nowadays the high growth rate of development of computer technology received a great response in modern science. This situation affects the medical industry as well. Due to the growing number of deaths from cardiovascular diseases, accurate and timely diagnosis becomes very important. The most common method of studying the electrical activity of the heart is electrocardiography. The use of computers in the analysis of electrocardiograms provides a great opportunity and reduces the time required for the physician to make a diagnosis. The article is devoted to the following important aspect: improving the quality of the ECG output signal. Here we describe the main requirements for the equipment and the methodology of the study. Common methods of filtering the input signal and the detection of the characteristic points on the long-term ECG records are researched. Moreover, one of the possible methods of improving the quality of the output signal is described. This method is based on the removal of the isoelectric line drift by using cubic splines. An article consists a study of detection of the characteristic points to construct the cubic spline, which allows increasing the accuracy of diagnosis and reducing the time of processing of electrocardiograms. Thus, the study has a certain practical application in the field of functional cardio diagnostic.

Keywords: electrocardiogram; heart; filtering; signal; cubic spline; medicine; isoelectric line; the algorithm

i Надоели баннеры? Вы всегда можете отключить рекламу.