Научная статья на тему 'Улучшение механических свойств пружин из стали 65Г изотермической закалкой'

Улучшение механических свойств пружин из стали 65Г изотермической закалкой Текст научной статьи по специальности «Технологии материалов»

CC BY
3388
129
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕРМИЧЕСКАЯ ОБРАБОТКА / ПРУЖИННЫЕ СВОЙСТВА / СТАЛЬ / ИЗОТЕРМИЧЕСКАЯ ЗАКАЛКА / НИЖНИЙ БЕЙНИТ / HEAT TREATMENT / SPRING PROPERTIES / STEEL / ISOTHERMAL HARDENING / LOWER BAINITE

Аннотация научной статьи по технологиям материалов, автор научной работы — Салынских Виктория Михайловна, Щербакова Елена Евгеньевна, Арефьева Людмила Павловна

На основании анализа требований к составу, механическим и технологическим свойствам материала для изготовления пружин предложена модернизация технологического маршрута термообработки изделий, в том числе температур отжига, закалки и отпуска стали, технологических сред для нагревания и охлаждения. Использование предлагаемой изотермической закалки с последующим отпуском, позволяет получить структуру нижнего бейнита, которая обеспечивает более высокий предел упругости, и высокую усталостную прочность.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Салынских Виктория Михайловна, Щербакова Елена Евгеньевна, Арефьева Людмила Павловна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

IMPROVEMENT OF MECHANICAL PROPERTIES OF SPRINGS MADE OF STEEL 65G BY ISOTHERMAL QUENCHING

Based on the analysis of the requirements to composition, mechanical and technological properties of the material for the manufacture of springs the authors have proposed the improvement of the manufacturing route of products heat treatment, including annealing temperatures, quenching and tempering of steel, technological environments for heating and cooling. The use of the proposed isothermal quenching with subsequent tempering, allows obtaining a structure of lower bainite, which provides a high elastic limit and high fatigue strength.

Текст научной работы на тему «Улучшение механических свойств пружин из стали 65Г изотермической закалкой»

УДК 621.78

УЛУЧШЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ПРУЖИН ИЗ СТАЛИ 65Г ИЗОТЕРМИЧЕСКОЙ ЗАКАЛКОЙ

Салынских В. М., Щербакова Е. Е., Арефьева Л. П.

Донской государственный технический

университет, Ростов-на-Дону, Российская

Федерация

[email protected]

[email protected]

[email protected]

На основании анализа требований к составу, механическим и технологическим свойствам материала для изготовления пружин предложена модернизация технологического маршрута термообработки изделий, в том числе температур отжига, закалки и отпуска стали, технологических сред для нагревания и охлаждения. Использование предлагаемой изотермической закалки с последующим отпуском, позволяет получить структуру нижнего бейнита, которая обеспечивает более высокий предел упругости, и высокую усталостную прочность.

Ключевые слова: термическая обработка, пружинные свойства, сталь, изотермическая закалка, нижний бейнит.

UDC 621.78

IMPROVEMENT OF MECHANICAL PROPERTIES OF SPRINGS MADE OF STEEL 65G BY ISOTHERMAL QUENCHING

Salynskih M. V., Shcherbakova E. E., Arefeva L. P.

Don State Technical University, Rostov-on-Don, Russian Federation

[email protected]

[email protected]

[email protected]

Based on the analysis of the requirements to composition, mechanical and technological properties of the material for the manufacture of springs the authors have proposed the improvement of the manufacturing route of products heat treatment, including annealing temperatures, quenching and tempering of steel, technological environments for heating and cooling. The use of the proposed isothermal quenching with subsequent tempering, allows obtaining a structure of lower bainite, which provides a high elastic limit and high fatigue strength.

Keywords: heat treatment, spring properties, steel, isothermal hardening, lower bainite

Введение. Упругие элементы конструкций изготавливают из легированных и углеродистых сталей. Для изготовления пружин требуется применение сталей с высоким сопротивлением малым пластическим деформациям. Для выполнения своих функций пружины должны сохранять форму в течение всего периода эксплуатации, стабильную структуру материала, высокую степень релаксации и коррозионную стойкость, а также высокую сопротивляемость изнашиванию и явлению хрупкого разрушения [1-5].

