Научная статья на тему 'ТВЕРДОФАЗНЫЙ СИНТЕЗ ВЫСОКОЭНТРОПИЙНЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ГЕКСАФЕРРИТА М-ТИПА В СИСТЕМАХ BA(FE,MN,ZR,GA,AL)12O19, BA(FE,SN,ZN,GA,AL)12O19 И (BA,SR)(FE,GA,IN,AL)12O19/B2O3'

ТВЕРДОФАЗНЫЙ СИНТЕЗ ВЫСОКОЭНТРОПИЙНЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ГЕКСАФЕРРИТА М-ТИПА В СИСТЕМАХ BA(FE,MN,ZR,GA,AL)12O19, BA(FE,SN,ZN,GA,AL)12O19 И (BA,SR)(FE,GA,IN,AL)12O19/B2O3 Текст научной статьи по специальности «Химические науки»

CC BY
53
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВЫСОКОЭНТРОПИЙНЫЕ ОКСИДНЫЕ ФАЗЫ / ГЕКСАФЕРРИТЫ М-ТИПА / ТВЕРДОФАЗНЫЙ СИНТЕЗ / ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Аннотация научной статьи по химическим наукам, автор научной работы — Зайцева Ольга Владимировна, Живулин Владимир Евгеньевич, Пунда Александр Юрьевич, Трофимов Евгений Алексеевич

Проведены эксперименты по получению новых высокоэнтропийных оксидных фаз со структурой гексаферрита М-типа, состав которых отражает формула MeR12O19. В этой формуле в роли компонентов Me выступают - Ba, Sr, в роли компонентов R, наряду с ранее применяемыми - Fe, Mn, Al, Ga, In, использован ряд новых, ранее не использованных никем для данных задач компонентов - Zr, Sn, Zn. Учитывая данные, представленные в литературе, на данном этапе работ исследования проводились с образцами, принадлежащими трем составам: Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3. В первом случае планировалось установить, может ли в качестве компонента высокоэнтропийной фазы со структурой гексаферрита М-типа выступать цирконий. Второй состав позволил установить, можно ли в качестве таких компонентов совместно использовать олово и цинк (при этом предполагалось, что сочетание четырехвалентного олова и двухвалентного цинка позволит добиться взаимной компенсации зарядов ионов этих металлов, получив среднее значение +3). При исследовании третьего состава планировалось изучить возможности использования добавок легкоплавких компонентов (оксида бора и солей, образованных оксидом бора и щелочноземельными элементами) в процессе образования кристаллов высокоэнтропийной фазы. Исследование структуры и химического состава образцов систем Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3, полученных методом твердофазного синтеза, показало возможность образования высокоэнтропийных микрокристаллов со структурой гексаферрита М-типа при всех использованных температурах. В ходе проведенных работ установлено, что в составе высокоэнтропийной фазы MeR12O19 в роли компонентов R могут быть использованы Zr, Sn и Zn. Использование легкоплавкой добавки в составе шихты на основе оксида бора не привело к заметному улучшению результатов синтеза кристаллов (а кроме того, образец закономерно оказался загрязненным соединениями бора). Результаты РФА демонстрируют, что увеличение температуры синтеза (в нашем случае до 1400 °C) положительно сказывается на его результатах. Все эти факты следует учесть в ходе последующих экспериментов по созданию однофазных образцов, пригодных для исследования их характеристик.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Зайцева Ольга Владимировна, Живулин Владимир Евгеньевич, Пунда Александр Юрьевич, Трофимов Евгений Алексеевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SOLID-PHASE SYNTHESIS OF HIGH-ENTROPY CRYSTALS WITH THE M-TYPE HEXAFERRITE STRUCTURE IN THE BA(FE,MN,ZR,GA,AL)12O19, BA(FE,SN,ZN,GA,AL)12O19 AND (BA,SR)(FE,GA,IN,AL)12O19/B2O3 SYSTEMS

