Научная статья на тему 'THz solid immersion microscopy: Review and perspectives '

THz solid immersion microscopy: Review and perspectives Текст научной статьи по специальности «Медицинские технологии»

CC BY
37
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «THz solid immersion microscopy: Review and perspectives »

ALT'22

BIOMEDICAL PHOTONICS

B-I-2

THz solid immersion microscopy: Review and perspectives

N.V. Chernomyrdin1'2. V.A. Zhelnov1, M. Skorobogatiy3, K.I. Zaytsev1'2

1- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia 2- Bauman Moscow State Technical University, Moscow, Russia 3- Department of Engineering Physics, Polytechnique Montreal, Montreal, Canada Main author email address: chernik-a@yandex.ru

Unique effects of terahertz (THz)-wave-matter interaction push rapid progress in THz optoelectronics aimed at bridging the problematic THz gap [1]. However, majority of modern methods of THz spectroscopy and imaging are still hampered by low spatial resolution. Common lens/mirror-based THz optics fails to overcome the Abbe barrier and usually provides resolution larger than a free-space wavelength X (i.e., hundreds of micrometers or even few millimeters) [2,3]. To mitigate this difficulty, supperresolution THz imaging modalities were introduced recently, among which we particularly underline different methods of THz scanning-probe near-field microscopy. They not only rely on strong light confinement on sub-wavelength probes and provide resolution down to 10-1-10-3X but also suffer from small energy efficiency or presume an interplay among imaging resolution, signal-to-noise ratio, and performance [4]many research teams working at Terahertz frequencies focused their efforts on surpassing the diffraction limit. Numerous techniques have been investigated, combining methods existing at optic wavelength with THz system such as Time Domain Spectroscopy. The actual development led on one side to a resolution as high as X/3000 and one the other side to a video-rate recording. The purpose of this paper is to give an overview of the history of the field, to describe the different approaches, to give examples of existing applications and to draw the perspective for this research area. © 2011 The Author(s. In our work, we consider reflection-mode THz solid immersion (SI) microscopy that offers some compromise between the high imaging resolution of 0,15X and high energy efficiency, which is due to the absence of any subwavelength probe in an optical scheme [2,3]. Recent achievements, challenging problems, and prospects of SI microscopy are overviewed [5-8] with an emphasis on resolving the inverse problem and applications in THz biophotonics [9,10].

[1] Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

[2] N. V. Chernomyrdin, A. O. Schadko, S. P. Lebedev, V. L. Tolstoguzov, V. N. Kurlov, I. V. Reshetov, I. E. Spektor, M. Skorobogatiy, S. O. Yurchenko, and K. I. Zaytsev, «Solid immersion terahertz imaging with sub-wavelength resolution,» Appl. Phys. Lett. 110(22), 221109 (2017).

[3] N. V. Chernomyrdin, A. S. Kucheryavenko, G. S. Kolontaeva, G. M. Katyba, I. N. Dolganova, P. A. Karalkin, D. S. Ponomarev, V. N. Kurlov, I. V. Reshetov, M. Skorobogatiy, V. V. Tuchin, and K. I. Zaytsev, «Reflection-mode continuous-wave 0.15X -resolution terahertz solid immersion microscopy of soft biological tissues,» Appl. Phys. Lett. 113(11), 111102 (2018).

[4] A. J. L. Adam, «Review of Near-Field Terahertz Measurement Methods and Their Applications,» J. Infrared, Millimeter, Terahertz Waves 32(8-9), 976-1019 (2011).

[5] V. A. Zhelnov, K. I. Zaytsev, A. S. Kucheryavenko, G. M. Katyba, I. N. Dolganova, D. S. Ponomarev, V. N. Kurlov, M. Skorobogatiy, and N. V. Chernomyrdin, «Object-dependent spatial resolution of the reflection-mode terahertz solid immersion microscopy,» Opt. Express 29(3), 3553 (2021).

[6] N. V. Chernomyrdin, V. A. Zhelnov, A. S. Kucheryavenko, I. N. Dolganova, G. M. Katyba, V. E. Karasik, I. V. Reshetov, and K. I. Zaytsev, «Numerical analysis and experimental study of terahertz solid immersion microscopy,» Opt. Eng. 59(6), 061605 (2019).

[7] N. V. Chernomyrdin, M. Skorobogatiy, A. A. Gavdush, G. R. Musina, G. M. Katyba, G. A. Komandin, A. M. Khorokhorov, I. E. Spektor, V. V. Tuchin, and K. I. Zaytsev, «Quantitative super-resolution solid immersion microscopy via refractive index profile reconstruction,» Optica 8(11), 1471 (2021).

[8] N. V. Chernomyrdin, M. Skorobogatiy, D. S. Ponomarev, V. V. Bukin, V. V. Tuchin, and K. I. Zaytsev, «Terahertz solid immersion microscopy: Recent achievements and challenges,» Appl. Phys. Lett. 120(11), 110501 (2022).

[9] K. I. Zaytsev, I. N. Dolganova, N. V Chernomyrdin, G. M. Katyba, A. A. Gavdush, O. P. Cherkasova, G. A. Komandin, M. A. Shchedrina, A. N. Khodan, D. S. Ponomarev, I. V. Reshetov, V. E. Karasik, M. Skorobogatiy, V. N. Kurlov, and V. V Tuchin, «The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review,» J. Opt. 22(1), 013001 (2020).

[10] O. A. Smolyanskaya, N. V. Chernomyrdin, A. A. Konovko, K. I. Zaytsev, I. A. Ozheredov, O. P. Cherkasova, M. M. Nazarov, J.-P. Guillet, S. A. Kozlov, Y. V. Kistenev, J.-L. Coutaz, P. Mounaix, V. L. Vaks, J.-H. Son, H. Cheon, V. P. Wallace, Y. Feldman, I. Popov, A. N. Yaroslavsky, A. P. Shkurinov, and V. V. Tuchin, «Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids,» Prog. Quantum Electron. 62, 1-77 (2018).

i Надоели баннеры? Вы всегда можете отключить рекламу.