УДК 553.98(571)
Н.М. Парфёнова, Е.Б. Григорьев, Л.С. Косякова, И.М. Шафиев
Углеводородное сырье Южно-Киринского месторождения: газ, конденсат, нефть
Разработка Южно-Киринского газоконденсатного месторождения (ГКМ), являю- Ключевые слова:
щегося одним из первоочередных объектов освоения Сахалинского шельфа, осу- газ, ществляется по проекту «Сахалин-3» в рамках Восточной газовой программы конденсат,
ПАО «Газпром». Ввод в эксплуатацию Южно-Киринского ГКМ, ранее запланирован- нефть,
ный на 2018 г., перенесен ПАО «Газпром» на 2019 г. из-за необходимости корректи- фракционный
ровки запасов [1]. состав,
Южно-Киринское ГКМ расположено в пределах Киринского блока1 в южной ча- компонентный
сти Северо-Сахалинского прогиба. Расстояние от береговой линии о. Сахалин - 35 км. состав,
Глубина моря в районе месторождения - 110-320 м. В 2010-2011 гг. ООО «Газфлот» групповой
пробурило первые две скважины (скв. 1 и 2) на Южно-Киринской структуре, выя- углеводородный
вившие промышленную газоконденсатную залежь в породах дагинского горизонта состав, миоцена. В дальнейшем в 2013 г. пробурены скв. 3 и 4, в 2014 г. - скв. 5 и 6, в 2015 г. - геохимические
скв. 7 и 8. Месторождение многопластовое. Толщина продуктивных пластов состав- показатели,
ляет 14-26 м. Пластовые условия характеризуются давлением 28-29 МПа и аномаль- газожидкостная
но высокой температурой 115-124 °С. хроматография.
Поскольку в ближайшие годы запланирована промышленная эксплуатация
Южно-Киринского ГКМ, исследование химической природы и направлений ра- Keywords:
ционального использования конденсатов является актуальным и своевременным. gas,
Особенно важны такие сведения, полученные для конденсатов в исходном состоя- condensate, нии, для процесса мониторинга физико-химических характеристик, изменяющихся petroleum,
в процессе эксплуатации месторождения. Далее в статье представлены результа- fractional analysis,
ты комплексного физико-химического исследования газа и конденсата из всех вось- componential
ми поисково-разведочных скважин месторождения с разной глубины, а также неф- analysis,
ти из оторочек (скв. 3-6). Все исследования проводились в соответствии с действу- hydrocarbon-type
ющими нормативными документами. Интервал перфорации скважин - 2655-2848 м. content,
Применительно к жидким флюидам ставилась задача охарактеризовать топливные geochemical
фракции и направления рационального использования конденсатов. indicators,
Газ Южно-Киринского ГКМ отнесен к метановому типу (83-84 % об. метана, vapour phase
4,5-4,8 % об. этана, 2,6-3,03 % об. пропана, 1,4-1,8 % об. бутанов). Он является угле- chromatography. кислым (1,68-2,02 % об. углекислого газа), низкоазотным (0,19-0,45 % об. азота), не-гелиеносным (0,00 % об. гелия), высококонденсатным (3,32-5,64 % об. С5+).
Конденсаты Южно-Киринского ГКМ по всем физико-химическим характеристикам схожи между собой, но не идентичны. Об этом свидетельствуют результаты определения их физико-химических свойств, а также фракционного, компонентного и группового углеводородного (УВ) составов. Сходство конденсатов заключается в том, что все они малопарафинистые (содержание твердых парафинов - 0,14-0,60 % масс.), малосмолистые (содержание силикагелевых смол - 0,09-0,22 % масс.), малосернистые (содержание серы - 0,03-0,04 % масс.), выкипают в интервале температур НК2-300 °С с остатком 5,5-7,1 % масс., по химическому составу относятся к метаново-нафтеновому
1 См. рис. 1 в ст. Парфёнова Н.М. Перспективы использования газоконденсатов Южно-Киринского нефтегазоконденсатного месторождения / Н.М. Парфёнова, Л.С. Косякова, И.М. Шафиев, Е.Б. Григорьев, М.М. Орман, И.В. Заночуева // Вести газовой науки: Актуальные вопросы исследований пластовых систем месторождений углеводородов. - М.: Газпром ВНИИГАЗ, 2015. - № 4 (24). - С. 61.
