Kudryavtcev S.A., Valtceva T.U., Kajarskii A.V., Paramonov V.N., Saharov I.I. Accounting of solar radiation in numerical modelling of the thermophysical processes of freezing and thawing of permafrost soils. Construction and Geotechnics. 2020. Vol. 11. No. 4. Pp. 20-32. DOI: 10.15593/2224-9826/2020.4.02
DOI: 10.15593/2224-9826/2020.4.02 УДК 624.139.64
УЧЕТ СОЛНЕЧНОЙ РАДИАЦИИ ПРИ ЧИСЛЕННОМ МОДЕЛИРОВАНИИ ТЕПЛОФИЗИЧЕСКИХ ПРОЦЕССОВ ПРОМЕРЗАНИЯ И ОТТАИВАНИЯ ВЕЧНОМЕРЗЛЫХ ГРУНТОВ
С.А. Кудрявцев1, Т.Ю. Вальцева1, А.В. Кажарский1, Ж.И. Котенко1, В.Н. Парамонов2, И.И. Сахаров3
1Дальневосточный государственный университет путей сообщения, Хабаровск, Россия 2Петербургский государственный университет путей сообщения Императора Александра I, Санкт-Петербург, Россия
3Санкт-Петербургский государственный архитектурно-строительный университет, Санкт-Петербург, Россия
О СТАТЬЕ
АННОТАЦИЯ
Получена: 18 сентября 2020 Принята: 10 ноября 2020 Опубликована: 30 декабря 2020
Ключевые слова: мерзлый грунт, дорожная насыпь, оттаивание, инсоляция, солнечная радиация, численное моделирование.
Показана необходимость учета неодинаковой инсоляции поверхности грунта по сторонам света при использовании численного моделирования различных процессов промерзания и оттаивания грунтов в основании дорожных насыпей. Авторами разработана методика конечно-элементного решения таких задач, которые состоят из двух этапов - расчета напряженно-деформированного состояния массива грунта с находящимся на нем сооружением и расчета температурных полей. В статье обращается внимание на неизбежную неоднородность температурных полей для расположенных в криолитозоне линейных сооружений, ориентированных в широтном направлении, что вызывает неравномерные деформации поперечников вследствие неодинакового
® Кудрявцев Сергей Анатольевич - доктор технических наук, профессор, OrcidID: 0000-0001-5414-7567, e-mail: [email protected].
Вальцева Татьяна Юрьевна - кандидат технических наук, доцент, OrcidID: 0000-0003-2566-1924, e-mail: [email protected].
Кажарский Алексей Витальевич - кандидат технических наук, доцент, OrcidID: 0000-0003-1057-2777, e-mail: [email protected].
Котенко Жанна Ивановна - заместитель начальника управления аспирантуры, докторантуры и подготовки научных кадров, OrcidID: 0000-0003-9320-9442, e-mail: [email protected].
Парамонов Владимир Николаевич - доктор технических наук, профессор, OrcidID: 0000-0002-2251-7241, e-mail: [email protected]
Сахаров Игорь Игоревич - доктор технических наук, профессор, OrcidID: 0000-0003-1057-2777, e-mail: [email protected].
Sergey A. Kudryavtsev - Doctor of Technical Sciences, Professor, OrcidID: 0000-0001-5414-7567, e-mail: [email protected].
Tatiana Y. Valtseva - Ph.D. in Technical Sciences, Associate Professor, OrcidID: 0000-0003-2566-1924, e-mail: [email protected].
Aleksey V. Kazharskiy - Ph.D. in Technical Sciences, Associate Professor, OrcidID: 0000-0003-1057-2777, e-mail: [email protected].
Janna I. Kotenko - Deputy Head of the Department of Postgraduate Studies, Doctoral Studies and Training of Scientific Personnel, OrcidID: 0000-0003-9320-9442, e-mail: [email protected].
Vladimur N. Paramonov - Doctor of Technical Sciences, Professor, OrcidID: 0000-0002-2251-7241, e-mail: [email protected].
Igor I. Sakharov - Doctor of Technical Sciences, Professor, OrcidID: 0000-0003-1057-2777, e-mail: [email protected].
развития дефектов грунтового основания от действия морозного пучения и в процессе оттаивания грунта. Приводится пример диагностики циклов промерзания и оттаивания конструкции насыпи совместно с ее основанием. Сравниваются результаты расчета с условиями симметричной и несимметричной инсоляции. Зоны с распределением разных климатических элементов определяются их расположением - географической широтой. Солнечная радиация проникает в верхнюю часть атмосферы и обусловлена географической широтой. Кроме того, географической широтой определяется положение Солнца над горизонтом в полдень и продолжительность ее влияния. Поглощенная радиация имеют более сложное распределение, поскольку больше значение имеет облачность, характеристика поверхности земли, степени светопрозрачности воздушного пространства.