Experiments to obtain new high-entropy oxide phases with the M-type hexaferrite structure, the composition of which reflects the MeR12O19 formula, were carried out. In this formula, the Me components are Ba, Sr, and in the role of the R components, along with the previously used - Fe, Mn, Al, Ga, In - a number of new components unused previously for these tasks: Zr, Sn, Zn. Taking into account the data presented in the literature, at this stage of the research the studies with samples belonging to three compositions were carried out: Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, and (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3. In the first case, it was planned to establish whether zirconium can act as a component of the high-entropy phase with the M-type hexaferrite structure. The second composition made it possible to establish whether tin and zinc could be used together as such components (it was assumed that the combination of the tetravalent tin and bivalent zinc would make it possible to achieve mutual compensation of the charges of the ions of these metals, obtaining an average value of +3). While studying the third composition, it was planned to study the possibility of using additions of low-melting components (boron oxide and salts formed by boron oxide and alkaline earth elements) in the process of the formation of crystals of the high-entropy phase. The study of the structure and chemical composition of samples of the Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, and (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3 systems, obtained by solid-phase synthesis, showed the possibility of formation of high-entropy microcrystals with the M-type hexaferrite structure at all temperatures used. In the course of the work carried out, it was found that in the composition of the high-entropy MeR12O19 phase, a number of new components, unused previously for these tasks, can be used as the R components: Zr, Sn, Zn. The use of a low-melting additive in the composition of the mixture based on boron oxide did not lead to a noticeable improvement in the results of crystal growth (and, in addition, the sample naturally turned out to be contaminated by boron compounds). The XRD results demonstrate that an increase in the synthesis temperature (in our case, up to 1400 °C) has a positive effect on its results. All these facts should be taken into account in the course of subsequent experiments to create single-phase samples suitable for studying their characteristics.

Текст научной работы на тему «ТВЕРДОФАЗНЫЙ СИНТЕЗ ВЫСОКОЭНТРОПИЙНЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ГЕКСАФЕРРИТА М-ТИПА В СИСТЕМАХ BA(FE,MN,ZR,GA,AL)12O19, BA(FE,SN,ZN,GA,AL)12O19 И (BA,SR)(FE,GA,IN,AL)12O19/B2O3»

УДК 544.22

DOI: 10.14529/chem210308

ТВЕРДОФАЗНЫЙ СИНТЕЗ ВЫСОКОЭНТРОПИЙНЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ГЕКСАФЕРРИТА М-ТИПА В СИСТЕМАХ Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe>SnJZnJGa>Al)12O19 и (BaJSr)(FeJGaJInJAl)12O19/B2Oз

О.В. Зайцева1, В.Е. Живулин2, А.Ю. Пунда2, Е.А. Трофимов2

1 Южно-Уральский государственный университет, филиал в г. Златоусте, г. Златоуст, Россия

2 Южно-Уральский государственный университет, г. Челябинск, Россия

Проведены эксперименты по получению новых высокоэнтропийных оксидных фаз со структурой гексаферрита М-типа, состав которых отражает формула MeRl2Ol9. В этой формуле в роли компонентов Ме выступают - Ва, Sr, в роли компонентов R, наряду с ранее применяемыми - Fe, Мп, А1, Ga, 1п, использован ряд новых, ранее не использованных никем для данных задач компонентов - 2г, Sn, 2п. Учитывая данные, представленные в литературе, на данном этапе работ исследования проводились с образцами, принадлежащими трем составам: Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3. В первом случае планировалось установить, может ли в качестве компонента высокоэнтропийной фазы со структурой гексаферрита М-типа выступать цирконий. Второй состав позволил установить, можно ли в качестве таких компонентов совместно использовать олово и цинк (при этом предполагалось, что сочетание четырехвалентного олова и двухвалентного цинка позволит добиться взаимной компенсации зарядов ионов этих металлов, получив среднее значение +3). При исследовании третьего состава планировалось изучить возможности использования добавок легкоплавких компонентов (оксида бора и солей, образованных оксидом бора и щелочноземельными элементами) в процессе образования кристаллов высокоэнтропийной фазы. Исследование структуры и химического состава образцов систем Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3, полученных методом твердофазного синтеза, показало возможность образования высокоэнтропийных микрокристаллов со структурой гексаферрита М-типа при всех использованных температурах. В ходе проведенных работ установлено, что в составе высокоэнтропийной фазы MeR12O19 в роли компонентов R могут быть использованы 2г, Sn и 2п. Использование легкоплавкой добавки в составе шихты на основе оксида бора не привело к заметному улучшению результатов синтеза кристаллов (а кроме того, образец закономерно оказался загрязненным соединениями бора). Результаты РФА демонстрируют, что увеличение температуры синтеза (в нашем случае до 1400 °С) положительно сказывается на его результатах. Все эти факты следует учесть в ходе последующих экспериментов по созданию однофазных образцов, пригодных для исследования их характеристик.