Термическая обработка является одной из наиболее важных операций общего технологического цикла обработки деталей, позволяющая получить необходимые характеристики материала [5]. В результате термической обработки механические свойства металлов и сплавов могут быть изменены в широких пределах, что позволяет расширить область их применения [5-9]. Улучшение механических свойств в результате термической обработки позволяет снижать себестоимость продукции путем использования для производства деталей более дешевых сплавов простых составов.

Постановка задачи. Целью работы является улучшение механических свойств модернизацией технологического процесса производства пружин. Для достижения поставленной цели необходимо решить следующую задачу: исходя из требований, предъявляемых к материалу изделий, и условий эксплуатации модернизировать технологический процесс изотермической закалки для пружин из выбранного материала для сокращения времени процесса термической

обработки и улучшения конечных пружинных свойств материала.

Выбор марки стали для изготовления пружин. Пружины могут быть изготовлены из сталей следующих марок: сталь 65, 65Г, 55С2, 50ХГА [10]. Исходя из необходимых механических, технологических и эксплуатационных свойств нами была выбрана сталь 65Г.

Марганцевая сталь 65Г по сравнению с другими сталями обладает некоторыми особенностями, к которым относятся получение менее шероховатой поверхности при горячей обработке, меньшая склонность к обезуглероживанию. Сталь 65Г удовлетворяет заданным требованиям к технологическим и механическим свойствам стали, имеет повышенную прочность, вязкость и сопротивляемость изнашиванию, высокое сопротивление небольшим пластическим деформациям и релаксационную стойкость. Обладает достаточно высокой прокаливаемостью. Имеет относительно низкую стоимость в сравнении с остальными сталями.

При изотермической закалке с образование структуры нижнего бейнита пружинная сталь обладает более высоким пределом упругости, большим пределом выносливости, достаточной пластичностью и вязкостью.

Более высокие значения предела упругости стали в состоянии твердости после изотермической закалки, по сравнению с обычной закаленной при равной твёрдости можно объяснить иной субструктурой и особенностями выделения дисперсных карбидов (эти карбиды образуются по плоскостям {112}, по которым располагаются и дефекты упаковки). Поэтому препятствия движению дислокаций весьма эффективны.

Образующийся в этих сталях при изотермической закалке на нижний бейнит а-твердый раствор не имеет двойникованного строения, так как последний образуется из участков аустенита с пониженным содержанием углерода. В итоге, после изотермической закалки сталь характеризуется более благоприятным сочетанием свойств прочности [1,11].

Остаточный аустенит, фиксируемый после изотермической закалки, менее склонен к превращению в мартенсит при развитии трещины по сравнению с остаточным аустенитом после обычной закалки, и таким образом он повышает трещиностойкость стали. Эта повышенная стабильность остаточного аустенита к превращению в мартенсит проявляется и в области микро-и малых пластических деформаций. Именно поэтому сталь 65Г после изотермической закалки даже при повышенном количестве остаточного аустенита обладает достаточно высоким пределом упругости. Также возрастает сопротивление пластической деформации самого остаточного аустенита за счет преобразования его субструктуры и выделения частиц карбидов в процессе изотермической выдержки.

Режим термической обработки. Предлагаемый режим термической обработки пружины из стали 65Г изображен на рисунке 1.

ТЗс

900 '

800-820

10 20 30 40 50 60 70 80 90 100 ПО 120 130140 150

Рис. 1. Предлагаемый режим термической обработки пружины из стали 65Г

Сталь со структурой нижнего бейнита обладает не только высоким пределом упругости, но также и более высокой усталостной прочностью при той же твердости, что и сталь после закалки на мартенсит и отпуска, поскольку в первом случае, ниже величина микронапряжений, а форма карбидных частиц более равноосная.

У стали со структурой верхнего бейнита усталостная прочность ниже, чем у закаленной на мартенсит и подвергнутой отпуску, поскольку карбидные частицы в верхнем бейните, имеющие пластинчатую форму и более крупные размеры, располагаются по границам кристаллов а-фазы и поэтому играют роль концентраторов напряжений.

Для стали 65Г, при изотермической закалке происходит, нагрев при 800-820°С и изотермическая выдержка в селитровой ванне 15-20 мин при температуре 325-350°С.