2 НК - температура начала кипения.
типу. Различия наблюдаются в величинах плотности и в групповом УВ составе. Конденсаты из скв. 1-3, 7 (плотность 743,0-748,8 кг/м3) относятся к типу легких, а из скв. 4 (плотность 765,5 кг/м3) и из скв. 5, 6, 8 (плотность 750,1758,5 кг/м3) - к типу средних.
Кривые фракционного состава (рис. 1) расположены пучком - достаточно близко друг к другу, но не сливаются, поскольку разница в температурах отгона составляет 12-13 °С. Наиболее тяжелым по плотности (765,5 кг/м3) и фракционному составу является конденсат из скв. 4, наиболее легкие - конденсаты из скв. 1 и 7 (744,1 и 746,0 кг/м3).
В групповом УВ составе всех исследованных конденсатов (рис. 2) метановые УВ
преобладают над нафтеновыми и ароматическими. В дистиллятной части конденсатов НК-300 °С содержание метановых УВ составляет 54,9-57,8 % масс., нафтеновых - 26,1-34,0 % масс., ароматических -9,6-18,2 % масс. На основании полученного распределения УВ конденсаты Южно-Киринского месторождения можно отнести к метаново-нафтеновому типу.
Групповые составы конденсатов из разных объектов одной и той же скважины схожи, например для трех объектов скв. 1, двух объектов скв. 5 и двух объектов скв. 6 (см. рис. 3). Концентрации метановых УВ в конденсатах достаточно близки (54,9-57,8 % масс.), а вот концентрации нафтеновых (26,1-34,0 % масс.)
О 300
св
а
^
5 250 л
н 200 -
150 -
- СКВ. 1, об. 1 - СКВ 5, об. 2
- СКВ. 1, об. 2 СКВ 5, об. 3
— СКВ. 1, об. 3 - СКВ. 6, об. 2
- СКВ. 2, об. 1 - СКВ 6, об. 3
- СКВ. 2, об. 2 СКВ 7, об. 1
- СКВ. 3, об. 2 — СКВ 8, об. 1
— СКВ. 4, об. 2
100
50
80 90
Выход, % об.
Рис. 1. Сравнительная характеристика конденсатов по фракционному составу
0
60 , 50 40 : 30 20 10
- СКВ 1,об. 1 - СКВ. 5, об. 2
- СКВ 1, об. 2 — СКВ. 5, об. 3
— СКВ 1, об. 3 - СКВ. 6, об. 2
- СКВ 2, об. 1 - СКВ. 6, об. 3
- СКВ 2, об. 2 — СКВ. 7, об. 1
- СКВ 3, об. 2 — СКВ. 8, об. 1
— СКВ 4, об. 2
Метановые УВ Нафтеновые УВ Ароматические УВ
Рис. 2. Групповой УВ состав конденсатов
и ароматических (9,6-18,2 % масс.) УВ различаются довольно заметно. Самым низким содержанием ароматических УВ отличаются конденсаты из скв. 1 (9,6-11,8 % масс.) и 7 (10,7 % масс.), а самым высоким - конденсаты из скв. 4 и 8 (18,2-18,3 % масс.). Наибольшую схожесть между собой по всем свойствам обнаруживают соответственно конденсаты из скв. 1-3, 7, скв. 5 и 6, скв. 4 и 8.