Ключевые слова: высокоэнтропийные оксидные фазы, гексаферриты М-типа, твердофазный синтез, экспериментальное исследование.

Введение

В последние годы был проделан значительный объем работ по синтезу и изучению неметаллических высокоэнтропийных фаз [1-15]. Несмотря на то, что данное направление возникло совсем недавно (фактически только начиная с 2015 года), полученные результаты представляют интерес не только с точки зрения фундаментальной науки, но и перспективны с точки зрения практического применения.

Цель наших исследований (например [16-19]) - получение новых высокоэнтропийных оксидных фаз со структурой гексаферрита М-типа путем твердофазного синтеза в системах, которые ранее не становились объектом исследований с точки зрения создания высокоэнтропийных фаз, а также изучение структуры, состава и характеристик полученных образцов.

В последние десятилетия было доказано, что управление свойствами гексаферритов возможно благодаря замене некоторых атомов железа атомами других элементов [20]. Таким образом, получение высокоэнтропийного материала со структурой гексаферрита М-типа открывает широ-

кие возможности плавного регулирования всего комплекса его электромагнитных характеристик в соответствии с требованиями производителей электроники. Полученные таким образом материалы имеют большой потенциал применения в различных областях науки и техники.

Настоящая статья посвящена экспериментальному получению новых высокоэнтропийных фаз со структурой гексаферрита М-типа, состав которых (качественный и количественный) отражает формула MeR12O19. В этой формуле в роли компонентов Me выступают - Ba, Sr, в роли компонентов R, наряду с ранее применяемыми - Fe, Mn, Al, Ga, In, использован ряд новых, ранее не использованных никем для данных задач, компонентов - Zr, Sn, Zn.

При определении составов систем, которые планировалось исследовать, использовались литературные данные о радиусах ионов элементов (рассматриваемых в контексте правила Гольд-шмидта), и их координационном числе. Кроме того, такой элементный состав исследуемых систем объясняется следующим образом. Элементами, наиболее часто выступающими в роли двух-зарядного катиона при формировании гексаферритной структуры, в данном случае являются Ba и Sr. Также согласно литературным данным [20], доказана возможность замещения железа в гек-саферритах М-типа в первую очередь такими элементами, как Al, Mn и Ti. Zr является электронным аналогом Ti и ранее успешно применялся для замещения трехвалентного железа в гексафер-ритах; Sn, Zn также упоминаются в литературе в качестве возможных участников замещенных гексаферритных структур. Все это относится к одновременному легированию одним или двумя элементами, однако дает нам основание полагать, что Zr, Sn, Zn могут быть использованы и для получения высокоэнтропийного материала со структурой гексаферрита М-типа.

Учитывая данные, представленные в литературе, на данном этапе работ предполагается исследовать образцы, принадлежащие к трем составам:

Ba(Fe,Mn,Zr,Ga,Al)12O19,

Ba(Fe,Sn,Zn,Ga,Al)12O19,

(Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3.

В первом случае планируется установить, может ли в качестве компонента высокоэнтропийной фазы со структурой гексаферрита М-типа выступать цирконий. Второй состав позволит установить: можно ли в качестве таких компонентов совместно использовать олово и цинк (при этом предполагается, что сочетание четырехвалентного олова и двухвалентного цинка позволит добиться взаимной компенсации зарядов ионов этих металлов, получив среднее значение +3). При изучении третьего состава планируется изучить возможности использования добавок легкоплавких компонентов (оксида бора и солей, образованных оксидом бора и щелочноземельными элементами) в процессе образования кристаллов высокоэнтропийной фазы.