Зоны распределения климатических элементов находятся и в основе распределения температур окружающей среды. Температуры зависят не только от поглощенной окружающей средой солнечной радиации, но и непосредственно от циркуляции. Зональность при направлении температурных потоков приводит к зональности других метеорологических климатических значений. Воздействие географической широты непосредственно на метеорологические значения более заметно с увеличением высоты, в этот момент снижается воздействие других климатических факторов, которые связаны с воздействием на земную поверхность.
© ПНИПУ
ACCOUNTING OF SOLAR RADIATION IN NUMERICAL MODELLING OF THE THERMOPHYSICAL PROCESSES OF FREEZING AND THAWING OF PERMAFROST SOILS
S.A. Kudryavtsev1, T.U. Valtseva1, A.V. Kajarskii1, J.I. Kotenko1, V.N. Paramonov2, I.I. Sakharov3
Far Eastern State Transport University, Khabarovsk, Russian Federation
2Emperor Alexander I St. Petersburg State Transport University, Saint Petersburg, Russian Federation Saint-Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russian Federation
ARTICLE INFO
ABSTRACT
Received: 18 September 2020 Accepted: 10 November 2020 Published: 30 December 2020
Keywords:
permafrost soil, geological conditions, reinforcement, modeling, deformations, frozen and thawed soils.
The article considers options for stabilizing the thawing process of permafrost soil of railways during the reconstruction period. The analysis of the engineering and geological conditions made it possible to design rock cooling structures at this facility, which are berms and cover slopes of the subgrade with fractionated rocky soil. The technical characteristics of fractionated rock soil structures have been developed and tested in this cryological area and have shown their effective operation for more than 30 years. As a result of the operation of the railway embankment, permafrost degrades and its boundary is at different depths depending on local conditions and the condition of the drainage systems from the subgrade. The position of the upper permafrost boundary should be established during surveys, if it is not advisable to restore the frozen base to a depth of 10 m, it is necessary to strengthen the thawed weak base and create conditions for the consolidation of thawed soils. Geographic latitude determines zoning in the distribution of climate elements. Solar radiation enters the upper boundary of the atmosphere, depending on geographic latitude. It determines the midday height of the Sun and the duration of the radiation. The absorbed radiation is distributed more difficultly, since it depends on cloud cover, the albedo of the earth's surface, and the degree of transparency of the air.
Zoning also underlies the distribution of air temperature. The temperature depends not only on the absorbed radiation, but also on the circulating conditions. Zoning in the temperature distribution leads to zoning of other meteorological climate values. The influence of geographical latitude on the distribution of meteorological values becomes more noticeable with height when the influence of other climate factors associated with the earth's surface weakens.
© PNRPU
Введение
В данный момент накоплен колоссальный опыт проектирования, строительства и эксплуатации зданий и сооружений на Транссибирской и Байкало-Амурской магистралях в условиях вечномерзлых и промерзающих грунтовых оснований.
С целью возведения качественных и надежных конструкций на Восточном полигоне ОАО «РЖД» применяются наиболее современные и качественные сооружения, новейшие технологии строительства, а также эффективные методы расчета и эксплуатации [1].
Области распространения многолетнемерзлых грунтов отличаются континентальным климатом с большими перепадами температур на протяжении всего года. Годовая амплитуда температуры воздуха - это разность средних месячных температур самого теплого и самого холодного месяцев. Большая разница температур в континентальном климате формируется снижением зимних температур. Годовые разницы таких температур составляют 25-40 °С, где максимальные и минимальные величины обнаруживаются непосредственно после солнцестояний. Исходя из этого, минимальные температуры определяются в январе, а максимальные - в июле [2, 3].
1. Солнечная радиация
Температура воздуха изменяется в течение всех суток следом за температурными перепадами земной поверхности. На основании этого берут в расчет среднее значение температуры за многолетний промежуток времени. Средняя разница перепадов температур в сутки обусловливается географический широтой, связана с расположением объекта (с увеличением значения широты суточная температура воздуха уменьшается, поскольку уменьшается высота солнца над линией горизонта в 12 ч дня), видом поверхности земли (чем выше разница температуры поверхности земли, тем выше разница температуры воздуха), расположением водных бассейнов, ландшафтных форм поверхности земли (на выступающих формах - вершинах и склонах гор и холмов - суточная разница температуры воздуха ниже по сравнению с ровной поверхностью местности, а во впадинах - долинах, оврагах, лощинах - выше) [4].
