СТРОИТЕЛЬНОЕ МАТЕРИАЛОВЕДЕНИЕ
УДК 699.822:620.193+699.87 DOI: 10.22227/1997-0935.2018.9.1106-1111
Treatment of external thermal insulation composite systems (ETICS) with bio corrosion with respect to environment protection
Nad'a Antosova, Katarina Minarovicova, Barbora Belaniova
Slovak University of Technology in Bratislava, 11 Radlinskeho, Bratislava, 813 68, Slovakia
ABSTRACT: Subject: the treatment of External Thermal Insulation Composite Systems (ETICS) surfaces affected by biocorrosion takes place as a part of planned or operational maintenance. As part of this process, ambient environments are loaded with running water and detergents that contain heavy metals. The article presents the results of research on reducing the impact of environmental contamination by cleaning and preventive coating of ETICS surfaces with biocides. The paper gives an overview of the problem and new approaches to the treatment of new and renovated buildings. Purposes: at the present time, the maintenance of existing ETICS lacks system solutions, instead using chemical methods for the treatment of contamination by microorganisms. While complete information on environmental impacts is lacking it is necessary to take this into consideration. The cost of renovation, which should include investment for future treatment of ETICS surfaces, is often underestimated. Film preservation biocides contain both algaecides and fungicides. Consequently, ETICS preservation agents in exterior paints and renders represent a potential risk for humans, animals and the wider biological environment and new concepts underlying more sustainable approaches are required.
Materials and methods: the research was based on an evaluation of existing technologies for eliminating microorganisms ю ю from the ETICS surfaces and an analysis of their environmental effects. The aim was to find optimal operational and planned
ETICS maintenance approaches that minimise negative environmental effects.
Results: environmentally-friendly approaches were identified and a new leaching system for safe dewatering was designed. ^ £ These approaches differ according to their suitability for periodic or operational maintenance.
<£ ф Conclusions: there is a wide range of materials used for ETICS finishes. It is important to consider the reliability and
maintainability of the construction across the entire life cycle of a building. Operation and maintenance should be a significant element of the life-cycle cost of a building. The removal of bio corrosion coatings from ETICS structures by means of chemical ^ M and preservative substances (biocides) is currently the most-used and only effective technology. The uncontrolled release
of applied chemicals is unacceptable. A system designed for collecting wastewater from the cleaned surface is considered an effective means of reducing the deleterious effects of biocidal substances on the environment. The safe dewatering of 2 § chemicals leached from the surface of the facade is presented by a drain system designed in accordance with the building
¡2 75 type, use and age.
KEY WORDS: thermal insulation, biocides, sustainability, bio-corrosion, chemicals leaching, life cycle, environment protection
Acknowledgements: the paper partly originated within the framework of the Scientific Grant Agency of the VEGA 1/0685/16 project.
FOR CITATION: Antosova N., Minarovicova K., Belaniova B. Treatment of external thermal insulation composite systems
>
О
со 4- (ETICS) with bio corrosion with respect to environment protection. Vestnik MGSU [Proceedings of Moscow State University
4 ° of Civil Engineering]. 2018, vol. 13, issue 9, pp.1106-1111. DOI 10.22227/1997-0935.2018.9.1106-1111
(Л |
" Обработка внешних термоизоляционных композитных систем
Ф
Ц с биокоррозией в целях охраны окружающей среды
« s
Н. Антошова, К. Минаровичова, Б. Беланиова
Словацкий технический университет в Братиславе, 813 68, Словакия, г. Братислава, ул. Радлинского, 11
сл _
2 от ОТ .Е
22 ^ АННОТАЦИЯ: Предмет исследования: обработка поверхностей наружных теплоизоляционных композитных сиси стем, подверженных биокоррозии, проводится в рамках планового или эксплуатационного обслуживания. Окружаю-2 щие среды нагружены с проточной водой и очищающими средствами тяжелыми металлами. Представлены результаты исследований по снижению воздействия загрязнения окружающей среды очисткой и покрытием поверхностей ^ наружных теплоизоляционных композитных систем биоцидами в целях профилактики. Представлен обзор проблемы ^ (/) и рассмотрены современные подходы к обработке новых и реконструируемых сооружений.