Методика проведения экспериментов

Работы по получению новых высокоэнтропийных оксидных фаз со структурой гексаферрита М-типа путем твердофазного синтеза на данном этапе исследования проводились с системами, состав которых отражают формулы:

Ba(Fe2,4Mn2,4Zr2,4Ga2,4Al2,4)O19,

Ba(Fe2,4Sn2,4Zn2,4Ga2,4Al2,4)O19,

(Ba0,5Sr05)(Fe4,8Ga2,4In2,4Al2,4)O19/(G,3BaO+G,3SrO+2,4H3BO3).

В последнем случае состав подобран исходя из предположения, что после разложения борной кислоты (с испарением воды) и реакции оксида бора с оксидами щелочноземельных металлов получится 0,6 моль тетраборатов этих металлов на 1 моль гексаферритной фазы. Рассчитанные составы шихты для синтеза образцов приведены в табл. 1.

Навески реактивов (ВаСОз, SrCO3, Fe2O3, мп20з, SnO2, ZrO2, ZnO, Ga2O3, AI2O3, H3BO3, Мз с квалификацией не ниже, чем «ч. д. а.») в ходе эксперимента предварительно тщательно перемешивали и перетирали в агатовой ступке.

С целью определения оптимальной температуры твердофазного синтеза образцы заданного состава спекались в окислительной атмосфере (на воздухе) при температурах 1200, 1300 и 1400 °С в течение 5 часов. Затем полученные экспериментальные образцы охлаждали и исследовали на сканирующем электронном микроскопе Jeol JSM7001F, снабженным рентгеновским спектрометром Oxford INCA X-max 80 (для элементного анализа образцов). Подтверждение

структуры образцов осуществлялось методом рентгенофазового анализа с помощью рентгеновского порошкового дифрактометра Rigaku Ultima IV.

Таблица 1

Составы шихты (масс. %)

Ba(Fe,Mn,Zr,Ga,Al)12O19 Ba(Fe,Sn,Zn,Ga,Al)12O19 (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3

[BaCO3] 16,1561 15,2585 10,6082

[SrCO3] - - 7,9372

[Fe2O3] 15,6889 14,8173 25,7549

[M2O3] 15,5103 - -

[ZrOd 24,2120 - -

[Ga2O3] 18,4155 17,3923 15,1164

[A2O3] 10,0172 9,4606 8,2228

[SnO2] - 27,9676 -

[ZnO] - 15,1037 -

[H3BO3] - - 9,9714

PnO] - - 22,3890

Результаты и их обсуждение

Типичные микрокристаллы, обнаруженные в образцах различных систем, показаны на рис. 1-3. Усредненные результаты микрорентгеноспектрального анализа некоторых обнаруживаемых гексагональных микрокристаллов представлены в табл. 2.

в)

Рис. 1. Пример кристаллов, обнаруживаемых в образцах состава Ba(Fe,Mn,Zr,Ga,Al)12O19, полученных при температуре: а) Т = 1200 °С; б) Т = 1300 °С; в) Т = 1400 °С

Зайцева О.В., Живулин В.Е., Твердофазный синтез высокоэнтропийных кристаллов

Пунда А.Ю., Трофимов Е.А. со структурой гексаферрита М-типа...

в)

Рис. 2. Пример кристаллов, обнаруживаемых в образцах состава Ба(Ре,8п,2п,0а,Л!)12019, полученных при температуре: а) Т = 1200 °С; б) Т = 1300 °С; в) Т = 1400 °С

в)

Рис. 3. Пример кристаллов, обнаруживаемых в образцах состава (Ба,8г)(Ре,0а,!п,Л!)12019/Б20з, полученных при температуре: а) Т = 1200 °С; б) Т = 1300 °С; в) Т = 1400 °С

Таблица 2

Усредненные результаты исследования методом РСМА некоторых обнаруженных гексагональных кристаллов (ат. %)

Ba(Fe,Mn,Zr,Ga,Al)i2Oi9

Т, °С [R]* [Ме]* [R]/[Me]