В летнее время перепады температур обусловлены распределением в зависимости от расположения относительно географической широты: самая низкая температура - на арктическом побережье и наиболее высокая - на южных границах простирания вечномерзлых грунтов. Особенными в этой закономерности представлены побережья Берингова и Охотского морей, поскольку в летнее время сохраняется температура воздуха ниже, чем на тех же широтах в континентальных районах [5, 6].
Лучистая энергия Солнца, или солнечная радиация - это главный источник света и тепла для земной атмосферы и поверхности земли. Численной характеристикой солнечной радиации является энергетическая освещенность или плотность радиационного потока, которая поступает на поверхность, выражается в Вт/м2, т.е. на 1 м2 в секунду приходится 1 Дж лучистой энергии [7].
За счет солнечной радиации энергетическую освещенность измеряют солнечной постоянной So, которая определяется солнечной излучательной способностью и расстоянием между Землей и Солнцем. При помощи различных летательных аппаратов было установлено, что So = 1367 Вт/м2 с поправкой 0,3 %, а среднее расстояние между Солнцем и Землей принималось 149,6 106 км [5, 6].
На солнечную постоянную воздействуют систематические колебания солнечной активности. Энергия, которая поступает в течение 36 ч от Солнца, сравнима с энергией от электростанций всей планеты Земля, которая вырабатывается на протяжении одного года. На освещенную площадь планеты Земля, находящуюся в верхней части земной атмосферы, воздействует приблизительное количество энергии за год 5,49 • 1024 Дж, которое сравнимо с выделяемым теплом от сжигания 400 тыс. т каменного угля [6, 7].
Мощность воздействия прямой солнечной радиации обусловлена временем года, высотой солнца, географической широтой, светопрозрачностью воздуха и местом расположения. Мощность воздействия прямой солнечной радиации в летнее время самая максимальная на востоке в 7-8 ч утра, а на западе - в 16-17 ч вечера.
Доля прямого солнечного воздействия по причине влияния атмосферных газов и аэрозолей трансформируется в рассеянное солнечное воздействие, доходит поверхности земли, в некоторой мере отражается от земли и отчасти поглощается (около 20 %). Чем выше расположение солнца и чем сильнее загрязнение воздуха, тем сильнее рассеянная радиация, которую усиливает снижение прозрачности атмосферы [4]. Снежный покров способствует усилению рассеянной радиации, который имеет высокую отражательную способность [6].
Разные характеристики особенностей северных районов Дальнего Востока и Сибири объясняются разницей в теплопритоке. Области, имеющие большое количество вечно-мерзлых грунтов, объясняют пониженный теплоприток длительной ночью и пониженным расположением солнца над линией горизонта. Как следствие, значительный объем тепла, приобретаемого от солнечной радиации, тратится на излучение [3, 5, 6]. Уменьшение теп-лопритока объясняется значительной способностью отражения тепла льдом и снегом, а также тратой тепла на таяние.
Действие солнечной радиации на температурные показатели учитывают в качестве добавочного прогрева на величину до 100 °С освещаемой солнцем поверхности мощностью 15 см [7]. Суммарная прямая и рассеянная солнечная радиация, воздействующая на вертикальную поверхность при безоблачном небе, МДж/м2, представлена в табл. 9.1. СП 131.13330.2012. Строительная климатология. Актуализированная редакция СНиП 23-01-99*.
2. Теплофизическая модель промерзания, морозного пучения и оттаивания
В ходе рассмотрения существующих моделей оттаивающих и промерзающих грунтов был разработан программный модуль Termoground [8, 9], который дает возможность подвергать анализу различные процессы промерзания [10], оттаивания и морозного пучения грунтов [11] по имеющимся температурным показателям и влажности. Данный программный модуль разработан на основе программного комплекса FEM models [12-14].
Происходящие в грунте процессы морозного пучения, промерзания и оттаивания описаны уравнением теплопроводности и представляют нефиксированный тепловой режим грунта в трехмерном пространстве уравнением
дТ
( д 2Т д 2Т д 2Т ^
C*fP~t = xth(f) —+—+— + qv, (1)
v дх2 ду2 дг2 у
где СЛ (/) - удельная теплоемкость мерзлого или талого грунта; р - плотность грунта; Т - температура; ^ - время; f} - теплопроводность мерзлого или талого грунта [11]; х, у, 2 - координаты; - мощность внутренних источников тепла [15-17].