Е ^ Цели: в настоящее время для поддержания существующих наружных теплоизоляционных композитных систем не * е хватает системных решений, вместо этого используются химические методы для обработки загрязнений микроор-™ ганизмами. Несмотря на отсутствие полной информации о воздействии на окружающую среду, необходимо при** нимать это во внимание. Стоимость реконструкции, которая должна включать инвестиции для будущей обработки (и (и поверхностей наружных теплоизоляционных композитных систем, часто недооценивается. Биоциды содержат как
U >
альгициды, так и фунгициды. Следовательно, вещества для сохранения наружных теплоизоляционных композитных
1106
© N. Antosova, K. Minarovicova, B. Belaniova, 2018
Treatment of external thermal Insulation composite systems (ETICS) with bio corrosion
with respect to environment protection
систем представляют потенциальный риск для людей, животных и биологической среды в целом, и требуются новые подходы для решения данной проблемы.
Материалы и методы: исследование основывалось на оценке существующих технологий удаления микроорганизмов с поверхностей и анализе их воздействия на окружающую среду. Задача — найти оптимальные подходы к эксплуатации и плановому обслуживанию наружных теплоизоляционных композитных систем, которые минимизируют негативное воздействие на окружающую среду.
Результаты: определены экологически безопасные подходы и разработана новая система выщелачивания для безопасной дегидратации. Эти подходы различаются в зависимости от их пригодности для периодического или оперативного обслуживания.
Выводы: важно учитывать надежность и ремонтопригодность конструкции на протяжении всего жизненного цикла сооружения. Эксплуатация и техническое обслуживание должны быть существенным элементом стоимости жизненного цикла здания. Удаление биокоррозионных покрытий из конструкций наружных теплоизоляционных композитных систем с помощью химических и консервирующих веществ (биоцидов) в настоящее время является наиболее используемой и эффективной технологией. Неконтролируемое применение химических веществ недопустимо. Система сбора сточных вод с очищенной поверхности считается эффективным средством снижения вредного воздействия биоцидных веществ на окружающую среду.
КЛЮЧЕВЫЕ СЛОВА: термоизоляция, биоциды, устойчивость, биокоррозия, выщелачивание химикатов, жизненный цикл, охрана окружающей среды
Благодарности: статья частично подготовлена в рамках проекта VEGA 1/0685/16 научного грантового агентства.
ДЛЯ ЦИТИРОВАНИЯ: Антошова Н., Минаровичова К., Беланиова Б. Treatment of external thermal insulation composite systems (ETICS) with bio corrosion with respect to environment protection // Вестник МГСУ. 2018. Т. 13. Вып. 9. С. 1106-1111. DOI 10.22227/1997-0935.2018.9.1106-1111
INTRODUCTION
The effects of microorganisms on building facades include aesthetic, bio-geophysical and biogeochemical deterioration. The process of cleaning contaminated facades involves the removal and eradication of micro flora on the external surfaces of insulation systems using chemical products that destroy cells and eliminate biomass. Due to their photoautotrophic nature, photo-synthetic microorganisms such as algae and cyanobac-teria are the primary colonizers of building facades and consequently responsible for additional biological colonization [1]. The future costs of cleaning and treatment of microbial deterioration on buildings is often difficult to estimate. Moreover, in addition to the short-lived durability of biocide treatments, the application of these products involves additional problems since their toxicity can result in environmental and public health damage [2]. The durability of biocide treatment of facades remains controversial with widely varying research results. Although negative bio-accumulative impacts on the environment are not monitored, they are widely supposed to be significant. For this reason, a strong set of regulations and procedures applying throughout the European Union was created. These regulations ensure controlled usage of chemical substances and guarantee a high level of protection for the environment [3].