Нефти, как уже отмечалось, исследовались из оторочек (скв. 3-6). Поскольку в нефти из скв. 6 предполагался приток конденсата, сравнительная характеристика дана для неф-тей из скв. 3-5. Так, исследованные нефти несколько отличаются по физико-химическим характеристикам. Нефть из скв. 3 (плотность 851,6 кг/м3) относится к типу средних, а нефти из скв. 4 и 5 (плотность 834,2 и 832,7 кг/м3 соответственно) - к типу легких. Они парафи-нистые (3,4-3,9 % масс.), смолистые (силика-гелевые смолы - 5,4-8,5 % масс., асфальте-ны - 0,3-0,9 % масс.). Бесспорным преимуществом нефтей является низкое содержание серы - 0,26-0,38 % масс., температуры застывания лежат в интервале от -20 до -15 °С. Выход бензиновой фракции НК-200 °С составляет 24,6-30,7 % масс.
Фракционные составы (рис. 3) нефтей из скв. 4 и 5 схожи (как и физико-химические свойства). Более тяжелая нефть из скв. 3 отличается от других нефтей и фракционным составом. Для наглядности приведен фракционный состав нефти из скв. 6, заметно отличающийся большим содержанием легких фракций.
В групповом УВ составе нефтей из скв. 3-5 (рис. 4) метановые УВ преобладают над нафтеновыми и ароматическими. В дистиллятной части конденсатов НК-300 °С содержание метановых УВ составляет 48,853,7 % масс., нафтеновых - 29,4-33,4 % масс. и ароматических - 17,3-19,1 % масс. Во фракции НК-390 °С сумма метаново-нафтеновых УВ составляет 79,9-80,0 % масс., ароматических - 20,0-20,1 % масс., что позволяет отнести нефти Южно-Киринского ГКМ к метаново-нафтеновому типу.
Товарные характеристики конденсатов и нефтей
В целях выбора рационального направления использования конденсатов и нефтей Южно-Киринского ГКМ исследованы на соответствие товарным топливам бензиновые фракции, керосиновая фракция и фракция дизельного топлива. Бензиновые фракции конденсатов НК-120 °С характеризуются довольно высокими для прямогонных бензинов октановыми числами, а именно: 69,3-71,3 при определении моторным методом и 71,3-75,2 исследовательским методом (норма - не менее 66 при определении моторным методом). Однако эти фракции не отвечают требованиям ТУ 51-03-11-88 на фракцию газоконденсат-ную бензиновую прямогонную как компонент автобензинов газоконденсатных прямогонных по нормируемому показателю давления насыщенных паров (норма 66-93 кПа). Широкая бензиновая фракция НК-200 °С не отвечает
80
« 60 л
m
40
20
0
— с кв. 3
— СКВ. 4 — скв. 5 СКВ. 6
50 100 150 200 250 300 350 400
Температура, °С
Рис. 3. Фракционный состав нефтей
d 60 ■.J
я
S £
о" 50
40
я
£ 30
m >
и 20
к
I
а
in « 10 о О
— скв.3 — скв.4 — скв. 5 -
Л к.
V
N ч
Метановые Нафтеновые Ароматические УВ УВ УВ
Рис. 4. Групповой УВ состав нефтей
требованиям ТУ 51-03-11-88 по нормируемому показателю давления насыщенных паров и октановому числу (72 для НК-120 °С и 61-62 для НК-200 °С при определении моторным методом). Тем не менее к несомненному достоинству бензиновых фракций конденсатов НК-120 °С и НК-200 °С можно отнести практическое отсутствие серы (0,001 % масс. при норме не более 0,05 % масс.), в связи с чем их можно рекомендовать в качестве базовых для производства автомобильных топлив.
Керосиновые фракции конденсатов, выкипающие в интервале 120-240 °С, по всем показателям удовлетворяют требованиям ГОСТ 10227-86 к первому сорту топлива для реактивных двигателей. Для производства топлива высшего сорта необходимо применять присадку, улучшающую вязкость фракции.
Фракции дизельного топлива конденсатов, выкипающие в температурных интервалах 160300 °С и 180-300 °С, по всем основным показателям (плотности, фракционному составу, цета-новому числу, температурам помутнения и застывания) соответствуют нормативам на дизто-пливо высшего и первого сортов. Фракция нефти 180-350 °С по всем основным показателям удовлетворяет требованиям к дизтопливу марки Л. Для использования этой фракции в качестве базовой для производства топлива марки З необходимы присадки, понижающие температуры помутнения и застывания.