Al Mn Fe Ga Zr Ba

1200 ii,99 i7,08 i9,37 37,78 5,i6 8,62 i0,63

1300 24,i4 i7,27 i9,72 2i,9 9,42 7,54 i2,26

1400 i8,06 ii,58 33,23 25,02 5,49 6,62 i4,ii

Ba(Fe,Sn,Zn,Ga,Al)i2Oi9

Т, °С [R]* [Ме]* [R]/[Me]

Al Fe Zn Ga Sn Ba

i200 i9,55 i3,66 i3,4i ii,i6 34,94 7,29 i2,72

i300 2i,34 i8,66 i8,02 i6,69 i6,78 8,5i i0,76

i400 26,5 i7,58 i4,68 i6,i3 i7,2i 7,9 ii,75

(Ba,Sr)(Fe,Ga,In,Al)i2Oi9/B2O3

Т, °С [R]* [Ме]* [R]/[Me]

Al Fe Ga In Sr Ba

i200 i9,29 40,i3 20,3i i2,4i 3,i9 4,66 i2,00

i300 24,9i 36,4i i7,35 i3,04 3,79 4,49 ii,07

i400 20,22 38,28 20,09 i3,56 3,24 4,6i ii,7i

* - для формулы MeRi2Oi9.

При анализе результатов, несомненно, следует учитывать как неточности в определении содержания элементов ввиду размера исследуемых кристаллов и особенностей методики исследования, так и возможность присутствия некоторых элементов в составе фазы МеЯ12О19 как в положении Я, так и в положении Ме. С учетом этого из представленных данных (см. табл. 2) видно, что соотношение между числом атомов типа Я и числом атомов типа Ме в гексагональных кристаллах всех полученных образцов довольно близко к 12.

Это соотношение, а также результаты рентгенофазового анализа (рис. 4-6) свидетельствуют о том, что твердофазным синтезом могут быть получены высокоэнтропийные кристаллы со структурой гексаферрита М-типа, в том числе кристаллы, состав которых ранее не был описан в литературе. На рис. 4-6 красными линиями обозначены данные для ВаРе12О19 [21]; штриховыми и штрихпунктирными линиями обозначены рефлексы, относящиеся к другим веществам (они перечислены на рисунках).

Угол 2©

Рис. 4. Спектры рентгеновской дифракции образцов состава Ва(Ре,Мп,2г,0а,А!)12019, синтезированных при температурах 1200, 1300 и 1400 °С

Сопоставление результатов РФА для разных температур показывает, что с ростом температуры синтеза количество гексаферритной фазы растет (интенсивность соответствующих рефлексов усиливается), а количества других веществ в исследуемых образцах падает.

При этом видно, что положение пиков гексаферритной фазы несколько смещается относительно пиков для чистого BaFe12O19. Это связано с некоторым изменением усредненных параметров кристаллической решетки в высокоэнтропийной фазе из-за разницы ионных радиусов железа и других элементов, образующих высокоэнтропийную подрешетку.

Рис. 5. Спектры рентгеновской дифракции образцов состава Ba(Fe,Sn,Zn,Ga,Al)12O19, синтезированных при температурах 1200, 1300 и 1400 °С

Рис. 6. Спектры рентгеновской дифракции образцов состава (Ba,Sr)(Fe,Ga,In,Al)12O19/B2Oз, синтезированных при температурах 1200, 1300 и 1400 °С

Заключение

Исследование структуры и химического состава образцов систем Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, (Ba,Sr)(Fe,Ga,In,Al)12O19/B2Oз, полученных методом твердофазного син-

теза, показало возможность образования высокоэнтропийных микрокристаллов со структурой гексаферрита М-типа.

В ходе проведенного исследования установлено, что в составе высокоэнтропийной фазы MeR12O19 в роли компонентов R может быть использован ряд новых, ранее не использованных никем для данных задач, компонентов - Zr, Sn, Zn. Использование легкоплавкой добавки в составе шихты на основе оксида бора не привело к заметному улучшению результатов выращивания кристаллов (а кроме того, образец закономерно оказался загрязненным соединениями бора). Показано, что кристаллы высокоэнтропийных гексаферритов М-типа образуются при всех использованных температурах. Однако результаты РФА демонстрируют, что увеличение температуры синтеза (до 1400 °C) положительно сказывается на его результатах - в образцах растет количество фазы со структурой гексаферрита М-типа и уменьшается количество других фаз. Все эти факты нужно учесть в ходе последующих экспериментальных работ по созданию гомогенных образцов, необходимых для исследования их характеристик.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-33-90113.