Four basic regulations have been introduced in recent years to ensure a high level of protection for human health and the environment [4]:
• REACH — Regulation on the Registration, Evaluation, Authorization and Restriction of Chemical Substances (in action since 2007);
• CLP — Regulation on Classification, Labelling and Packaging of Substances and mixtures (in force since 2009);
• BPR — Biocidal Products Regulation (in force since 2013);
• PIC — Prior Informed Consent Regulation (concerning the export and import of hazardous chemicals, in force since 2014).
Today all biocide products must obtain authorization prior to being made available on the market. Depending on the type of product and number of countries in which they wish to sell it, companies can choose between several alternative processes. Slovakia introduced Act No. 319/2013 (biocide law) in accordance with Regulation (EU) 528/2012 (Regulation on Selling and Using Biocidal Products). The Slovak Centre for Chemical Substances and Preparations is the national authority responsible for the preparation and implementation of chemical legislation concerning the placing of substances, mixtures, detergents and biocides on the market. In 2013, the Act on Integrated Prevention and Control of Environmental Pollution was introduced in Slovakia. In case of water contamination, the person or organization that caused the contamination is held responsible and must compensate for the damage. It is also important to conform with the law on water (No. 409/2014) in the context of protection of ground-water against pollution and deterioration.
LITERATURE REVIEW
Various studies on the impact of microorganisms and their processes on ETICS [5] and [6] and works
e е
<D (D
t О
i H G Г
С" c У
(О сл
CD CD 7
ö 3 о
« ( t r a i
r «
s m
3 й
>< о
f -
CD
О CT)
v 0
0 О
По
1 i n =s CD CD CD
ем
ü w
w Ы s □
s у с о
(D ü ,,
M 2 О О л -А
00 со
to eo
o o
N N
en O)
H <D
U 3 > tfl
C tfl
2 — CO W
(0
0
<d
cd CD
CZ £
1= 'g
S. w
o ^ o
CD O CD
4 °
o
CO
CM <»
CO
ra
ûl co
« I
CO O
CD "
CD
"o
Z CT OT C OT T3 — CD CD O O
■8
0 (0 №
on the decontamination technology of constructions [7] have been carried out. According to the latter, biocorrosion and bio-erosion of construction materials are primarily caused by precipitation and water, changes in temperature and the chemical solutions produced by microorganisms during chemosynthesis and photosynthesis. Experts from the Faculty of Natural Sciences (FNS) at Comenius University in Bratislava have considered the biodegradation of historical buildings, carrying out a study of cultural landmarks and showing the effects of deterioration [6] and [8]. Raschle and Buchli [9] consider principles applying to the formation of algae as well as analyzing possibilities for effective maintenance. According to [10], changes in the characteristics of various construction materials caused by microorganisms are typically monitored by means of chemical analysis, scanning electron microscope devices (SEM), microbiological analysis and other specific diagnostic methods. Various methods for evaluating sustainability throughout the whole product life cycle, such as those introduced in [11], are useful for estimating a reference service life for ETICS.
- - MATERIALS AND METHODS
No long-term solution for eliminating green stains from the facade of thermal insulation systems is currently known. However, when using biocides for the protection of ETICS, two basic technological approaches are applied:
1. Use of free (un-encapsulated) biocides in paint with low absorbability and high water repellence. From a market analysis of the available products and recommended applications of products having active chemical substances, it can be seen that the application of biocides is used in combination with pressured water rinse. If followed by rainfall, there is a risk of runoff resulting in contamination of surface waters and drainage by heavy metals. By using natural mineral materials, the negative environmental effects of cleaning ETICS can be minimized [12]. Several other studies have investigated alternative bio-purification approaches. Researchers in Italy studied the cleaning of microorganisms from building materials using a product based on glucose oxidase (GOx) [13].