Геохимические особенности конденсатов и нефтей
Геохимические особенности конденсатов и нефтей рассматривались исходя из компонентного состава флюидов, исследованного методом газожидкостной хроматографии. Компонентный состав конденсатов: легкие УВ С5-8 - 40-55 %; твердые парафины С20+ - 0,15-0,37 % и > 0,45 %; н-алканы -25,35-30,82 %; изопреноиды - 2,42-4,38 %. Конденсаты несколько отличаются содержанием н-алканов. Различия особенно заметны в отношении легких УВ, выкипающих при температуре до 125 °С. Более тяжелый по фракционному составу конденсат из скв. 4 содержит меньше легких УВ и больше тяжелых.
Компонентный состав нефтей: С5-8 -16,41-25,18 %; С20+ - 3,57-3,87 %; н-алканы -17,93-27,20 %; изопреноиды - 5,47-7,23 %.
Анализ результатов газожидкостной хроматографии показал (рис. 5), что конденсаты
как по площади, так и по разрезу месторождения имеют среднюю протяженность ряда нормальных алканов в 26-29 атомов углерода, молекуляр-ноконцентрационный максимум (МКМ) расположен в области низкокипящих УВ С5 (в конденсате из скв. 4 он сдвинут в область УВ С7, см. рис. 5а). В нефтях протяженность ряда н-алканов заметно больше и составляет 35-37 атомов углерода, МКМ в них находится в области более тяжелых углеводородов С10-С15 (см. рис. 5б).
По компонентному составу были рассчитаны алкановые коэффициенты К и К2, что позволило провести оценку типов исследованных флюидов [1]. Для конденсатов параметры
изменяются в близких пределах: К1 =
Мп
м п
= 1,1-11,49 и К2 =-
М п
М г.
= 3,8-4,66, где М -
массовая доля группы УВ. Это соответствует конденсатам газоконденсатнонефтяных залежей с большими нефтяными оторочками. Для нефтей алкановые коэффициенты заметно ниже: К = 0,68-0,74; К2 = 1,12-1,21.
Методом газожидкостной хроматографии изучены основные геохимические параметры флюидов Южно-Киринского месторождения. Генетические показатели, такие как коэффициент нечетности (0,94-1,05), отношение «при-стан/фитан» (1,27-1,89) достаточно близки для конденсатов и нефтей, что позволяет предположить общность источника образования флюидов из основного органического вещества смешанного сапропелево-гумусового типа.
Однако необходимо отметить, что по величинам отношений «пристан/нС17» и «фитан/ нС18» конденсаты и нефти Южно-Киринского месторождения дифференцируются по трем группам. Для конденсатов из скв. 1 и конденсатов и нефти из скв. 3, расположенных в юго-восточной части структуры, эти отношения заметно больше единицы, но меньше двух, для остальных конденсатов и нефтей (скв. 2, 4-6 и 8) они либо значительно меньше единицы, либо близки к ней. Для конденсатов из скв. 7, расположенной в нижней части юго-восточной оконечности структуры, эти отношения превышают 2. Такая же тенденция (т. е. заметное возрастание в направлении с севера на юг) наблюдается и для коэффициента зрелости флюидов К1 (рис. 6).