Литература/References

1. Tsau Ch.-H., Hwang Zh.-Y., Chen S.-K. The Microstructures and Electrical Resistivity of (Al,Cr,Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films. Advances in Materials Science and Engineering, 2015, pp. 1-6. DOI: 10.1155/2015/353140.

2. Berardan D., Franger S., Dragoe D., Meena A.K., Dragoe N. Colossal Dielectric Constant in High Entropy Oxides. Rapid Research Letters, 2016, vol. 10, no. 4, pp. 328-333. DOI: 10.1002/pssr.201600043.

3. Berardan D., Franger S., Meena A.K., Dragoe N. Room Temperature Lithium Superionic Conductivity in High Entropy Oxide. Journal of Materials Chemistry A, 2016, vol. 4, pp. 9536-9541. DOI: 10.1039/C6TA03249D.

4. Rak Zs., Rost C.M., Lim M., Sarker P., Toher C., Curtarolo S., Maria J.-P., Brenner D.W. Charge Compensation and Electrostatic Transferability in Three Entropy-stabilized Oxides: Results from Density Functional Theory Calculations. Journal of Applied Physics, 2016, vol. 120, no. 9, 095105. DOI: 10.1063/1.4962135.

5. Sarkar A., Djenadic R., Usharani N.J., Sanghvi K.P., Chakravadhanula V.S.K., Gandhi A.S., Hahn H., Bhattacharya S.S. Nanocrystalline Multicomponent Entropy Stabilised Transition Metal Oxide. Journal of the European Ceramic Society, 2017, vol. 37, no. 2, pp. 747-754. DOI: 10.1016/j.jeurceramsoc.2016.09.018.

6. Berardan D., Meena A.K., Franger S., Herrero C., Dragoe N. Controlled Jahn-Teller Distortion in (MgCoNiCuZn)O-Based High Entropy Oxides. Journal of Alloys and Compounds, 2017, pp. 693-700. DOI: 10.1016/j.jallcom.2017.02.070.

7. Djenadic R., Sarkar A., Clemens O., Loho Ch., Botros M., Chakravadhanula V.S.K., Kübel Ch., Bhattacharya S.S., Gandhi A.S., Hahn H. Multicomponent Equiatomic Rare Earth Oxides. Materials Research Letters, 2017, vol. 5, pp. 102-109. DOI: 10.1080/21663831.2016.1220433.

8. Rost Ch.M., Rak Z., Brenner D.W., Maria J.-P. Local Structure of the MgxNixCoxCuxZnxO(x=0.2) Entropy-Stabilized Oxide: An EXAFS Study. Journal of the American Ceramic Society, 2017, vol. 100, no. 6, pp. 2732-2738. DOI: 10.1111/jace.14756.

9. Sarkar A., Loho C., Velasco L., Thomas T., Bhattacharya S.S., Hahn H., Djenadic R.R. Multi-component Equiatomic Rare Earth Oxides with Narrow Band Gap and Associated Praseodymium Mul-tivalency. Dalton Trans, 2017, pp. 12167-12176. DOI: 10.1039/C7DT02077E.

10. D^browa J., Stygar M., Mikula A., Knapik A., Mroczka K., Tejchman W., Danielewski M., Martin M. Synthesis and Microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxide Characterized by Spinel Structure. Materials Letters, 2018, pp. 32-36. DOI: 10.1016/j.matlet.2017.12.148.

11. Pu Y., Zhang Q., Li R., Chen M., Du X., Zhou S. Dielectric Properties and Electrocaloric Effect of High-Entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 Ceramic. Applied Physics Letters, 2019, vol. 115, no. 22, 223901. DOI: 10.1063/1.5126652.