2. Use of encapsulated biocides — microcapsules of biocides in paint and in final surface layer of ETICS; biocide components are inserted as micro capsules (size of 10...20 nm) directly into the plaster or into the renewing paint and the release of effective substances is controlled by diffusion of water vapour, surface moisture of plaster or by the activity of the microorganisms themselves. Biocides runoff causes less environmental damage than in other cases. Reduction of encapsulated biocide leaching was shown in several studies [14-16].
Manufacturers must provide a technical sheet of the product comprising toxicological and ecological information, potential hazards, as well as instructions for
use, storage, transport and disposal. Manufacturers are also obliged to define a means of applying the product. However, in Slovakia, no manufacturer has yet provided technical conditions for disposal of wastewater being leached during cleaning and treatment of ETICS with biocorrosion.
RESEARCH RESULTS
A permanent solution is to collect contaminated water using line drainage channels around the building, into which the water can be collected and safely removed. In the case of such a permanent solution, filtration can be used to clean contaminated water, which can then be safely connected to the drainage system or soaked away into the surrounding area. The drainage system must be designed to take into account the quantity of water required for washing the façade in discrete steps, in addition to the quantity of precipitation water in the locality. Multiple factors affect the design of water drainage systems, including: the purpose of the building, the construction characteristics of the building, the slope of the surrounding land, the availability of disposal containers, foundations, availability of filtration tanks etc. The wastewater collection method may be used for any construction that has free access to walls with ETICS. In some cases — e.g. in high density developments — it is more convenient to use absorbent mats laid at the plinth of the building. Operational and also temporary solutions for the safe cleaning of ETICS with bio corrosion can include the use of absorbent mats (which must be changed many times) or foils with sloping gutters to conduct water to a collection tank. In all cases, the collection of waste water can either be facilitated using gravity or by pumping with a small submersible pump into a collection tank.
A leaching and collecting system may be designed:
1) without collection of contaminated water, i.e. free egress to the environment (not recommended);
2) with absorbent mats (specially treated for absorbing even high concentrations of acids and alkalis https://www.grainger.com);
3) by means of special biocide-resistant foils at the level of the perimeter sidewalk, with collection of contaminated water to containers;
4) using a flat collection mechanism by means of special biocide-resistant foils (e.g. underpass);
5) by means of a gutter at the plinth profile of the thermal insulation structure (installation of hooks carrying gutters sloping into the collecting containers where installation profiles comprise built-in elements of the external wall or installation of gutters with pads to ensure the slope, having the drawback of temporary installation of foil in the wall);
6) linear drains around the house at the level of the surrounding terrain (the line drainage channels around the house conform to the landscaping of the surroundings, with contaminated water collected in collecting
Treatment of external thermal insulation composite systems (ETICS) with bio corrosion ^ 1106 1111
with respect to environment protection
Fig. 1. Linear drain system (permanent solution) and line gutters (temporary structure combined with permanent anchoring elements) — water drainage system from the ETICS surface maintenance [17]
vessels). This system ensures the permanent collection of chemically active substances also in the case of precipitation and uncontrolled run off biocides from the façade render.
The concept of the safe drainage of chemicals being leached from the facade must consider the structural system of the building, the perimeter wall construction, the purpose of the building, the arrangement of the house surroundings and landscaping, as well as the financial and technological context of bio-corrosion elimination.
CONCLUSIONS
The basic rules for cleaning ETICS surfaces contaminated by microorganisms implies that the optimal time interval for application of the product is when the algae and microorganisms go through a period of bloom during spring and autumn. The disposal of microorganisms can be realized within the building or site construction constraints from scaffolding or an assembly platform. The construction site must include the provision of a water source for rinsing the surface of the
Fig. 2. Example of temporary solution with absorbing mats that must be treated as hazardous waste; here there is a risk of leaching of liquid into the ground (Minarovicova)
facade as well as a source of electrical power. The construction site also must include collecting mechanisms for runoff water containing applied active substances in conformity with the appropriate legislation. Collected wastewater must be drained into collecting tanks, which must always be accessible on the site.