Дж. Кенноном и А.М. Кассоу для уточнения типа исходного органического вещества (ОВ)
3-15
15-19
5-19
5;5
в "
и
Я
I
о
« 3
- СКВ 1,об. 1 - СКВ. 5, об. 2
- СКВ 1, об. 2 — СКВ. 5, об. 3
- СКВ 1, об. 3 - СКВ. 6, об. 2
- СКВ 2, об. 1 - СКВ. 6, об. 3
- СКВ 2, об. 2 — СКВ. 7, об. 1
- СКВ 3, об. 2 — СКВ. 7, об. 1
- СКВ 4, об. 2 — СКВ. 8, об. 1
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Число атомов углерода в н-алкане
0,8 -0,6 -0,4 -0,2 -0
- СКВ 3, об. 1
- СКВ 4, об. 1
СКВ 5, об. 1
- СКВ 6, об. 1
26 28 30 32 34 36 38 Число атомов углерода в н-алкане
Рис. 5. Молекулярно-массовое распределение н-алканов в конденсатах (а) и нефтях (б)
6
2
1
0
а
б
предложен график в логарифмических координатах. По оси ординат откладывается отношение «пристан/нС17», по оси абсцисс - «фитан/ нС18». По диагонали квадратное поле графика разделено пополам на две области: сапропелевое ОВ морского генезиса и континентальное ОВ с большой долей гумусовой составляющей. Внутри этих областей имеется деление на типы ОВ по условиям осадконакопления. Морское ОВ подразделяется на мелководно-морское и глубоководное. В континентальном ОВ выделяются ОВ наземного и озерно-болотного типов. Прибрежные и лагунные ОВ относят к смешанным типам.
Применительно к изученным флюидам Южно-Киринского месторождения график Кеннона и Кассоу принимает вид, представ-
ленный на рис. 7. Согласно этому графику образование флюидов Южно-Киринского месторождения происходило в умеренно-восстановительной обстановке из лагунного ОВ смешанного типа.
Следует, однако, отметить, что соотношения сапропелевой и гумусовой составляющих ОВ различны. Об этом свидетельствуют данные дифференциации флюидов по содержанию аро-магических УВ в бензиновой фракции и, следовательно, в гумусовой составляющей (рис. 8). Так, в скв. 2, 4, 5, 8, расположенных в западной, северной и северо-восточной частях месторождения, содержится больше ароматических УВ (14,44-19,93 % масс.) по сравнению с юго-восточной частью месторождения, где расположены скв. 1, 3, 6 и 7 (9,27-11,29 % масс.).
Рис. 6. Дифференциация флюидов по генетическим признакам: Рг - пристан; РИ - фитан
= 10
1 10
Фитан/нС18
Рис. 7. Определение типа исходного ОВ Южно-Киринского ГКМ по графику Дж. Кеннона и А.М. Кассоу: 1 - наземное ОВ; 2 - озерно-болотное ОВ (окислительная обстановка); 3 - прибрежное ОВ (смешанный тип, слабая восстановительная обстановка);
4 - лагунное ОВ (смешанный тип, умеренная
восстановительная обстановка);
5 - мелководно-морское (водорослевое) ОВ;
6 - глубоководно-морское ОВ (сильная восстановительная обстановка); цифрами обозначены номера скважин (объектов)
Наряду с компонентным составом алка-новых УВ исследовался индивидуальный состав бензиновых фракций НК-200 °С конденсатов и нефтей. На его основе рассчитывался групповой углеводородный состав бензинов. Установлено, что в групповом составе бензинов преобладают метановые УВ (около 60 % масс.), изоалканы доминируют над нормальными. Циклогексановые нафтены преобладают над циклопентановыми, что указывает на наличие гумусовой составляющей в основном органическом веществе [2].
По данным индивидуального состава бензинов были рассчитаны коэффициенты, предложенные рядом исследователей (В. А. Чахмах-чевым, Т. Л. Виноградовой, К. Томпсоном и др.) [3, 4], для определения степени катагенетиче-ской преобразованности конденсатов и нефтей Южно-Киринского месторождения. Для флюидов Южно-Киринского месторождения коэффициенты термической зрелости соответствуют зоне слабого мезокатагенеза (МК;-МК2).
Также были рассчитаны углеводородные соотношения (н-алканы/изо-алканы, ХЦГ7ХЦП, ЦГ/МЦП, ЦГ/н-С6, цикланы/
ЦГ - циклогексан, ЦП - циклопентан, МЦП - метил-циклогексан
Рис. 8. Дифференциация флюидов по содержанию в них ароматических углеводородов:
Ар - содержание ароматических УВ во фракции НК-200 °С
алканы, бензол/н-С6 и толуол/н-С7), предложенные В.А. Чахмахчевым [2] и определяющие генетическую зональность углеводородных систем. Как известно, конденсаты и нефти могут быть двух типов: первичные (исходные) и вторичные (преобразованные).