12. Wang D., Jiang S., Duan C., Mao J., Dong Y., Dong K., Wang Z., Luo S., Liu Y., Qi X. Spinel-Structured High Entropy Oxide (FeCoNiCrMn)3O4 as Anode Towards Superior Lithium Storage Performance. Journal of Alloys and Compounds, 2020, vol. 844, i56i58. DOI: i0.i0i6/j.jallcom.2020.i56i58.

13. Yang Q., Wang G., Wu H., Beshiwork B.A., Tian D., Zhu S., Yang Y., Lu X., Ding Y., Ling Y., Chen Y., Lin B. A High-Entropy Perovskite Cathode for Solid Oxide Fuel Cells. Journal of Alloys and Compounds, 202i, vol. 872, i59633. DOI: i0.i0i6/j.jallcom.202i.i59633.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

14. Zhou L., Li F., Liu J.-X., Sun S.-K., Liang Y., Zhang G.-J. High-Entropy A2B2O7-Type Oxide Ceramics: A Potential Immobilising Matrix for High-Level Radioactive Waste. Journal of Hazardous Materials, 202i, vol. 4i5, i25596. DOI: i0.i0i6/j.jhazmat.202i.i25596.

15. Cong L., Zhang S., Gu S., Li W. Thermophysical Properties of a Novel High Entropy Hafnate Ceramic. Journal of Materials Science and Technology, 202i, vol. 85, pp. i52-i57. DOI: i0.i0i6/j.jmst.202i.02.005.

16. Zaitseva O.V., Vinnik D.A., Trofimov E.A. The Poly-Substituted M-Type Hexaferrite Crystals Growth. Materials Science Forum, 20i9, vol. 946, pp. i86-i9i. DOI: i0.4028/www.scientific.net/MSF.946.i86.

17. Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Gudkova S.A., Starikov A. Yu., Zherebtsov D.A., Kirsanova A.A., HaBner M., Niewa R. High-Entropy Oxide Phases with Magnetop-lumbite Structure. Ceramics International, 20i9, vol. 45, iss. i0, pp. i2942-i2948. DOI: i0.i0i6/j.ceramint.20i9.03.22i.

18. Zaitseva O.V., Zhivulin V.E., Chernukha A.S. Preparation of Poly-substituted Crystals with M-type Hexa-ferrite Structure Using Melts of the BaO-PbO-SrO-CaO-ZnO-Fe2O3-Mn2O3-Al2O3 System. Solid State Phenomena, 2020, vol. 299, pp. 275-280. DOI: i0.4028/www.scientific.net/SSP.299.275.

19. Zhivulin V.E., Trofimov E.A., Starikov A.Y., Gudkova S.A., Punda A.Yu., Zherebtsov D.A., Zaitseva O.V., Vinnik D.A. New High-entropy Oxide Phases with the Magnetoplumbite Structure. IOP Conference Series: Materials Science and Engineering, 202i, vol. i0i4, no. i, 0i2062. DOI: i0.i088/i757-899x/i0i4/i/0i2062.

20. Pullar R.C. Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Progress in Materials Science, 20i2, pp. ii9i-i334. DOI: i0.i0i6/j.pmatsci.20i2.04.00i.

21. Collomb A., Wolfers P., Obradors X. Neutron Diffraction Studies of Some Hexagonal Ferrites: BaFei2Oi9, BaMg2-W and BaCo2-W. Journal of Magnetism and Magnetic Materials, i986, vol. 62, 57 p. DOI: i0.i0i6/0304-8853(86)90734-i.

Зайцева Ольга Владимировна - аспирант, ассистент кафедры промышленного и гражданского строительства, Южно-Уральский государственный университет, филиал в г. Златоусте, 456217, Челябинская обл., г. Златоуст; ул. Тургенева, 16; [email protected]

Живулин Владимир Евгеньевич - кандидат физико-математических наук, старший научный сотрудник лаборатории роста кристаллов, Южно-Уральский государственный университет, 454080, г. Челябинск, проспект Ленина, 76; [email protected]

Пунда Александр Юрьевич - магистрант, Южно-Уральский государственный университет. 454080, г. Челябинск, проспект Ленина, 76. E-mail: [email protected]

Трофимов Евгений Алексеевич - доктор химических наук, доцент, профессор кафедры материаловедения и физико-химии материалов, Южно-Уральский государственный университет, 454080, г. Челябинск, проспект Ленина, 76. E-mail: [email protected]

Поступила в редакцию 31 марта 2021 г.