Contaminated water must be disposed of according to the relevant legislation in force. It is unacceptable to drain the contaminated water with active chemical substance into a drainage system without the permission of the drainage network administrator. It is recommended that the maintenance cycle for protection of ETICS relative to bio-corrosion resistance follow 3- to 5-year intervals, depending on various factors [18]. The expected lifespan of ETICS according to (ETAG 2004) is 25-30 years. It follows that the disposal of waste-water from cleaning the surface needs to be done at least 4 to 5 times during the entire ETICS lifespan. This information is important for complex solutions for the maintenance of external thermal insulation cladding. Despite the fact that currently only regular biocide protection of the façade surface is available, other protection solutions may become available in the future.
e e
<D (D t O i X
G !
C" c y
(Q en
O CD
C g 8 3 « ( t r
a n t Ij CD )
r «
s m 3 ^
o
f ^
CD
O CD v 0
O o
no n
CD CD CD
f?
® w
W ?
s □
s y c o W W
M 2
o o
a -a
» 00
REFERENCES
eo eo
r r
O O
N N
® «»
H (V
U 3
> in
c in
2 "" HQ n
(0
0
cd
CD CD
CZ £
1= 'g
O W
o ^ o
CD O CD
4 °
o
CO
CM <»
CO
1. Tomaselli L., Lamenti G., Bosco M., Tiano P. Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. International Biodeterioration and Biodegradation. 2000, vol. 46, issue 3, pp. 251258. DOI: 10.1016/s0964-8305(00)00078-0.
2. Tiano P. Biodeterioration of monumental rocks: decay mechanisms and control methods. Science and Technology for Cultural Heritage. 1998, issue 7 (2), pp. 19-38.
3. Commission Delegation Regulation (EU). Official Journal of the European Union. no. 1062/2014. URL: https://eur-lex.europa.eu.
4. European Chemicals Agency. URL: https://echa. europa.eu.
5. Kapusta M. Epilitické sinice a riasy z nàrastov na kultürnych pamätihodnostiach mesta Bratislavy [Epi-litic cyanobacteria and algae as cause of biodeterioration of sights of Bratislava]. Master thesis. Faculty of Natural Sciences, Department of Botanics, Bratislava, 1999. (In Slovak)
6. Kapusta M., Kovacik E. Epiliticka fykoflora vybranych antropogénnych objektov mesta Bratislavy [Epilitic fytoflora of selected anthropogenic objects of Bratislava]. Bulletin of Slovak botanical company SAS. 2000, no. 22. (In Slovak)
7. Wasserbauer R. Biologické znehodnoceni staveb [Biodeterioration of buildings]. ABF, a.s., Nakladatel-stvi ARCH, Praha, 2000. 280 p.
8. Uher B. Epilitic cyanobacteria and algae as cause of biodeterioration of stone. PhD thesis, Faculty of Natural Sciences, Department of Botanics. Bratislava, 2004.
9. Raschle P., Büchli R. Algen und Pilze an Fassaden Ursachen und Vermeidung. Fraunhofer IRB Verlag, 2006. 109 p.
10. Ledererova J. et al. Biokorozni vlivy na stavebni dila. [Biocorrosion effects on construction works]. Silicate union. Praha. 2009. (In Czech)
11. Svajlenka J., Kozlovska M. Houses based on wood as an ecological and sustainable housing alternative — case study. Sustainability in Civil Engineering. 2018, vol. 10, issue 5, pp. 1502. DOI: 10.3390/ su10051502.
12. Morel J.C., Mesbah A., Oggero M., Walker P. Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and Environment. 2001, vol. 36, issue 10, pp. 1119-1126. DOI: 10.1016/s0360-1323(00)00054-8.