Численные значения углеводородных соотношений бензиновых фракций конденсатов и нефтей Южно-Киринского месторождения позволяют отнести исследуемые флюиды ко вторичным.
Полагают, что появление вторичных конденсатов в зоне слабого и умеренного мезоката-генеза связано с процессами фазовой дифференциации в залежах и вторичной миграции в составе газоконденсатных систем. Смешанный генезис нефтяных оторочек возможен за счет выпадения нефтей из насыщенного газоконденсат-ного раствора при переходе его в зону пониженных температур и давлений вследствие подъема территории или ухода части газа по тектоническим нарушениям [5].
Установлено, что для Северо-Сахалинского прогиба, сформированного в плиоцен-четвертичное время тектогенеза, были характерны высокоамплитудные вертикальные подвижки [6]. Эти подвижки могли нарушить протяженность природных резервуаров, а возникшие
разломы - стать либо экранирующими, либо флюидопроводящими.
Оценить наличие или отсутствие горизонтальной и вертикальной флюидосообщаемости природных резервуаров, их протяженность, экранирующую или флюидопроводящую роль разломов возможно в том числе методом «отпечатков пальцев» [7]. Метод основан на закономерности, выявленной по результатам исследования многих месторождений, а именно: различия флюидов по параметрам углеводородного состава в пределах месторождения, как правило, вызваны разобщенностью резервуаров или отдельных участков сложнопостроенного резервуара, что препятствует перемешиванию флюидов. В едином резервуаре таких различий не наблюдается [8].
Метод «отпечатков пальцев» заключается в сравнении диаграмм, построенных по соотношениям высот парных пиков, выбранных в двух интервалах хроматограмм. Совпадение диаграмм указывает на общность природного резервуара, расхождение более чем на 5 % -на принадлежность к разным резервуарам.
Методом газожидкостной хроматографии получены хроматограммы конденсатов и нефтей Южно-Киринского месторождения. В интервалах хроматограмм С8-С11 и С11-С16
выбраны парные пики и вычислены соотношения высот, по которым построены диаграммы для флюидов из каждой исследуемой скважины и ее продуктивных объектов (рис. 9). Диаграммы в интервале С11-С16 практически совпали для всех скважин. Анализ диаграмм для скв. 1-8 показал, что хорошая вертикальная флюидосообщаемость наблюдается для пластов, вскрытых скв. 2-5. Диаграммы для конденсатов из этих скважин либо совпали, либо наблюдается отклонение только в одной точке. Для всех трех пластов, вскрытых скв. 1, флюидосообщаемости практически не наблюдается (отклонение по трем точкам более 25 %). Для скв. 6 также наблюдается хорошее флюидосообщение между нижними - 1-м и 2-м - объектами, но затрудненное с верхним пластом - 3-й объект.
Сравнение диаграмм для флюидов из разных скважин с целью установления возможной латеральной флюидосообщаемости приведено на рис. 10. Как видно, для всех неф-тей из скв. 3-6 диаграммы совпали (отклонение менее 5 %). Также совпали диаграммы для нефтей из скв. 4-6 с диаграммами для конденсатов из скв. 2 (1-й и 2-й объекты), что, очевидно, связано с их общим генезисом: флюиды генерированы одинаковым по типу и степени катагенетической преобразованности рассеянным ОВ и в разные периоды времени могли быть флюидально обобщены.
Совпали диаграммы для конденсатов в следующих четырех группах:
1) скв. 6 (2-й объект), скв. 5 (2-й и 3-й объекты), скв. 2 (1-й объект);
2) скв. 6 (3-й объект), скв. 4 (2-й), скв. 8 (1-й объект);
3) скв. 1 (1-й объект), скв. 2 (1-й и 2-й объекты);
4) скв. 1 (3-й объект), скв. 7 (1-й объект).