DOI: 10.14529/chem210308

SOLID-PHASE SYNTHESIS OF HIGH-ENTROPY CRYSTALS WITH THE M-TYPE HEXAFERRITE STRUCTURE IN THE Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19 AND (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3 SYSTEMS

O.V. Zaitseva1, [email protected], V.E. Zhivulin2, [email protected], A.Yu. Punda2, [email protected], E.A. Trofimov2, [email protected]

1 South Ural State University, Zlatoust, Russian Federation

2 South Ural State University, Chelyabinsk, Russian Federation

Experiments to obtain new high-entropy oxide phases with the M-type hexaferrite structure, the composition of which reflects the MeRi2Oi9 formula, were carried out. In this formula, the Me components are Ba, Sr, and in the role of the R components, along with the previously used -Fe, Mn, Al, Ga, In - a number of new components unused previously for these tasks: Zr, Sn, Zn. Taking into account the data presented in the literature, at this stage of the research the studies with samples belonging to three compositions were carried out: Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, and (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3. In the first case, it was planned to establish whether zirconium can act as a component of the high-entropy phase with the M-type hexaferrite structure. The second composition made it possible to establish whether tin and zinc could be used together as such components (it was assumed that the combination of the tetrava-lent tin and bivalent zinc would make it possible to achieve mutual compensation of the charges of the ions of these metals, obtaining an average value of +3). While studying the third composition, it was planned to study the possibility of using additions of low-melting components (boron oxide and salts formed by boron oxide and alkaline earth elements) in the process of the formation of crystals of the high-entropy phase. The study of the structure and chemical composition of samples of the Ba(Fe,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19, and (Ba,Sr)(Fe,Ga,In,Al)12O19/B2O3 systems, obtained by solid-phase synthesis, showed the possibility of formation of high-entropy microcrystals with the M-type hexaferrite structure at all temperatures used. In the course of the work carried out, it was found that in the composition of the high-entropy MeR12O19 phase, a number of new components, unused previously for these tasks, can be used as the R components: Zr, Sn, Zn. The use of a low-melting additive in the composition of the mixture based on boron oxide did not lead to a noticeable improvement in the results of crystal growth (and, in addition, the sample naturally turned out to be contaminated by boron compounds). The XRD results demonstrate that an increase in the synthesis temperature (in our case, up to 1400 °C) has a positive effect on its results. All these facts should be taken into account in the course of subsequent experiments to create single-phase samples suitable for studying their characteristics.

Keywords: high-entropy oxide phases, M-type hexaferrites, solid-phase synthesis, experimental study.

Received 31 March 2021

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Твердофазный синтез высокоэнтропийных кристаллов со структурой гексаферрита М-типа в системах Ba(F e,Mn,Zr,Ga,Al)12O19, Ba(Fe,Sn,Zn,Ga,Al)12O19

и (Ba,SrXFe,GaДnДl)1A9/B2O3 / О.В. Зайцева, В.Е. Живу-лин, А.Ю. Пунда, Е.А. Трофимов // Вестник ЮУрГУ. Серия «Химия». - 2021. - Т. 13, № 3. - С. 70-78. DOI: 10.14529/сИеш210308

FOR CITATION

Zaitseva O.V., Zhivulin V.E., Punda A.Yu., Trofimov E.A. Solid-Phase Synthesis of High-Entropy Crystals with the M-Type Hexaferrite Structure in the Ba(Fe,Mn,Zr,Ga,Al)12o19, Ba(Fe,Sn,Zn,Ga,Al)12o19 and (Ba,Sr)(Fe,Ga,In,Al)12o19/B2o3 Systems. Bulletin of the South Ural State University. Ser. Chemistry. 2021, vol. 13, no. 3, pp. 70-78. (in Russ.). DOI: 10.14529/chem210308

i Надоели баннеры? Вы всегда можете отключить рекламу.