13. Valentini F., Diamanti A., Palleschi G. New bio-cleaning strategies on porous building materials affected by biodeterioration event. Applied Surface Science. 2010, vol. 256, issue 22, pp. 6550-6563. DOI: 10.1016/j.apsusc.2010.04.046.
14. Breuer K., Mayer F., Scherer C., Schwerd R., Sedlbauer K. Wirkstoffauswaschung aus hydrophoben Fassadenbeschichtungen: verkapselte versus unverka-pselte Biozidsysteme. Bauphysik. 2012, vol. 34, issue 1, pp. 19-23. DOI: 10.1002/bapi.201200002.
15. Jämsä S., Mahlberg R., Holopainen U., Rop-ponen J., Savolainen A., Ritschkoff A.-C. Slow release of a biocidal agent from polymeric microcapsules for preventing biodeterioration. Progress in Organic Coatings. 2013, vol. 76, issue 1, pp. 269-276. DOI: 10.1016/j.porgcoat.2012.09.018.
16. Vermeirssen E.L.M., Campiche S., Dietschweiler C., Werner I., Burkhardt M. Ecotoxicological assessment of immersion samples from facade render containing free or encapsulated biocides. Environmental Toxicology and Chemistry. 2018, vol. 37, issue 8, pp. 2246-2256. DOI: 10.1002/etc.4176.
17. Minarovicova K., Dlhy D. Environmentally safe system for treatment of bio corrosion of ETICS. MATEC Web of Conferences. 2018, vol. 146, p. 03005. DOI: 10.1051/matecconf/201814603005.
18. Antosova N. Analysis of the knowledge of causes and technologies of ETICS biocorosion treatment and a model of their resistance. STU Bratislava. 2014.
ûl 5o
« I
CO O
CD "
CD ? °
Z CT OT != OT T3 — CD CD O O
E w
■8 iï
o in №
Received June 21, 2018.
Adopted in final form on July 21, 2018.
Approved for publication on August 31, 2018.
About the authors: Nad'a Antosova — associate professor of the Department of Building Technology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 11 Radlinskeho, 813 68 Bratislava, Slovakia, [email protected];
Katarina Minarovicova — senior lecturer of the Department of Building Constructions, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 11 Radlinskeho, 813 68 Bratislava, Slovakia, katarina. [email protected];
Barbora Belaniova — Postgraduate student of the Department of Building Technology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 11 Radlinskeho, 813 68 Bratislava, Slovakia, barbora. [email protected].
Treatment of external thermal insulation composite systems (ETICS) with bio corrosion ^ 1106 1111
with respect to environment protection
ЛИТЕРАТУРА
1. Tomaselli L., Lamenti G., Bosco M., Tiano P. Biodiversity of photosynthetic micro-organisms dwelling on stone monuments // International Biodeteriora-tion and Biodegradation. 2000, vol. 46, issue 3, pp. 251— 258. DOI: 10.1016/s0964-8305(00)00078-0.
2. Tiano P. Biodeterioration of monumental rocks: decay mechanisms and control methods // Science and Technology for Cultural Heritage. 1998, issue 7 (2), pp. 19-38.
3. Commission Delegation Regulation (EU) // Official Journal of the European Union. No. 1062/2014. URL: https://eur-lex.europa.eu.
4. European Chemicals Agency. URL: https:// echa.europa.eu.
5. Kapusta M. Epilitické sinice a riasy z narastov na kultürnych pamätihodnostiach mesta Bratislavy. Master thesis. Faculty of Natural Sciences, Department of Botanics, Bratislava 1999. (In Slovak)
6. Kapusta M, Kovâcik L. Epiliticka fykoflora vybranych antropogénnych objektov mesta Bratislavy // Bulletin of Slovak botanical company SAS. 2000, no. 22. (In Slovak)
7. Wasserbauer R. Biologické znehodnoceni staveb. [Biodeterioration of buildings]. ABF, a.s., Nak-ladatelstvi ARCH, Praha, 2000, 280 p.
