Научная статья на тему 'Ultrafast diamond nanophotonics in quantum technologies and gemology'

Ultrafast diamond nanophotonics in quantum technologies and gemology Текст научной статьи по специальности «Физика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Ultrafast diamond nanophotonics in quantum technologies and gemology»

Ultrafast diamond nanophotonics in quantum technologies

and gemology

S. Kudryashov*, P. Danilov, D. Pomazkin, N. Smirnov, P. Pakholchuk, V. Vins, M. Skorikov, A. Gorevoy, E. Kuzmin, G. Krasin, Yu. Gulina

Lebedev Physical Institute, 119991 Moscow, Russia

* kudryashovsi@lebedev.ru

Even though ultrafast non-linear photonics were broadly harnessed in application to diverse dielectric materials over the last decades, it was scarsely utilized in diamond research, being limited by self-focusing, high-harmonics and multi-photon luminescence generation. However, recent singlephoton atomistic source, lasing and laser nanoscale encoding studies in diamonds have brought up the issues of ultrasensitive and selective concentration measurements for the most important basic nitrogen-based embedded quantum emitters (optical centers A, B, C, N3, H3, NV etc.) at (sub)ppb level and nano/microscale spatial resolution (mapping), for their smart and robust functional harnessing. In our room-temperature broadband spectroscopic studies with a tunable optical parametric femtosecond-laser source, resonant and non-resonant ultrafast non-linear self-transmittance and photoluminescence were explored in order to measure saturated anti-Stokes absorption and Stokes emission cross-sections of nitrogen-based quantum emitters, while non-linear two-photon self-transmittance measurements were employed to calibrate, measure and map their local concentrations at ppb-ppm level [1,2]. These methods provide for the first time facile and sensitive room-temperature concentration measurements/spatial mapping of the most important nitrogen-based quantum emitters as key-enabling elements for advance and perspective (nano)photonic applications.

These preceding non-invasive ultrafast spectroscopic studies provided us an unique toolkit for predetermined resonant and non-resonant high-intensity femtosecond-laser atomistic structural modifications in diamonds for their commercial photoluminescent microencoding [3], (dis)coloration [4] and catastrophic disordering [5].

This research was supported by Russian Science Foundation (project # 21-79-30063).

[1] S. Kudryashov, P. Danilov, N. Smirnov, P. Pakholchuk, M. Skorikov, Photo-physical characteristics of color N3-center in diamond studied via UV femtosecond-laser pumped luminescence, Optics Letters, 49 (1), 137-140, (2024).

[2] S. Kudryashov, P. Danilov, V. Vins, D. Pomazkin, P. Pakholchuk, One-photon femtosecond laser excitation of photoluminescence from H3 and H4 centers in natural diamond: A method to determine their concentration, JETP Letters, 119 (3), 173-178, (2024).

[3] youtu.be/X3Z_jcWowks

[4] S.I. Kudryashov, V.G. Vins, P.A. Danilov, E.V. Kuzmin, A.V. Muratov, G.Y. Kriulina, Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses, Carbon, 201, 399-407, (2023).

[5] S. Kudryashov, P. Danilov, V. Vins, E. Kuzmin, A. Muratov, Intrapulse in situ Raman probing of electron, phonon and structural dynamics in synthetic diamond excited by ultrashort laser pulses: Insights into atomistic structural damage, Carbon, 217, 118606 (2024).

i Надоели баннеры? Вы всегда можете отключить рекламу.