Различие более 5 % наблюдается для флюидов из скв. 1 (3-й объект) и скв. 3 (2-й объект), но при этом общий облик диаграмм сохраняется. Установленные связи между объектами нанесены на схему расположения скважин (рис. 11).
В целом можно отметить, что хорошее флюидосообщение наблюдается между объектами, вскрытыми скв. 2, 4-6 и 8. Между объектами, вскрытыми скв. 1, 3 и 7, флюидосообще-ние затруднено.
Рекомендации по рациональному использованию углеводородов Южно-Киринского ГКМ
Газ. Исследования состава газа показали, что содержание конденсата, этана, пропана, бута-нов значительно превышает их условно применяемые минимально-промышленные концентрации. Согласно Методическому руководству по подсчету балансовых и извлекаемых запасов [9], 3%-ная концентрация этана в газе считается минимально рентабельной при современном технологическом уровне извлечения этана из газа. Этан является ценным химическим сырьем для производства полиэтилена. Пропан-бутановая фракция, представляющая собой сжиженные УВ газы, используется в коммунально-бытовой сфере, в промышленности и в качестве автомобильного топлива. Исходя из потенциального содержания этих компонентов, используемой технологии и объемов добычи газа может быть получен значительный объем пропан-бутановой фракции. Метан представляет собой отличное топливо с точки зрения современной автомобильной промышленности.
Конденсат. Рекомендуется два варианта переработки конденсатов:
1) топливный - использование бензиновых, керосиновых и дизельных фракций конденсатов в качестве основы в процессах получения высококачественных топлив различных марок;
2) нефтехимический - производство ценного УВ сырья для нефтехимии из легкой части конденсатов (температура кипения до 150 °С), поскольку концентрация таких фракций в конденсатах достаточно заметна: метилциклогексана - 4,4-4,7 % масс., толуола - 2,4-2,6 % масс., ксилолов - 3-4 % масс.
Нефть. Бензиновые, керосиновые и дизельные дистилляты нефтей характеризуются высокими выходами, благоприятным химическим составом и высоким уровнем основных эксплуатационных характеристик, что позволяет рекомендовать эти фракции в качестве основы для получения соответствующих топлив, не требующих сероочистки.
-скв. 5, об. 1 —скв. 5, об. 2 —скв. 5, об. 3
. 5, об. 1 —скв. 5, об. 2 —скв. 5, об. 3
■ скв. 7, об. 1
■ скв. 8, об. 1
Рис. 9. Диаграммы, построенные по соотношениям парных пиков в интервале хроматограмм С8-Сп (вертикальное флюидосообщение)
- скв. 3, об. 1 — скв. 4, об. 1
- скв. 5, об. 1 скв. 6, об. 1
- скв. 2, об. 1 — скв. 2, об. 2 ■ скв. 4, об. 1 скв. 5, об. 1 — скв. 6, об. 1
- скв. 2, об. 1 скв. 5, об. 3
- скв. 5, об. 2
- скв. 6, об. 2
-скв. 1, об. 1 —скв. 2, об-— скв. 2, об. 2
- скв. 1. об. 2 — скв. 3. об. 2
- скв. 1, об. 3 — скв. 7, об. 1
■скв. 1, об. 3 —скв. 3, об. 2
- скв. 4, об. 2 — скв. 6, об — скв. 8. об. 1
Рис. 10. Сравнение диаграмм для флюидов из разных скважин (латеральное флюидосообщение)
***
Таким образом, конденсаты Южно-Кирин-ского месторождения, отобранные из разведочных скв. 1-8 по трем эксплуатационным объектам, по плотности относятся к конденсатам легкого (скв. 1-3, 7) и среднего (скв. 4-6, 8) типов. Это малопарафинистые, малосмолистые, малосернистые конденсаты метаново-нафтенового типа с точки зрения химического состава. Выкипают в интервале температур НК-300 °С с остатком 5,5-7,1 % масс. По физико-химическим характеристикам и фракционному составу конденсаты схожи, но не идентичны. По всем параметрам наблюдаются некоторые различия.