8. Uher B. Epilitic cyanobacteria and algae as cause of biodeterioration of stone : PhD thesis, Faculty of Natural Sciences, Department of Botanics. Bratislava. 2004.
9. Raschle P., Büchli R. Algen und Pilze an Fassaden Ursachen und Vermeidung. Fraunhofer IRB Verlag, 2006, 109 p.
10. Ledererovâ J. et al. Biokorozni vlivy na stavebni dila Silicate union, Praha, 2009. (In Czech)
11. Svajlenka J., Kozlovskâ M. Houses based on wood as an ecological and sustainable housing alternative — case study // Sustainability in Civil Engineer-
ing. 2018, vol. 10, issue 5, pp. 1502. DOI: 10.3390/ su10051502.
12. Morel J.C., Mesbah A., Oggero M., Walker P. Building houses with local materials: means to drastically reduce the environmental impact of construction // Building and Environment. 2001, vol. 36, issue 10, pp. 1119-1126. DOI: 10.1016/s0360-1323(00)00054-8.
13. Valentini F., Diamanti A., Palleschi G. New bio-cleaning strategies on porous building materials affected by biodeterioration event // Applied Surface Science. 2010, vol. 256, issue 22, pp. 6550-6563. DOI: 10.1016/j.apsusc.2010.04.046.
14. Breuer K., Mayer F., Scherer C., SchwerdR., Sedlbauer K. Wirkstoffauswaschung aus hydrophoben Fassadenbeschichtungen: verkapselte versus unverka-pselte Biozidsysteme // Bauphysik. 2012, vol. 34, issue 1, pp. 19-23. DOI: 10.1002/bapi.201200002.
15. Jämsä S., Mahlberg R., Holopainen U., Rop-ponen J., Savolainen A., Ritschkoff A.-C. Slow release of a biocidal agent from polymeric microcapsules for preventing biodeterioration // Progress in Organic Coatings. 2013, vol. 76, issue 1, pp. 269-276. DOI: 10.1016/j. porgcoat.2012.09.018.
16. Vermeirssen E.L.M., Campiche S., Dietschweiler C., Werner I., Burkhardt M. Ecotoxicological assessment of immersion samples from facade render containing free or encapsulated biocides // Environmental Toxicology and Chemistry. 2018, vol. 37, issue 8, pp. 2246-2256. DOI: 10.1002/etc.4176.
17. Minarovicovâ K., Dlhy D. Environmentally safe system for treatment of bio corrosion of ETICS // MATEC Web of Conferences. 2018, vol. 146, p. 03005. DOI: 10.1051/matecconf/201814603005.
18. Antosovâ N. Analysis of the knowledge of causes and technologies of ETICS biocorosion treatment and a model of their resistance. STU Bratislava. 2014.
e e
<D (D t О
i H k 1 S м
G Г
c У
(О сл
Поступила в редакцию 21 июня 2018 г. Принята в доработанном виде 21 июля 2018 г. Одобрена для публикации 31 августа 2018 г.
Об авторах: Антошова Надя — доцент кафедры строительных технологий, инженерно-строительный факультет, Словацкий технический университет в Братиславе, Словакия, 813 68, г Братислава, ул. Радлинского, 11, [email protected];
Минаровичова Катарина — старший преподаватель кафедры строительных конструкций, факультет гражданского строительства, Словацкий технический университет в Братиславе, Словакия, 813 68, г. Братислава, ул. Радлинского, 11, [email protected];
Беланиова Барбора — аспирант кафедры строительных технологий, инженерно-строительный факультет, Словацкий технический университет в Братиславе, Словакия, 813 68, г. Братислава, ул. Радлинского, 11, [email protected].
CD CD
Ö S о cj
О ( t r
r s
3' й
>< о
f ^
CD
О CD
v 0
0 О
По
1 i n
CD CD CD
ем
я w
I ы s □
W у с о DD Я
O,
M M О О л -а
00 со