Функция теплоемкости слагается из двух составляющих. Первая составляющая - объемная теплоемкость талого или мерзлого грунта, вторая составляющая - скрытая теплота фазовых превращений в промежутке отрицательных температур, которая была абсорбирована или выделена грунтом по причине изменений фазы грунтовой воды, продемонстрирована следующим уравнением:
дЖЖ
C - C + Т
^(f )~ ^f ) о
dT
(2)
где Ь0 - теплота фазовых превращений вода - лед; - влажность мерзлого грунта за счет незамерзшей воды.
Если функция содержания незамерзшей воды в грунте определена, то общее содержание незамерзшей воды выражается как
Жм = КмЖр, (3)
где Жр - влажность на границе раскатывания; Км - коэффициент содержания незамерзшей воды в мерзлых глинистых грунтах, принимается согласно [3].
Подставляя равенство (1) в равенство (2), получим полноценное дифференциальное уравнение:
Pd
C + Т
^ th f ) ^ 0
дТ
дТ-ь
dt
th (f )
гд 2Т д 2Т д 2Т
—Г + —г +—Y дх ду dz
+
(4)
Данное выражение (4) может принимать во внимание преобразования компонента скрытой теплоты фазовых превращений в промежутке отрицательных температур, абсорбированной или выделенной грунтом из-за изменений фазы грунтовой воды [10].
Начальными исходными данными для выражений (1) и (4) является заданное значение поля температуры в необходимой зоне Т (х, у, z) грунта в момент времени / = Т0 (рис. 1).
Рис. 1. Граничные условия задачи теплопроводности Fig. 1. Boundary conditions of the heat conduction problem
Граничные условия могут быть четырех видов:
1. Известна температура грунта на поверхности S, поэтому Т = Т0 (S, t).
2. Внутри области Sq задан тепловой поток, поэтому
ь-
дТ_ дn
+ q - 0,
где п - вектор направления внешней нормали к поверхности; дп - плотность теплового потока, который рассматривают как положительную, если грунт отдает теплоту [10].
3. На поверхности грунта Sa происходит конвективный теплообмен, поэтому
г дТ\
X
+ а(Т-Та) = 0,
кдп у
где а - коэффициент теплоотдачи; Та - температура окружающего пространства. 4. На границах рассматриваемой области задан тепловой поток [10], поэтому
X =
гдТ_Л
v dn у
= 0.
3. Численное моделирование процесса морозного пучения, промерзания и оттаивания с учетом влияния солнечной радиации на земляное полотно дорог
Байкало-Амурская магистраль находится в области со сложными природными и климатическими условиями на 52-56 широтах, под разным углом света и сквозь зоны распространения вечномерзлых грунтов мощностью от одного до нескольких сотен метров, а также с высокой сейсмической активностю до 9 баллов. При строительстве магистрали и проходящей модернизации применяются современные конструкции, разработаны, апробированы и запатентованы новые способы возведения и эксплуатации сооружений в тяжелых инженерных условиях [18-20].
В качестве иллюстрации ниже приведены результаты температурных расчетов в годовом цикле состояния дорожной насыпи, трассированной в широтном направлении. Ежемесячная солнечная радиация принималась в соответствии с п. 8 и 9 [21-23]. Облачность в запас не учитывалась.
На рис. 2 представлена расчетная схема поперечного профиля железнодорожной насыпи для численного моделирования влияния солнечной инсоляции в зависимости от широты и направления по сторонам света на период двух лет.
Рис. 2. Расчетная схема поперечного профиля железнодорожной насыпи:
1 - насыпь; 2 - мерзлое основание Fig. 2. The design diagram of the transverse profile of the railway embankment: 1 - embankment; 2 - frozen base
На рис. 3 представлены изолинии температур насыпи и основания без учета влияния солнечной радиации.
На рис. 4 обозначены зоны талого и мерзлого грунтов без учета влияния солнечной инсоляции. Толщина оттаявшего грунта составляет до 1,3 м. Под насыпью грунт остается в мерзлом состоянии.
Шаг изолиний 1
Рис. 3. Изолинии температур насыпи и основания без учета влияния инсоляции Fig. 3. The contours of the temperature of the embankment and the base without taking into account the influence of solar insolation
Рис. 4. Зоны талого и мерзлого грунтов насыпи и основания без учета влияния инсоляции Fig. 4. Zones of thawed and frozen soils of the embankment and base, excluding
the impact solar insolation
На рис. 5 представлены деформации оттаивания мерзлых грунтов насыпи без учета влияния солнечной радиации.