Структура нижнего бейнита образуется, в результате распада переохлажденного аустенита в интервале 200-350 °С и состоит из тонких частиц Р-карбида, расположенного в пластинках пересыщенного углеродом феррита. Структура нижнего бейнита по сравнению со структурами, состоящими из продуктов распада аустенита в перлитной области (троостита), обеспечивает более высокую твердость и прочность стали при сохранении высокой пластичности.

Еще более высокие свойства пружин могут быть получены в том случае, если после закалки на нижний бейнит их подвергнуть дополнительному отпуску области образования нижнего бейнита при температуре 300-350°С.

Применение изотермической закалки с последующим отпуском позволяет повысить предел упругости стали 65Г, усталостную прочность, релаксационную стойкость, вязкость и пластичность.

Дополнительный отпуск не дает заметного эффекта, если в результате изотермической закалки была получена структура верхнего бейнита, присутствие которой вообще недопустимо для пружин.

Заключение. В работе предложена технологическая модернизация процесса термической обработки пружин из стали 65Г, позволяющая получить требуемый комплекс свойств.

Использование после изотермической закалки дополнительного отпуска расширяет область ее применения, поскольку после этого отпуска можно, который при равной твердости или прочности будет выше, чем после изотермической закалки на верхний бейнит или после обычной закалки на мартенсит и отпуска.

Библиографический список.

1. Рахштадт, А. Г. Пружинные стали и сплавы: Учебник / А.Г. Рахштадт. —изд. 3-е, перераб. и доп.— Москвас: Металлургия, 1982. — 400с.

2. Околович, Г. А. Повышение эксплуатационной надежности пружин железнодорожного транспорта / В. И. Левков [и др] // Ползуновский вестник. — № 3, 2015. — С. 33-37.

3. Околович, Г. А. Термическая обработка пружин железнодорожного транспорта/ Д. В. Кураков, Т. Г. Шарикова, С. А. Чекалина // Ползуновский альманах. — № 2, 2015. — С. 141145.

4. Околович, Г. А. Характеристика пружинных сталей / Д. В. Кураков [и др] // Ползуновский альманах. — № 2, 2014. — С. 161-163.

5. Околович, Г. А. Свойства пружинных сталей после закалки, отпуска и деформационного упрочнения / В. И. Левков, Н. С. Баленко // Ползуновский альманах. — № 1, 2012.— С. 76-78.

6. Берштейн, М. Л. Металловедение и термическая обработка стали. Том 2. Основы термической обработки: Справочник / М. Л. Бернштейн, А. Г. Рахштадт. — 3-е изд., перераб. и

доп. в 3-х т. — Москва : Машиностроение, 1983. — 368 с.

7. Арендарчук, А. В. Термическая обработка в машиностроении: Справочник / под ред. Ю. М. Лахтина, А. Г. Рахштадта. — Москва : Машиностроение, 1980. — 783 с.

8. Пустовойт, В. Н. Особенности протекания мартенситного превращения в стали при закалке в постоянном магнитном поле / Ю. В. Долгачев // Вестник Донского гос. техн. ун-та. — 2007. — Т. 7, № 4 (35). — С. 459-465.

9. Пустовойт, В. Н. Особенности структуры мартенсита, полученного при закалке стали в магнитном поле в температурном интервале сверхпластичности аустенита / В. Н. Пустовойт, Ю. В. Долгачев // Металловедение и термическая обработка металлов. — № 11, 2011. — С. 3-7.

10. Пустовойт, В. Н. Технология бездеформационной закалки в магнитном поле тонкостенных деталей кольцевой формы / В. Н. Пустовойт, Ю. В. Долгачев // Вестник Донского гос. техн. ун-та. — 2011. — Т. 11, № 7 (58). — С. 1064-1071.

11. Марочник сталей и сплавов: справочник / под ред. А. С. Зубченко. — 2-е изд., — доп. и испр. — Москва : Машиностроение, 2003. — 784 с.

12. Попова, Л. Г. Диаграммы превращения аустенита в сталях и бета-раствора в сплавах титана: Справочник термиста / Л. Е. Попова, А. А. Попов.— 3-е изд., перераб. и доп. — Москва : Металлургия, 1991. — 503 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.