Tm³⁺, Li⁺ ZnWO₄: novel 2-μm laser crystal

<u>D. Lis</u>^{1*}, K. Subbotin^{1,2}, Yu. Zimina^{1,2}, Ya. Didenko², S. Pavlov², A. Titov², E. Zharikov¹

1- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia 2- Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia

* lisdenis@mail.ru

We report on the crystal growth, spectroscopic investigation, and laser performance of Tm^{3+} -doped monoclinic zinc tungstate (Tm:ZnWO₄). Tm³⁺-doped ZnWO₄ crystals containing charge compensator (Li⁺ ions) were grown using the Czochralski (Cz) method in air using a Pt crucible. The actual Tm³⁺ doping level for this second crystal was 1.59 at.% and the segregation coefficient is almost 0.4 owing to the positive effect of Li⁺ codoping. Meanwhile, the actual Li⁺ content in the crystal was measured to be 1.65 at.%, and the segregation coefficient is only ~ 0.2.

ZnWO₄ belongs to the monoclinic class adopting the C_{2h}^4 - P2/c space group and the 2/m point group, with a general multiplicity Z of 2. The lattice constants are a = 4.692Å, b = 5.721Å, c = 4.928Å, and the monoclinic angle β = a \land c = 90.632°. ZnWO₄ optical properties are described within the optical indicatrix frame, featuring three mutually orthogonal principal axes denoted as N_p , N_m , and N_g . One of them (N_p) is parallel to the crystallographic **b**-axis, aligned with the 2-fold symmetry axis. The other two axes of the optical indicatrix, N_m and N_g , lie in the **a**-**c** plane.

The polarized absorption spectra reveal a strong polarization anisotropy of absorption properties. The maximum absorption cross-sections σ_{abs} is 1.09×10^{-20} cm² at 803.6 nm and the corresponding absorption bandwidth is 16 nm for light polarization $\boldsymbol{E} \parallel N_{g}$. For the other two polarization states, σ_{abs} is smaller, amounting to 0.83×10^{-20} cm² at 807.7 nm (for $\boldsymbol{E} \parallel N_{p}$), and 0.24×10^{-20} cm² at 802.7 nm (for $\boldsymbol{E} \parallel N_{m}$).

A Judd-Ofelt analysis is conducted, the spontaneous emission probabilities, luminescence branching ratios and radiative lifetimes are determined. The crystal-field splitting of the ${}^{3}\text{H}_{6}$ and ${}^{3}\text{F}_{4}$ Tm³⁺ multiplets was achieved using low-temperature spectroscopy. The ZnWO₄ crystal exhibits a relatively large total Stark splitting of the Tm³⁺ ground state, $\Delta E({}^{3}\text{H}_{6})$ of 644 cm⁻¹, evidencing a relatively strong crystal-field for this material. This leads to the longest wavelength of a purely electronic transition ${}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$ of 2028 nm, i.e., above 2 µm, which is rarely observed for commonly used laser host crystals.

Polarized luminescence spectra and decay kinetic are obtained. Tm^{3+} ions in ZnWO₄ exhibit a significant polarization anisotropy of their emission properties that is favorable for achieving linearly polarized laser output. The maximum stimulated-emission (SE) cross-sections, σ_{SE} reaches 2.93×10^{-20} cm² at 1871 nm for light polarization $E \parallel N_p$. In the long-wave spectral region where laser action is expected to be supported by the reabsorption from the ground-state for quasi-three-level 2-µm Tm lasers, the peak SE cross-sections are 0.77×10^{-20} cm² at 2015 nm and 0.70×10^{-20} cm² at 1971 nm also for light polarized $E \parallel N_p$. Tm³⁺ ions exhibit smooth and broad emission spectral profiles extending beyond 2 µm, positioning Tm³⁺-doped ZnWO₄ as a promising candidate for generation of femtosecond pulses in this spectral range which is well detuned from the structured absorption of water vapors in the air.

The decay of ${}^{3}F_{4}$ level is well described by the single-exponential law, yielding a luminescence lifetime τ_{lum} of 1.57 ms for the powdered sample, as compared to 2.08 ms for the bulk crystal.

The laser element was cut from the annealed crystal for light propagation along the N_g optical indicatrix axis (N_g -cut). The continuous-wave Tm^{3+} , Li^+ : ZnWO₄ laser generated a maximum output power of 282 mW at 1964-1983 nm (exhibiting a broad laser spectrum) with a slope efficiency η of 14.7% with respect the absorbed power and a laser threshold of 188 mW. The combined attributes of large Stark splitting, polarized emission, spectral broadening, and prolonged luminescence lifetime position Tm-doped ZnWO₄ crystals as promising candidates for advanced laser systems.

This work has been supported by Russian Scientific Fund (grant №23-22-00416).