Рис. 5. Деформации оттаивания основной площадки и откосов насыпи без учета влияния солнечной радиации Fig. 5. Defrosting of the main site and slopes of the embankment without taking into account the influence of solar insolation
Без учета влияния солнечной радиации деформации основной площадки насыпи на период двух лет составляют до 8 см, а в основании откоса - до 27 см.
На рис. 6 изображены изолинии температур насыпи и основания с учетом влияния инсоляции в зависимости от широты расположения насыпи и направления света.
Шаг изолиний 3
О
-4.227 22.265 48.757
Рис. 6. Изолинии температур насыпи и основания с учетом влияния солнечной инсоляции и направления по сторонам света на период двух лет Fig. 6. Temperature contours of the embankment and base, taking into account the influence of solar insolation and the direction of the cardinal directions for a period of two years
На рис. 7 представлены зоны талого и мерзлого грунтов без учета влияния солнечной инсоляции с учетом влияния солнечной инсоляции в зависимости от широты и расположения насыпи по направлению света. Величина оттаявшего грунта составляет более 2 м в поле и до 1,8 м под насыпью с южной стороны света, а с северной стороны оттаивание составляет 1,3 м.
Рис. 7. Зоны талого и мерзлого грунтов с учетом влияния инсоляции в зависимости от широты и расположения насыпи по направлению света Fig. 7. Zones of thawed and frozen soils, taking into account the influence of solar insolation, depending on the latitude and location of the embankment in the direction of light
На рис. 8 приведены деформации оттаивания мерзлых грунтов насыпи с учетом влияния солнечной инсоляции в зависимости от широты и расположения насыпи по направлению света. Величина деформирования насыпи при оттаивании грунта составляет от 34 см в основании откоса и до 30 см у бровки основной площадки насыпи с южной стороны света, а с северной стороны от 21 см в основании откоса и до 12 см бровка основной площадки насыпи.
CNI
c\i
Рис. 8. Деформации оттаивания мерзлого грунта насыпи и основания
учетом влияния инсоляции Fig. 8. Deformation of thawing of frozen soils of the embankment and base, taking into account the influence of solar insolation
Как видно по эпюре деформаций, наиболее деформируем участок дороги с южной стороны с величиной деформаций до 34 см и оттаивание основания под насыпь составляет до 1,8 м за период в два года. Такое протаивание ведет к неравномерным деформациям южного и северного склона насыпи и ее крену, что часто наблюдается на практике.
Заключение
1. В настоящее время накоплен опыт проектирования, строительства и эксплуатации зданий и сооружений в условиях вечномерзлых и промерзающих грунтов.
2. Лучистая энергия Солнца, или солнечная радиация - это главный источник света и тепла и для поверхности Земли, и для ее атмосферы [4], поэтому целесообразно для получения корректных результатов теплофизических расчетов использовать в качестве исходных данных представленную в нормативных документах суммарную прямую и рассеянную солнечную радиацию.
3. Неравномерные перемещения отдельных участков поперечников насыпей, обусловленные их различной экспозицией, без принятия тех или иных конструктивных мер, являются неизбежными, что ведет к деформациям рельсовых путей. Для устранения неравно-мерностей деформаций поперечников, накапливающихся в ходе эксплуатации, можно предложить следующие мероприятия:
3.1. Снижение влияния солнечной радиации, которое может быть достигнуто устройством теплоизоляции южных частей поперечников.
3.2. Уменьшение осадок протаивания, для чего в зонах оттаивания следует предусмотреть укладку материалов с малыми коэффициентами относительного оттаивания.
Библиографический список
1. Soil Research for Strengthening Railroad Bed Design in Cold Regions of Far East / S.M. Zhdanova, A.R. Edigarian, N.A. Gorshkov, O.S. Neratova // Advances in Intelligent Systems and Computing. Springer, Cham. - 2020. - Vol. 1116. - P. 49-59. https://doi.org/ 10.1007/978-3-030-37919-3_6
2. Влияние условий оттаивания и вида испытаний на деформационные характеристики оттаивающих грунтов / П.И. Котов, Л.Т. Роман, И.И. Сахаров, В.Н. Парамонов, М.В. Парамонов // Основания и фундаменты, механика грунтов. - 2015. - № 5. - С. 8-13.