Нефти Южно-Киринского месторождения, отобранные из разведочных скв. 3-5, легкие (скв. 4 и 5) или средней плотности (скв. 3). Все нефти выкипают в широком температурном интервале НК-540 °С с остатком 5,6-13,5 % масс. Нефть из скв. 3 по физико-химическим свойствам и фракционному составу более тяжелая по сравнению с другими нефтями. Нефти из скв. 4 и 5 схожи. По групповому углеводородному составу нефти Южно-Киринского месторождения относятся к метаново-нафтеновому типу.
Бензиновые, керосиновые и дизельные дистилляты конденсатов и нефтей характеризуются высокими выходами, благоприятным химическим составом и высоким уровнем основных эксплуатационных характеристик, что позволяет рекомендовать эти фракции в качестве основы для получения высококачественных топлив различного назначения без сероочистки.
Конденсаты и нефти исследованных скважин характеризуются общностью источника образования из ОВ смешанного сапропелево-гумусового типа (лагунное ОВ).
По алкановым коэффициентам флюиды Южно-Киринского месторождения относятся к конденсатам газоконденсатнонефтяных залежей с нефтяными оторочками, по соотношениям углеводородов бензиновых фракций являются вторичными конденсатами, а нефтяная оторочка имеет смешанный генезис. С юго-востока на северо-запад идет обогащение флюидов аро-магическими углеводородами, т.е. гумусовой составляющей исходного ОВ.
Выдвинуты предположения о флюидодина-мической связи объектов Южно-Киринского месторождения скв. 2, 4-6 и 8. На восточной окраине месторождения, где пробурены скв. 1, 3 и 7, флюидосообщение между объектами затруднено.
Список литературы
1. Чахмахчев В. А. Геохимические
и палеогеотермические аспекты оценки перспектив нефтегазоносности / В.А. Чахмахчев, Т.П. Волкова // Геология нефти и газа. - 1994. - № 6.
2. Чахмахчев В.А. Геохимия процесса миграции углеводородных систем / В.А. Чахмахчев. - М.: Недра, 1983.
3. Попович Т. А. Углеводородные показатели -основа прогноза фазово-генетических типов газоконденсатных скоплений на шельфе Северо-Восточного Сахалина / Т. А. Попович // Геология и разработка месторождений нефти и газа Сахалина и шельфа. - М.: Научный мир, 1997.
4. Виноградова Т. Л. Углеводородные
и гетероатомные соединения - показатели термической зрелости органического вещества пород и нафтидов / Т.Л. Виноградова, В.А. Чахмахчев, З.Г. Агафонова и др. // Геология нефти и газа. - 2001. - № 6.
5. Жузе Н.Г. Остаточная нефтенасыщенность залежей неокома севера Западной Сибири -дополнительный источник УВ-сырья /
Н.Г. Жузе // Геология нефти и газа. - 1989. -№ 11.
6. Парасына В.А. Южно-Киринское месторождение - перспективная база газодобычи на Дальнем Востоке России / В.А. Парасына, М. Л. Цемкало, Г.Н. Гогоненков // Геология нефти и газа. -2012. - № 3.
7. Kaufman R.L. A new technique for the analysis of commingled oils and its application to production allocation calculations /
R.L. Kaufman, A.S. Ahmed, W.B. Hempkins // Proc. of 16th Annual Convention of Indonezian Petroleum Association. - 1987.
8. Дахнова М.В. Применение геохимических методов исследований при поисках, разведке и разработке месторождений углеводородов / М. В. Дахнова // Геология нефти и газа. -2007. - № 2.
9. Методическое руководство по подсчету балансовых и извлекаемых запасов конденсата, этана, пропана, бутанов, неуглеводородных компонентов и определению их потенциального содержания в пластовом газе / Министерство газовой промышленности; ВНИИГАЗ. - М., 1984.