3. Abrashitov A., Sidrakov A. Laboratory study of ballast material reinforced by flat geogrid under the dynamic load // MATEC Web of Conferences. - 2019. - Vol. 265. - 01006. https://doi.org/10.1051 /matecconf/201926501006
4. Ulitsky V., Sakharov I., Paramonov V. Thermal-physical calculations as a basis of design solutions of buildings and structures in the permafrost zone // MATEC Web of Conferences. -2019. - Vol. 265. - 05009. https://doi.org/10.1051/matecconf/201926505009
5. Боровик Г.М. Искусственные сооружения на железных дорогах. - Хабаровск.: Изд-во ДВГУПС, 2006. - 174 с.
6. Сахаров И.И., Парамонов В.Н., Парамонов М.В. Процессы промерзания и оттаивания при устройстве подземных и заглубленных сооружений // Жилищное строительство. -2009. - № 9. - С. 21-23.
7. Ершов Э.Д. Деградация мерзлоты при возможном глобальном потеплении климата // Соросовский образовательный журнал. - 1997. - № 2. - С. 23-27.
8. Пасек В.В. Тепловое воздействие гофрированных водопропускных труб большого диаметра с вечномерзлыми грунтами тела и оснований земполотна железных и автомобильных дорог // 5-й Междунар. симп. по проблемам инженерного мерзлотоведения. -Якутск, 2002. - Т. 2. - С. 94-98.
9. Парамонов В.Н. Метод конечных элементов при решении нелинейных задач геотехники. - СПб.: Геореконструкция, 2012. - 262 с.
10. Кудрявцев С.А. Расчетно-теоретическое обоснование проектирования и строительства сооружений в условиях промерзающих пучинистых грунтов: автореф. дис. ... д-ра техн. наук. - СПб., 2004. - 42 с.
11. Конструкция усиления насыпей железных дорог / С.А. Кудрявцев, А.В. Кажарский, Т.Ю. Вальцева, Ж.И. Котенко, Л.Д. Москвичев, А.П. Фарышев // Проектирование развития региональной сети железных дорог. - 2016. - № 4. - С. 243-250.
12. Справочник геотехника. Основания, фундаменты и подземные сооружения / под общ. ред. В.А. Ильичева, Р.А. Мангушева. - М.: Изд-во АСВ, 2014. - 728 с.
13. Парамонов М.В. Напряженно-деформированное состояние системы «основание -сооружение» при неодномерном промерзании: автореф. дис. ... канд. техн. наук. - СПб., 2013. - 24 с.
14. Парамонов М.В. Исследование линейных и объемных деформаций морозного пучения в лабораторных условиях // Вестник гражданских инженеров. - 2012. - № 6 (35). -С. 84-86.
15. Ulitskii V.M., Shashkin A.G. Successful construction of high-speed motorways: the geo-technical constituent // Transport of the Russian Federation. - 2016. - № 2-3. - Р. 36-39.
16. Парамонов В.Н., Набоков А.В. Особенности конечноэлементного моделирования деформаций морозного пучения и оттаивания грунтов // Взаимодействие оснований и сооружений. Подземные сооружения и подпорные стены: тр. Междунар. конф. по геотехнике Технического комитета 207 ISSMGE. - СПб., 2014. - Т. 2. - С. 65-69.
17. Kudruavtsev S.A., Valtseva T.Y. The use of geosynthetic materials in special engineering geological conditions of the Far East // Proceding 11th ICG - International Conference on Geosynthetics, 16-21 September. - Seoul, Korea, 2018. - P. 321-326.
18. Strengthening design for weak base using geomaterials on "Amur" automobile road section Internationa / S.A. Kudruavtsev, T.Y. Valtseva, A.V. Kazharsky, E.D. Goncharova // Scen-tific Conference Energy Manegement of Municipal Transportation Facicties Transport EMMFT
2017. Advances in Intelligent Systems and Computing - Springer International Publishing AG. -2017. - P. 145-153.
19. Geosynthetical materials in design of highways in cold regions Far East / S.A. Kudruavtsev, T.Y. Valtseva, E.D. Goncharova, Zh.I. Kotenko, A.V. Peters, S.A. Bugunov // 5th International Conference on Road and Rail Infrastructure, 17-19 May. - Zadar, Croatia, 2018. - P. 233-240. https://doi.org/10.5592/CO/CETRA2018.953
20. Numerical Simulation of the Work of a Low-Settlement Embankment on a Pile Foundation in the Process of Permafrost Soil Thawing / S.A. Kudruavtsev, T.Y. Valtseva, S.A. Bugunov, Zh.I. Kotenko, V.N. Paramonov, I.I. Sakharov, N.I. Sokolova // Advances in Intelligent Systems and Computing. Springer, Cham. - 2020. - Vol. 1116. - P. 188-198. https://doi.org/10.1007/978-3-030-37919-3_18
21. The Study of the Effect of Heat Mains Laid in the Automobile Road Embankment Pavement on Its Base / S.A. Kudruavtsev, T.Y. Valtseva, Zh.I. Kotenko, A.V. Peters, V.U. Shemyakin, Y.A. Bugunova, N.I. Sokolova // Advances in Intelligent Systems and Computing. Springer, Cham. -2020. - Vol. 1116. - P. 21-28. https://doi.org/10.1007/978-3-030-37919-3_3
22. Gavrilov T., Kolesnikov G., Stankevich T. Influence of Temperature and Soil Thermal Expansion on Cracking of Dirt Road Surface During Seasonal Freezing // Advances in Intelligent Systems and Computing. Springer, Cham, 2020. - Vol. 1116. - P. 268-276. https://doi.org/10.1007/978-3-030-37919-3_26
23. Gavrilov T., Kolesnikov G. Method for Estimating Tensile Stresses and Elastic Modulus of Frozen Soil with Evolving Crack // Advances in Intelligent Systems and Computing. Springer, Cham, 2020. - Vol. 1116. - P. 296-305. https://doi.org/10.1007/978-3-030-37919-3_29
References
1. Zhdanova S.M., Edigarian A.R., Gorshkov N.A., Neratova O.S. Soil Research for Strengthening Railroad Bed Design in Cold Regions of Far East.Advances in Intelligent Systems and Computing. Springer, Cham, 2020, vol. 1116, pp. 49-59. DOI https://doi.org/10.1007/978-3-030-37919-3_6
2. Kotov P.I., Roman L.T., Sakharov I.I., Paramonov V.N., Paramonov M.V. Vliyanie us-loviy ottaivaniya i vida ispyitaniy na deformatsionnyie harakteristiki ottaivayuschih gruntov [The effect of thawing conditions and the type of tests on the deformation characteristics of thawing soils]. Osnovaniya i fundamentyi, mehanika gruntov, 2015, no. 5, pp. 8-13.
3. Abrashitov A., Sidrakov A. Laboratory study of ballast material reinforced by flat geogrid under the dynamic load, MATEC Web of Conferences, 2019, vol. 265, 01006. DOI: https://doi.org/10.1051/matecconf/201926501006.
4. Borovik G.M. Iskusstvennyie sooruzheniya na zheleznyih dorogah [Artificial structures on the railways]. Khabarovsk, DVGUPS, 2006, 174 p.
5. Ulitsky V., Sakharov I., Paramonov V. Thermal-physical calculations as a basis of design solutions of buildings and structures in the permafrost zone, MATEC Web of Conferences, 2019, vol. 265, 05009. DOI: https://doi.org/10.1051/matecconf/201926505009/
6. Sakharov I.I., Paramonov V.N., Paramonov M.V. Protsessyi promerzaniya i ottaivaniya pri ustroystve podzemnyih i zaglublennyih sooruzheniy [The processes of freezing and thawing in the device underground and buried structures]. Zhilischnoe stroitelstvo, 2009, no. 9, pp. 21-23.
7. Ershov E.D. Degradatsiya merzlotyi pri vozmozhnom globalnom poteplenii klimata [Permafrost degradation with possible global warming]. Sorosovskiy obrazovatelnyiy zhurnal, 1997, no. 2, pp. 23-27.
8. Pasek V.V. Teplovoe vozdeystvie gofrirovannyih vodopropusknyih trub bolshogo diametra s vechnomerzlyimi gruntami tela i osnovaniy zempolotna zheleznyih i avtomobilnyih dorog [Thermal effect of corrugated large-diameter conduit pipes with permafrost soils of the body and bases of the railways and highways dredging]. 5-y Mezhdunarodnyiy simpozium po problemam inzhenernogo merzlotovedeniya, Yakutsk, 2002, vol. 2, pp. 94-98.
9. Paramonov V.N. Metod konechnyih elementov pri reshenii nelineynyih zadach geotehniki [The finite element method for solving non-linear geotechnical problems]. Saint Petersburg, Georekonstruktsiya, 2012, 262 p.
10. Kudruavtsev S.A. Raschetno-teoreticheskoe obosnovanie proektirovaniya i stroitelstva sooruzheniy v usloviyah promerzayuschih puchinistyih gruntov [Calculation and theoretical justification for the design and construction of structures in conditions of freezing heaving soils]. Abstract of Doctor's degree dissertation. Saint Petersburg, 2004, 42 p.
11. Kudruavtsev S.A., Kajarskii A.V., Valtseva T.Y., Kotenko Zh.I., Moskvichev L.D., Faryishev A.P. Konstruktsiya usileniya nasyipey zheleznyih dorog [Railroad embankment reinforcement structure]. Proektirovanie razvitiya regionalnoy seti zheleznyih dorog, 2016, № 4, pp. 243-250.
12. Ilichev V.A., Mangushev R.A. Spravochnik geotehnika. Osnovaniya, fundamentyi i pod-zemnyie sooruzheniya [Reference geotechnics. Basis, foundations and underground structures]. Moscow, АSV, 2014, 728 p.
13. Paramonov M.V. Napryazhenno-deformirovannoe sostoyanie sistemyi «osnovanie -sooruzhenie» pri neodnomernom promerzani [Stress-strain state of the system "foundation -structure" with non-one-dimensional freezing]. Abstract of Ph.D. thesis. Saint Petersburg, 2013, 24 p.
14. Paramonov M.V. Issledovanie lineynyih i ob'emnyih deformatsiy moroznogo pucheniya v laboratornyih usloviyah [Investigation of linear and volumetric deformations of frost heave in laboratory conditions]. Vestnikgrazhdanskih inzhenerov, 2012, no. 6 (35). pp. 84-86.
15. V.M. Ulitskii, A.G. Shashkin. Successful construction of high-speed motorways: the geotechnical constituent. Transport of the Russian Federation, 2016, no. 2-3, pp. 36-39.
16. Paramonov V.N., Nabokov A.V. Osobennosti konechnoelementnogo modelirovaniya de-formatsiy moroznogo pucheniya i ottaivaniya gruntov [Features of finite element modeling of deformations of frost heaving and thawing of soils]. Vzaimodeystvie osnovaniy i sooruzheniy. Podzemnyie sooruzheniya i podpornyie stenyi: Trudyi Mezhdunarodnoy konferentsii po geo-tehnike Tehnicheskogo Komiteta 207ISSMGE, Saint Petersburg, 2014, vol. 2, pp. 65-69.
17. Kudruavtsev S.A., Valtseva T.Y. The use of geosynthetic materials in special engineering geological conditions of the Far East. Proceding 11th ICG - International Conference on Geosynthetics, 16-21 September, Seoul, Korea, 2018, pp. 321-326.
18. Kudruavtsev S.A., Valtseva T.Y., Kazharsky A.V., Goncharova E.D. Strengthening design for weak base using geomaterials on "Amur" automobile road section International. Scentific Conference Energy Manegement of Municipal Transportation Facicties Transport EMMFT 2017. Advances in Intelligent Systems and Computing. Springer International Publishing AG, 2017, pp. 145-153. ISSN: 0038-0741.
19. Kudruavtsev S.A., Valtseva T.Y., Goncharova E.D., Kotenko Zh.I., Peters A.V., Bugunov S.A. Geosynthetical materials in design of highways in cold regions Far East. 5th International Conference on Road and Rail Infrastructure, 17-19 May, Zadar, Croatia, 2018, pp. 233-240. DOI: 10.5592/C0/CETRA2018.953.
20. Kudruavtsev S.A., Valtseva T.Y., Bugunov S.A., Kotenko Zh.I., Paramonov V.N., Sakharov I.I, Sokolova N.I. Numerical simulation of the work of a low-settlement embankment on a pile foundation in the process of permafrost soil thawing. Advances in Intelligent Systems and Computing. Springer, Cham, 2020, vol. 1116, pp. 188-198. DOI 10.1007/978-3-030-37919-3_18/
21. Kudruavtsev S.A., Valtseva T.Y., Kotenko Zh.I., Peters A.V., Shemyakin V.U., Bugunova Y.A, Sokolova N.I. The study of the effect of heat mains laid in the automobile road embankment pavement on its base. Advances in Intelligent Systems and Computing. Springer, Cham, 2020, vol. 1116, pp. 21-28. DOI: 10.1007/978-3-030-37919-3_3.
22. Gavrilov T., Kolesnikov G., Stankevich T. Influence of Temperature and Soil Thermal Expansion on Cracking of Dirt Road Surface During Seasonal Freezing. Advances in Intelligent Systems and Computing. Springer, Cham, 2020, vol. 1116, pp. 268-276. DOI: 10.1007/978-3-030-37919-3_26.
23. Gavrilov T., Kolesnikov G. Method for Estimating Tensile Stresses and Elastic Modulus of Frozen Soil with Evolving Crack. Advances in Intelligent Systems and Computing. Springer, Cham, 2020, vol. 1116, pp. 296-305. DOI: 10.1007/978-3-030-37919-3_29.